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1. Introduction

1.1. Context

G.H. Hardy and D. Hilbert made significant contributions to the study of integral inequalities. In
particular, D. Hilbert established the classical Hilbert integral inequality in 1908, which G.H. Hardy later
extended and generalized in 1925, leading to the well-known Hardy-Hilbert (HH) integral inequality. This
inequality plays an important role in mathematical analysis, especially in the study of function spaces, operator
theory, and Fourier analysis. The essence of these classical results can be found in [1,2].

To lay the foundation for this article, a formal statement of the HH integral inequality is given below, using
conventional notation. Let p > 1, q = p/(p − 1) be the Hölder conjugate of p, and f , g : (0,+∞) 7→ (0,+∞)

be two functions. Then we have

∫ +∞

0

∫ +∞

0

1
x + y

f (x)g(y)dxdy ≤ π

sin(π/p)

[∫ +∞

0
f p(x)dx

]1/p [∫ +∞

0
gq(y)dy

]1/q
,

under the condition that the integrals defining the upper bound converge, i.e.,
∫ +∞

0 f p(x)dx < +∞ and∫ +∞
0 gq(y)dy < +∞. The left-hand side term is thus a double integral of the form

∫ +∞

0

∫ +∞

0
k(x, y) f (x)g(y)dxdy,

where k is the kernel function defined by k(x, y) = 1/(x + y). A key property of this function is its
homogeneity, meaning that there exists ϵ ∈ R such that, for any x, y > 0 and λ > 0, the following scaling
property holds:

k(λx, λy) = λϵk(x, y).

Here, we have ϵ = −1. Notably, if we take p = 2, the HH integral inequality reduces to the
classical Hilbert integral inequality, with π as the constant factor. Beyond these fundamental results, various
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modifications and generalizations have been studied. Some of these are characterized by the inclusion of
different kernel functions. Despite the extensive literature on the subject, this remains an active area of research
with ongoing developments. For further references and recent advancements, see [2–40]. Important results
from some of these references are discussed below.

1.2. Power-max kernel functions

In this article, we focus on HH-type integral inequalities for a certain class of kernel functions that depend
on the power and the maximum of the two variables x and y, i.e., max(x, y). These are called power-max kernel
functions (including the case where the power exponent is reduced to 1 for simplicity). A fundamental result
in this area was established in [2], which states that, within the framework of the HH integral inequality,

∫ +∞

0

∫ +∞

0

1
max(x, y)

f (x)g(y)dxdy ≤ pq
[∫ +∞

0
f p(x)dx

]1/p [∫ +∞

0
gq(y)dy

]1/q
,

(again under the condition that the integrals defining the upper bound converge, as for all upper bounds
presented in this section). The considered power-max kernel function is simply given by k(x, y) =

1/ max(x, y). This result was revisited in [29] by introducing a parameter γ > 0, which leads to

∫ +∞

0

∫ +∞

0

1
max(xγ, yγ)

f (x)g(y)dxdy ≤ pq
γ

[∫ +∞

0
xp−1−γ f p(x)dx

]1/p [∫ +∞

0
yq−1−γgq(y)dy

]1/q
.

The corresponding kernel function is k(x, y) = 1/ max(xγ, yγ). Note that, if we take γ = 1, we do not
exactly recover the previous result, dealing with weighted Lp and Lq integral norms of f and g, respectively.
A more original HH-type integral inequality was introduced in [18] for the case p = 2, given by

∫ +∞

0

∫ +∞

0

1
x + y + max(x, y)

f (x)g(y)dxdy ≤
√

2
[
π − 2 arctan(

√
2)
] [∫ +∞

0
f 2(x)dx

]1/2 [∫ +∞

0
g2(y)dy

]1/2
.

Here, the kernel function considered is k(x, y) = 1/[x + y + max(x, y)]. This result was further
generalized in [23] by including an arbitrary norm parameter p > 1, yielding

∫ +∞

0

∫ +∞

0

1
x + y + max(x, y)

f (x)g(y)dxdy

≤
√

2
[
π − 2 arctan(

√
2)
] [∫ +∞

0
xp/2−1 f p(x)dx

]1/p [∫ +∞

0
yq/2−1gq(y)dy

]1/q
.

Still in [23], a one-power-parameter extension of this result was investigated. It ensures that, for any
µ > 1, ∫ +∞

0

∫ +∞

0

1
[x + y + max(x, y)]µ

f (x)g(y)dxdy

≤ 1
2(µ − 1)

(
1

2µ−2 − 1
3µ−1

) [∫ +∞

0
x1−µ f p(x)dx

]1/p [∫ +∞

0
y1−µgq(y)dy

]1/q
.

Here, the kernel function is

k(x, y) =
1

[x + y + max(x, y)]µ
. (1)

The more technical case µ ∈ (0, 1) was also examined in [23], along with functional generalizations. We
complete this brief state of the art by mentioning that general homogeneous power-max kernel functions were
introduced in [2,5,18,19,25,26], with the use of intermediate functions and adjustable parameters. Based on
these, HH-type integral inequalities were established with detailed developments and original techniques.
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1.3. Contributions

A key observation in all the HH-type integral inequalities discussed above is that the considered kernel
functions are homogeneous. This raises a natural question:

Question 1. Can we establish relevant HH-type integral inequalities with non-homogeneous power-max functions?

To answer this question, we first propose to study a new class of kernel functions of the form

k(x, y) =
1

[xy + max(x, y)]α
,

where α > 1. Compared to the kernel function in Eq. (1), the sum term x + y is thus replaced by xy.
Although this change may seem minor at first glance, it has a significant impact on the behavior of the kernel
function. Indeed, the presence of this product term disrupts its homogeneity (as detailed later), and leads to an
innovative mathematical framework. In addition, we extend the analysis by introducing a varying integration
domain, assuming that (x, y) ∈ (β,+∞)2 with β ≥ 0. The upper bounds obtained are of the form

κ

[∫ +∞

β
w(x) f p(x)dx

]1/p [∫ +∞

β
w(y)gq(y)dy

]1/q
,

where κ > 0 is a certain constant and w is a carefully chosen weight function. An integral equivalence result
is also established, as well as more tractable integral inequalities. To improve applicability, we also give a
functional generalization using two intermediate functions.

Next, we introduce a class of related kernel functions where the maximum term is modulated by a
parameter δ. More specifically, we consider

k(x, y) =
1

[xy + δ max(x, y)]2
,

with δ > 0. Three integration domains are considered, assuming that (x, y) ∈ (0, 1)2, (x, y) ∈ (1,+∞)2 and
(x, y) ∈ (0,+∞)2. An integral equivalence of our main result is given. Then some variants are studied, one of
which is

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy ≤ 2
δ2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

Beyond these cases, we establish additional HH-type integral inequalities with other non-homogeneous
kernel functions, as well as functional generalizations that extend their applicability.

To support the theory, we provide numerical examples wherever possible. For transparency and
reproducibility, the implementation codes used in the computations are also included.

1.4. Article organization

§2 and §3 present the first and second HH-type integral inequalities, respectively. §4 provides the
conclusion. The appendix includes the codes used in the numerical examples.

2. First HH-type integral inequalities

2.1. Main result

The proposition below is an integral result for an integrand involving a (ratio) power-max function. Note
also an integration domain that can vary depending on an intermediate parameter.

Proposition 1. Let α > 1 and β ≥ 0. Then, for any x ≥ β, we have

∫ +∞

β

1
[xy + max(x, y)]α

dy =
1

(α − 1)xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
.
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Proof of Proposition 1. By means of the Chasles integral theorem, combined with the definition of max(x, y),
standard power primitive rules and α > 1, for any x ≥ β, we get

∫ +∞

β

1
[xy + max(x, y)]α

dy =
∫ x

β

1
[xy + max(x, y)]α

dy +
∫ +∞

x

1
[xy + max(x, y)]α

dy

=
∫ x

β

1
(xy + x)α

dy +
∫ +∞

x

1
(xy + y)α

dy

=
1
xα

∫ x

β

1
(y + 1)α

dy +
1

(x + 1)α

∫ +∞

x

1
yα

dy

=
1
xα

[
1

1 − α
× 1

(y + 1)α−1

]y=x

y=β

+
1

(x + 1)α

[
1

1 − α
× 1

yα−1

]y→+∞

y=x

=
1

α − 1
× 1

xα

[
1

(β + 1)α−1 − 1
(x + 1)α−1

]
+

1
α − 1

× 1
xα−1 × 1

(x + 1)α

=
1

(α − 1)xα

[
1

(β + 1)α−1 − 1
(x + 1)α−1 +

x
(x + 1)α

]
=

1
(α − 1)xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
.

The proof of the proposition ends.

The expression of the considered integral is therefore relatively manageable. Based on this, we concentrate
on a double integral of the form ∫ +∞

β

∫ +∞

β
k(x, y) f (x)g(y)dxdy,

where α > 1, β ≥ 0 and k is the power-max kernel function given by

k(x, y) =
1

[xy + max(x, y)]α
.

This kernel function is non-homogeneous, meaning there is no ϵ ∈ R such that, for any x, y > 0 and
λ > 0, k(λx, λy) = λϵk(x, y). To substantiate this claim, notice that

k(λx, λy) =
1

[(λx)(λy) + max(λx, λy)]α
=

1
[λ2xy + λ max(x, y)]α

=
1

λα[λxy + max(x, y)]α
.

This suggests that the only possible candidate for ϵ is ϵ = −α. However, due to the additional factor λ

in the xy term of the denominator, the equality k(λx, λy) = λϵk(x, y) does not hold. The kernel function thus
deviates from the standard homogeneous form, introducing a distinct analytical framework compared to those
explored in [2,18,23,25,26,29]. In addition, we emphasize the adaptable integration domain, i.e., (β,+∞)2, with
β ≥ 0, which includes the commonly studied case (0,+∞)2 when β = 0.

In this context, the theorem below presents the first HH-type integral inequalities. Proposition 1 is central
to the proof.

Theorem 1. Let α > 1, β ≥ 0, p > 1, q = p/(p − 1) and f , g : (β,+∞) 7→ (0,+∞) be two functions. Then we have

∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy ≤ 1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q
,

under the condition that the integrals defining the upper bound converge.
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Proof of Theorem 1. A suitable product decomposition of the integrand using the equality 1/p + 1/q = 1,
followed by an application of the Hölder integral inequality with the parameters p and q, gives

∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy

=
∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α/p f (x)× 1

[xy + max(x, y)]α/q g(y)dxdy

≤
{∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f p(x)dxdy
}1/p

×
{∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

gq(y)dxdy
}1/q

. (2)

By means of the Fubini-Tonelli integral theorem (which allows the exchange of the order of integration,
the integrand being of constant sign, i.e., non-negative here) and Proposition 1, we have

∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f p(x)dxdy =
∫ +∞

β
f p(x)

{∫ +∞

β

1
[xy + max(x, y)]α

dy
}

dx

=
1

α − 1

∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx. (3)

Similarly, we have

∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

gq(y)dxdy =
∫ +∞

β
gq(y)

{∫ +∞

β

1
[xy + max(x, y)]α

dx
}

dy

=
1

α − 1

∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy. (4)

Combining Eqs. (2), (3) and (4) and using the equality 1/p + 1/q = 1, we get

∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy ≤
{

1
α − 1

∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p

×
{

1
α − 1

∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q

=
1

α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q
.

This ends the proof of the theorem.

To the best of our knowledge, this theorem provides a new integral inequality result in the literature. It is
one of the few that mixes a non-homogeneous power-max kernel function and an adaptive integration domain.
An equivalent formulation of this theorem with only one function will be described later, in Proposition 2.

Remark 1. Some basic or technical remarks on Theorem 1 are formulated below.

• Noticing that xy = max(x, y)min(x, y), the main double integral can be rewritten with min(x, y) and
max(x, y), as follows:∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy =
∫ +∞

β

∫ +∞

β

1
maxα(x, y)[min(x, y) + 1]α

f (x)g(y)dxdy.

From this point of view, we deal with a non-homogeneous min-max-power kernel function, which is
k(x, y) = 1/{maxα(x, y)[min(x, y) + 1]α}.
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• Using the expression max(x, y) = (1/2)(x + y + |x − y|), the main double integral can be rewritten as
follows:∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy = 2α
∫ +∞

β

∫ +∞

β

1
[2xy + x + y + |x − y|]α f (x)g(y)dxdy.

So we have ∫ +∞

β

∫ +∞

β

1
[2xy + x + y + |x − y|]α f (x)g(y)dxdy

≤ 1
2α(α − 1)

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q
.

To the best of our knowledge, this is a new HH-type integral inequality. It is defined with a
power-absolute value kernel function.

• For any x > 0, we have −1/(x + 1)α ≤ 0, and, for any y > 0, we have −1/(y + 1)α ≤ 0. Using this and
the equality 1/p + 1/q = 1, we get

∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy

≤ 1
α − 1

[
1

(β + 1)α−1

∫ +∞

β

1
xα

f p(x)dx
]1/p [ 1

(β + 1)α−1

∫ +∞

β

1
yα

gq(y)dy
]1/q

=
1

(α − 1)(β + 1)α−1

[∫ +∞

β

1
xα

f p(x)dx
]1/p [∫ +∞

β

1
yα

gq(y)dy
]1/q

.

The weight functions in the integrals of the upper bounds are thus reduced to power functions, with an
original constant factor that can be small, depending on the values of α and β.

2.2. Numerical work

We now illustrate Theorem 1 with some numerical examples. The values of α and β are arbitrarily chosen
from those to which the integrals of the upper bound converge. For the sake of reproducibility, the free software
R is used with the package named pracma. See [41]. The corresponding codes are given in the appendix.

Example 1. If we take α = 2.5, β = 1, p = 2 (so q = 2), f (x) = 1 and g(y) = 1, we have∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy =
∫ +∞

1

∫ +∞

1

1
[xy + max(x, y)]2.5 dxdy ≈ 0.09268775,

and

1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p
×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q

=
1

2.5 − 1

{∫ +∞

1

1
x2.5

[
1

(1 + 1)2.5−1 − 1
(x + 1)2.5

]
dx
}

≈ 0.1170915.

Since 0.09268775 < 0.1170915, this is consistent with Theorem 1.

Example 2. If we take α = 1.1, β = 2, p = 3 (so q = 3/2), f (x) = 1 and g(y) = e−y, we have∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy =
∫ +∞

2

∫ +∞

2

1
[xy + max(x, y)]1.1 e−ydxdy ≈ 0.2857713,
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and

1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p
×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q

=
1

1.1 − 1

{∫ +∞

2

1
x1.1

[
1

(2 + 1)1.1−1 − 1
(x + 1)1.1

]
dx
}1/3

×
{∫ +∞

2

1
y1.1

[
1

(2 + 1)1.1−1 − 1
(y + 1)1.1

]
e−3y/2dy

}2/3
≈ 0.7654846.

Since 0.2857713 < 0.7654846, this is in accordance with Theorem 1.

Example 3. If we take α = 2, β = 0, p = 4/3 (so q = 4), f (x) = e−1/x2
and g(y) = e−1/y, we have∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy =
∫ +∞

0

∫ +∞

0

1
[xy + max(x, y)]2

e−1/x2
e−1/ydxdy ≈ 0.220281,

and

1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p
×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q

=
1

2 − 1

{∫ +∞

0

1
x2

[
1

(0 + 1)2−1 − 1
(x + 1)2

]
e−4/(3x2)dx

}3/4

×
{∫ +∞

0

1
y2

[
1

(0 + 1)2−1 − 1
(y + 1)2

]
e−4/ydy

}1/4
≈ 0.5251761.

Since 0.220281 < 0.5251761, this is consistent with Theorem 1.

2.3. Additional results

The proposition below is complementary to Theorem 1, dealing with only one function.

Proposition 2. Let α > 1, β ≥ 0, p > 1, q = p/(p − 1) and f : (0,+∞) 7→ (0,+∞) be a function. Then Theorem 1
is rigorously equivalent to

∫ +∞

β

{
1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}1−p {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}p

dy

≤ 1
(α − 1)p

∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx,

under the condition that the integral defining the upper bound converges.

Proof of Proposition 2. Let us first prove that Theorem 1 implies the stated inequality. To do this, let us set

I =
∫ +∞

β

{
1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}1−p {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}p

dy.

A suitable product decomposition of the integrand gives

I =
∫ +∞

β

{
1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}1−p {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}

×
{∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}p−1

dy

=
∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g‡(y)dxdy, (5)
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where

g‡(y) =
{

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}1−p {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}p−1

.

It follows from Theorem 1 applied to the functions f and g‡ that

∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g‡(y)dxdy ≤ 1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq

‡(y)dy
}1/q

. (6)

Using q = p/(p − 1) and the definition of g‡, we have

∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq

‡(y)dy

=
∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
×
{

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}q(1−p) {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}q(p−1)

dy

=
∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
×
{

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}−p {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}p

dy

=
∫ +∞

β

{
1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}1−p {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}p

dy

= I . (7)

Combining Eqs. (5), (6) and (7), we obtain

I ≤ 1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p
I1/q.

Using the equality 1/p + 1/q = 1, we get

I1/p = I1−1/q ≤ 1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p
,

so that, by the definition of I ,

∫ +∞

β

{
1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}1−p {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}p

dy

≤ 1
(α − 1)p

∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx.

This is the desired inequality.
Let us now prove that this inequality implies Theorem 1. A suitable product decomposition of the

integrand, the Hölder integral inequality with respect to y and with the parameters p and q, and the assumed
inequality, give

∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy

=
∫ +∞

β

[{
1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}−1/q ∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx

]
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×
{

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}1/q
g(y)dy

≤
[∫ +∞

β

{
1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}−p/q {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}p

dy

]1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q

=

[∫ +∞

β

{
1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]}1−p {∫ +∞

β

1
[xy + max(x, y)]α

f (x)dx
}p

dy

]1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q

≤
{

1
(α − 1)p

∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q

=
1

α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q
.

The inequality in Theorem 1 is established, proving the equivalence. This concludes the proof of the
proposition.

The proposition below provides a simplified upper bound for the HH-type integral inequality established
in Theorem 1.

Proposition 3. Let α > 1, p > 1, q = p/(p − 1) and f , g : (0,+∞) 7→ (0,+∞) be two functions. Then we have∫ +∞

0

∫ +∞

0

1
[xy + max(x, y)]α

f (x)g(y)dxdy

≤ 1
4(α − 1)

[∫ +∞

0

(
x + 1

x

)α

f p(x)dx
]1/p [∫ +∞

0

(
y + 1

y

)α

gq(y)dy
]1/q

,

under the condition that the integrals defining the upper bound converge.

Proof of Proposition 3. Applying Theorem 1 to β = 0, we have

∫ +∞

0

∫ +∞

0

1
[xy + max(x, y)]α

f (x)g(y)dxdy

≤ 1
α − 1

{∫ +∞

0

1
xα

[
1 − 1

(x + 1)α

]
f p(x)dx

}1/p {∫ +∞

0

1
yα

[
1 − 1

(y + 1)α

]
gq(y)dy

}1/q
. (8)

It is well known that, for any z ∈ [0, 1], we have z(1 − z) ∈ [0, 1/4]. For any x > 0, applying this to
z = 1/(x + 1)α ∈ [0, 1], we obtain

1
xα

[
1 − 1

(x + 1)α

]
=

(
x + 1

x

)α 1
(x + 1)α

[
1 − 1

(x + 1)α

]
≤ 1

4

(
x + 1

x

)α

.

Similarly, for any y > 0, we have

1
yα

[
1 − 1

(y + 1)α

]
=

(
y + 1

y

)α 1
(y + 1)α

[
1 − 1

(y + 1)α

]
≤ 1

4

(
y + 1

y

)α

.
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Using these inequalities and the equality 1/p + 1/q = 1, we get

1
α − 1

{∫ +∞

0

1
xα

[
1 − 1

(x + 1)α

]
f p(x)dx

}1/p {∫ +∞

0

1
yα

[
1 − 1

(y + 1)α

]
gq(y)dy

}1/q

≤ 1
α − 1

{
1
4

∫ +∞

0

(
x + 1

x

)α

f p(x)dx
}1/p {1

4

∫ +∞

0

(
y + 1

y

)α

gq(y)dy
}1/q

=
1

4(α − 1)

[∫ +∞

0

(
x + 1

x

)α

f p(x)dx
]1/p [∫ +∞

0

(
y + 1

y

)α

gq(y)dy
]1/q

. (9)

Combining Eqs. (8) and (9), we obtain

∫ +∞

0

∫ +∞

0

1
[xy + max(x, y)]α

f (x)g(y)dxdy

≤ 1
4(α − 1)

[∫ +∞

0

(
x + 1

x

)α

f p(x)dx
]1/p [∫ +∞

0

(
y + 1

y

)α

gq(y)dy
]1/q

.

This concludes the proof of the proposition.

The result below completes Proposition 3 by providing an alternative upper bound for a varying
integration domain.

Proposition 4. Let α > 1, β ≥ 0, p > 1, q = p/(p − 1) and f , g : (β,+∞) 7→ (0,+∞) be two functions. Then we
have∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy

≤ 1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 + αx − 1
]

f p(x)dx
}1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 + αy − 1
]

gq(y)dy
}1/q

,

under the condition that the integrals defining the upper bound converge.

Proof of Proposition 4. It follows from Theorem 1 that∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy

≤ 1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p
×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q
.

(10)

The well-known Bernoulli inequality gives, for any z ≥ −1 and r ∈ R\(0, 1),

(1 + z)r ≥ 1 + rz,

(and the reversed inequality holds for r ∈ [0, 1]). For any x ≥ β ≥ 0 ≥ −1, applying this to z = x and
r = −α ∈ R\(0, 1), we get (1 + x)−α ≥ 1 − αx, so that

− 1
(x + 1)α

≤ αx − 1.

Similarly, for any y ≥ β, we have

− 1
(y + 1)α

≤ αy − 1.
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On the other hand, applying the Bernoulli inequality to z = β and r = 1 − α < 0, we get

1
(β + 1)α−1 + αβ − 1 = (1 + β)1−α + αβ − 1 ≥ 1 + (1 − α)β + αβ − 1 = β ≥ 0.

It follows from these inequalities (the last one being necessary to check that the terms in square brackets
are positive), we obtain

1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 − 1
(x + 1)α

]
f p(x)dx

}1/p
×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 − 1
(y + 1)α

]
gq(y)dy

}1/q

≤ 1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 + αx − 1
]

f p(x)dx
}1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 + αy − 1
]

gq(y)dy
}1/q

.

(11)

Combining Eqs. (10) and (11), we find that

∫ +∞

β

∫ +∞

β

1
[xy + max(x, y)]α

f (x)g(y)dxdy

≤ 1
α − 1

{∫ +∞

β

1
xα

[
1

(β + 1)α−1 + αx − 1
]

f p(x)dx
}1/p

×
{∫ +∞

β

1
yα

[
1

(β + 1)α−1 + αy − 1
]

gq(y)dy
}1/q

.

This concludes the proof of the proposition.

In particular, if we take β = 0, the following integral inequality is established:

∫ +∞

0

∫ +∞

0

1
[xy + max(x, y)]α

f (x)g(y)dxdy ≤ α

α − 1

[∫ +∞

0
x1−α f p(x)dx

]1/p [∫ +∞

0
y1−αgq(y)dy

]1/q
.

The form of the upper bounds is similar to some obtained for HH-type integral inequalities defined with
homogeneous power-max kernel functions. See, for example, [5,19,23,29].

The theorem below can be seen as a functional generalization of Theorem 1. It follows the methodological
spirit of [23], but with a different approach based on changes of variables.

Theorem 2. Let a, b ∈ R ∪ {−∞,+∞} with a < b, c, d ∈ R ∪ {−∞,+∞} with c < d, α > 1, β ≥ 0, p > 1,
q = p/(p − 1), f : (a, b) 7→ (0,+∞) and g : (c, d) 7→ (0,+∞) be two functions, and ϕ : (a, b) 7→ (0,+∞) and
ψ : (c, d) 7→ (0,+∞) be two differentiable non-decreasing functions such that limz→a ϕ(z) = β, limz→b ϕ(z) = +∞,
limz→c ψ(z) = β and limz→d ψ(z) = +∞. Then we have

∫ d

c

∫ b

a

1
{ϕ(x)ψ(y) + max[ϕ(x), ψ(y)]}α f (x)g(y)dxdy

≤ 1
α − 1

[∫ b

a

1
ϕα(x)

{
1

(β + 1)α−1 − 1
[ϕ(x) + 1]α

}
f p(x)

1
[ϕ′(x)]p−1 dx

]1/p

×
[∫ d

c

1
ψα(y)

{
1

(β + 1)α−1 − 1
[ψ(y) + 1]α

}
gq(y)

1
[ψ′(y)]q−1 dy

]1/q

,

under the condition that the integrals defining the upper bound converge.

Proof of Theorem 2. Applying the changes of variables u = ϕ(x) and v = ψ(y), so that x = ϕ−1(u) and
y = ψ−1(v), with dx =

[
1/ϕ′(ϕ−1(u))

]
du and dy =

[
1/ψ′(ψ−1(v))

]
dv, and paying attention to the integration

domain, we get

∫ d

c

∫ b

a

1
{ϕ(x)ψ(y) + max[ϕ(x), ψ(y)]}α f (x)g(y)dxdy

=
∫ +∞

β

∫ +∞

β

1
[uv + max(u, v)]α

f (ϕ−1(u))g(ψ−1(v))
1

ϕ′(ϕ−1(u))ψ′(ψ−1(v))
dudv
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=
∫ +∞

β

∫ +∞

β

1
[uv + max(u, v)]α

f†(u)g†(v)dudv, (12)

where
f†(u) = f (ϕ−1(u))

1
ϕ′(ϕ−1(u))

, g†(v) = g(ψ−1(v))
1

ψ′(ψ−1(v))
.

Applying Theorem 1 to the functions f† and g†, we obtain

∫ +∞

β

∫ +∞

β

1
[uv + max(u, v)]α

f†(u)g†(v)dudv ≤ 1
α − 1

{∫ +∞

β

1
uα

[
1

(β + 1)α−1 − 1
(u + 1)α

]
f p
† (u)du

}1/p

×
{∫ +∞

β

1
vα

[
1

(β + 1)α−1 − 1
(v + 1)α

]
gq

†(v)dv
}1/q

=
1

α − 1

{∫ +∞

β

1
uα

[
1

(β + 1)α−1 − 1
(u + 1)α

]
f p(ϕ−1(u))

1
[ϕ′(ϕ−1(u))]p

du
}1/p

×
{∫ +∞

β

1
vα

[
1

(β + 1)α−1 − 1
(v + 1)α

]
gq(ψ−1(v))

1
[ψ′(ψ−1(v))]q

dv
}1/q

. (13)

Now, reversing the changes of variables process in the upper bound by setting u = ϕ(x) and v = ψ(y),
we get

1
α − 1

{∫ +∞

β

1
uα

[
1

(β + 1)α−1 − 1
(u + 1)α

]
f p(ϕ−1(u))

1
[ϕ′(ϕ−1(u))]p

du
}1/p

×
{∫ +∞

β

1
vα

[
1

(β + 1)α−1 − 1
(v + 1)α

]
gq(ψ−1(v))

1
[ψ′(ψ−1(v))]q

dv
}1/q

=
1

α − 1

[∫ b

a

1
ϕα(x)

{
1

(β + 1)α−1 − 1
[ϕ(x) + 1]α

}
f p(x)

1
[ϕ′(x)]p

ϕ′(x)dx
]1/p

×
[∫ d

c

1
ψα(y)

{
1

(β + 1)α−1 − 1
[ψ(y) + 1]α

}
gq(y)

1
[ψ′(y)]q

ψ′(y)dy
]1/q

=
1

α − 1

[∫ b

a

1
ϕα(x)

{
1

(β + 1)α−1 − 1
[ϕ(x) + 1]α

}
f p(x)

1
[ϕ′(x)]p−1 dx

]1/p

×
[∫ d

c

1
ψα(y)

{
1

(β + 1)α−1 − 1
[ψ(y) + 1]α

}
gq(y)

1
[ψ′(y)]q−1 dy

]1/q

. (14)

Combining Eqs. (12), (13) and (14), we get

∫ d

c

∫ b

a

1
{ϕ(x)ψ(y) + max[ϕ(x), ψ(y)]}α f (x)g(y)dxdy

≤ 1
α − 1

[∫ b

a

1
ϕα(x)

{
1

(β + 1)α−1 − 1
[ϕ(x) + 1]α

}
f p(x)

1
[ϕ′(x)]p−1 dx

]1/p

×
[∫ d

c

1
ψα(y)

{
1

(β + 1)α−1 − 1
[ψ(y) + 1]α

}
gq(y)

1
[ψ′(y)]q−1 dy

]1/q

.

This concludes the proof of the theorem.

In particular, if we take a = 0, "b = +∞", c = 0, "d = +∞", β = 0, ϕ(x) = xτ with τ > 0 and ψ(y) = yι

with ι > 0, since ϕ′(x) = τxτ−1 and ψ′(y) = ιyι−1, we have∫ +∞

0

∫ +∞

0

1
[xτyι + max(xτ , yι)]α

f (x)g(y)dxdy

≤ 1
α − 1

[∫ +∞

0

1
xατ

{
1

(β + 1)α−1 − 1
(xτ + 1)α

}
f p(x)

1
(τxτ−1)p−1 dx

]1/p
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×
[∫ +∞

0

1
yαι

{
1

(β + 1)α−1 − 1
(yι + 1)α

}
gq(y)

1
(ιyι−1)q−1 dy

]1/q

=
1

(α − 1)τ1−1/pι1−1/q

[∫ +∞

0

1
xτ(α+p−1)−p+1

{
1

(β + 1)α−1 − 1
(xτ + 1)α

}
f p(x)dx

]1/p

×
[∫ +∞

0

1
yι(α+q−1)−q+1

{
1

(β + 1)α−1 − 1
(yι + 1)α

}
gq(y)dy

]1/q
.

If we take τ = 1 and ι = 1, we obtain the inequality in Theorem 1. Much more functional examples of this
kind can be presented, extending the scope of this theorem.

The rest of the article is devoted to the second HH-type integral inequalities, defined with other
non-homogeneous kernel functions.

3. Second HH-type integral inequalities

3.1. Main result

The proposition below is a variant of Proposition 1. It provides an integral result for an integrand
involving a (ratio) power-max function under three integration domains. The main novelty lies in the presence
of the parameter δ, which modulates the term max(x, y) in the denominator.

Proposition 5. Let δ > 0.

1. For any x > 0, we have

∫ 1

0

1
[xy + δ max(x, y)]2

dy =


(2 − x)δ + x
δx(x + δ)2 if x ∈ (0, 1],

1
δ(1 + δ)x2 if x > 1.

2. For any x > 0, we have

∫ +∞

1

1
[xy + δ max(x, y)]2

dy =


1

(x + δ)2 if x ∈ (0, 1],

(2x − 1)δ + x2

(δ + 1)x2(x + δ)2 if x > 1.

3. For any x > 0, we have ∫ +∞

0

1
[xy + δ max(x, y)]2

dy =
2δ + x

δx(x + δ)2 .

Proof of Proposition 5. 1. For x ∈ (0, 1], using the Chasles integral theorem, combined with the definition
of max(x, y) and standard power primitive rules, we get

∫ 1

0

1
[xy + δ max(x, y)]2

dy =
∫ x

0

1
[xy + δ max(x, y)]2

dy +
∫ 1

x

1
[xy + δ max(x, y)]2

dy

=
∫ x

0

1
(xy + δx)2 dy +

∫ 1

x

1
(xy + δy)2 dy

=
1
x2

∫ x

0

1
(y + δ)2 dy +

1
(x + δ)2

∫ 1

x

1
y2 dy

=
1
x2

[
− 1

y + δ

]y=x

y=0
+

1
(x + δ)2

[
−1

y

]y=1

y=x

=
1
x2

(
1
δ
− 1

x + δ

)
+

1
(x + δ)2

(
1
x
− 1
)

=
(2 − x)δ + x
δx(x + δ)2 .
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For x > 1, since y ∈ (0, 1), we have max(x, y) = x. Using this and a standard power primitive rule, we
have ∫ 1

0

1
[xy + δ max(x, y)]2

dy =
∫ 1

0

1
(xy + δx)2 dy

=
1
x2

∫ 1

0

1
(y + δ)2 dy

=
1
x2

[
− 1

y + δ

]y=1

y=0

=
1
x2

(
1
δ
− 1

1 + δ

)
=

1
δ(1 + δ)x2 .

The desired results are established.
2. For x ∈ (0, 1], since y > 1, we have max(x, y) = y. Using this and a standard power primitive rule, we

get

∫ +∞

1

1
[xy + δ max(x, y)]2

dy =
∫ +∞

1

1
(xy + δy)2 dy =

1
(x + δ)2

∫ +∞

1

1
y2 dy =

1
(x + δ)2

[
−1

y

]y→+∞

y=1

=
1

(x + δ)2 .

For x > 1, using the Chasles integral theorem, combined with the definition of max(x, y), and standard
power primitive rules, we obtain

∫ +∞

1

1
[xy + δ max(x, y)]2

dy =
∫ x

1

1
[xy + δ max(x, y)]2

dy +
∫ +∞

x

1
[xy + δ max(x, y)]2

dy

=
∫ x

1

1
(xy + δx)2 dy +

∫ +∞

x

1
(xy + δy)2 dy

=
1
x2

∫ x

1

1
(y + δ)2 dy +

1
(x + δ)2

∫ +∞

x

1
y2 dy

=
1
x2

[
− 1

y + δ

]y=x

y=1
+

1
(x + δ)2

[
−1

y

]y→+∞

y=x

=
1
x2

(
1

1 + δ
− 1

x + δ

)
+

1
(x + δ)2 × 1

x

=
(2x − 1)δ + x2

(δ + 1)x2(x + δ)2 .

The desired results are obtained.
3. Combining the results of the two points above and using the Chasles integral theorem at the intersection

value "x = 1", for any x > 0, we get

∫ +∞

0

1
[xy + δ max(x, y)]2

dy =
∫ 1

0

1
[xy + δ max(x, y)]2

dy +
∫ +∞

1

1
[xy + δ max(x, y)]2

dy

=


(2 − x)δ + x
δx(x + δ)2 +

1
(x + δ)2 if x ∈ (0, 1],

1
δ(1 + δ)x2 +

(2x − 1)δ + x2

(δ + 1)x2(x + δ)2 if x > 1.

After some developments, we find that

(2 − x)δ + x
δx(x + δ)2 +

1
(x + δ)2 =

2δ + x
δx(x + δ)2 ,
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and

1
δ(1 + δ)x2 +

(2x − 1)δ + x2

(δ + 1)x2(x + δ)2 =
2δ + x

δx(x + δ)2 .

For any x > 0, we therefore have

∫ +∞

0

1
[xy + δ max(x, y)]2

dy =
2δ + x

δx(x + δ)2 .

The desired formula is obtained.
This concludes the proof of the proposition.

The expressions for the integrals are therefore tractable. Based on this, we concentrate on a double integral
of the form ∫ ∫

D
k(x, y) f (x)g(y)dxdy,

where D ∈ {(0, 1)2, (1,+∞)2, (0,+∞)2}, α > 1, β ≥ 0 and k is the power-max kernel function given by

k(x, y) =
1

[xy + δ max(x, y)]2
,

with δ > 0. Compared to the first HH-type integral inequality, a new parameter δ is introduced, which
modulates the maximum term, and the exponent α is set to 2. The presence of δ clearly adds a degree of
flexibility. The choice of 2 for the power parameter is for reasons of integrability and simplicity. This new kernel
function is also non-homogeneous, so there is no ϵ ∈ R such that, for any x, y ∈ D and λ > 0, k(λx, λy) =

λϵk(x, y). To illustrate this, we develop

k(λx, λy) =
1

[(λx)(λy) + δ max(λx, λy)]2
=

1
[λ2xy + δλ max(x, y)]2

=
1

λ2[λxy + δ max(x, y)]2
.

This suggests that the only possible candidate for ϵ is ϵ = −2. However, due to the additional factor λ in
the xy term of the denominator, the equality k(λx, λy) = λϵk(x, y) does not hold. In addition, we emphasize
the adaptable integration domain D which can be either (0, 1)2, (1,+∞)2 or (0,+∞)2.

In this context, the theorem below presents a new HH-type integral inequality. The proof is mainly based
on Proposition 5.

Theorem 3. Let δ > 0, p > 1 and q = p/(p − 1).

1. Let f , g : (0, 1) 7→ (0,+∞) be two functions. Then we have

∫ 1

0

∫ 1

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy ≤ 1
δ

[∫ 1

0

(2 − x)δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ 1

0

(2 − y)δ + y
y(y + δ)2 gq(y)dy

]1/q

,

under the condition that the integrals defining the upper bound converge.
2. Let f , g : (1,+∞) 7→ (0,+∞) be two functions. Then we have∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy

≤ 1
δ + 1

[∫ +∞

1

(2x − 1)δ + x2

x2(x + δ)2 f p(x)dx
]1/p [∫ +∞

1

(2y − 1)δ + y2

y2(y + δ)2 gq(y)dy
]1/q

,

under the condition that the integrals defining the upper bound converge.
3. Let f , g : (0,+∞) 7→ (0,+∞) be two functions. Then we have∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy
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≤ 1
δ

[∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q
,

under the condition that the integrals defining the upper bound converge.

Proof of Theorem 3. Let us prove the items 1, 2 and 3 in turn.

1. A suitable product decomposition of the integrand using the equality 1/p + 1/q = 1, followed by an
application of the Hölder integral inequality with the parameters p and q, gives

∫ 1

0

∫ 1

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy

=
∫ 1

0

∫ 1

0

1
[xy + δ max(x, y)]2/p f (x)× 1

[xy + δ max(x, y)]2/q g(y)dxdy

≤
{∫ 1

0

∫ 1

0

1
[xy + δ max(x, y)]2

f p(x)dxdy
}1/p

×
{∫ 1

0

∫ 1

0

1
[xy + δ max(x, y)]2

gq(y)dxdy
}1/q

. (15)

Using the Fubini-Tonelli integral theorem and the item 1 of Proposition 5 for the case x ∈ (0, 1], we have

∫ 1

0

∫ 1

0

1
[xy + δ max(x, y)]2

f p(x)dxdy =
∫ 1

0
f p(x)

{∫ 1

0

1
[xy + δ max(x, y)]2

dy
}

dx

=
1
δ

∫ 1

0

(2 − x)δ + x
x(x + δ)2 f p(x)dx. (16)

Similarly, we have

∫ 1

0

∫ 1

0

1
[xy + δ max(x, y)]2

gq(y)dxdy =
∫ 1

0
gq(y)

{∫ 1

0

1
[xy + δ max(x, y)]2

dx
}

dy

=
1
δ

∫ 1

0

(2 − y)δ + y
y(y + δ)2 gq(y)dy. (17)

Combining Eqs. (15), (16) and (17) and using the equality 1/p + 1/q = 1, we get

∫ 1

0

∫ 1

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy

≤
[

1
δ

∫ 1

0

(2 − x)δ + x
x(x + δ)2 f p(x)dx

]1/p [1
δ

∫ 1

0

(2 − y)δ + y
y(y + δ)2 gq(y)dy

]1/q

=
1
δ

[∫ 1

0

(2 − x)δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ 1

0

(2 − y)δ + y
y(y + δ)2 gq(y)dy

]1/q

.

The desired inequality is established.
2. A suitable product decomposition of the integrand using the equality 1/p + 1/q = 1, followed by an

application of the Hölder integral inequality with the parameters p and q, gives

∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy

=
∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2/p f (x)× 1

[xy + δ max(x, y)]2/q g(y)dxdy

≤
{∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2

f p(x)dxdy
}1/p

×
{∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2

gq(y)dxdy
}1/q

.

(18)
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By means of the Fubini-Tonelli integral theorem and the item 2 of Proposition 5 for the case x > 1, we
have ∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2

f p(x)dxdy =
∫ +∞

1
f p(x)

{∫ +∞

1

1
[xy + δ max(x, y)]2

dy
}

dx

=
1

δ + 1

∫ +∞

1

(2x − 1)δ + x2

x2(x + δ)2 f p(x)dx. (19)

Similarly, we obtain

∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2

gq(y)dxdy =
∫ +∞

1
gq(y)

{∫ +∞

1

1
[xy + δ max(x, y)]2

dx
}

dy

=
1

δ + 1

∫ +∞

1

(2y − 1)δ + y2

y2(y + δ)2 gq(y)dy. (20)

Combining Eqs. (18), (19) and (20) and using the equality 1/p + 1/q = 1, we get

∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy

≤
[

1
δ + 1

∫ +∞

1

(2x − 1)δ + x2

x2(x + δ)2 f p(x)dx
]1/p [ 1

δ + 1

∫ +∞

1

(2y − 1)δ + y2

y2(y + δ)2 gq(y)dy
]1/q

=
1

δ + 1

[∫ +∞

1

(2x − 1)δ + x2

x2(x + δ)2 f p(x)dx
]1/p [∫ +∞

1

(2y − 1)δ + y2

y2(y + δ)2 gq(y)dy
]1/q

.

The desired inequality is established.
3. A suitable product decomposition of the integrand using the equality 1/p + 1/q = 1, followed by an

application of the Hölder integral inequality with the parameters p with q, gives

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy

=
∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2/p f (x)× 1

[xy + δ max(x, y)]2/q g(y)dxdy

≤
{∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f p(x)dxdy
}1/p

×
{∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

gq(y)dxdy
}1/q

.

(21)

Using the Fubini-Tonelli integral theorem and the item 3 of Proposition 5, we have

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f p(x)dxdy =
∫ +∞

0
f p(x)

{∫ +∞

0

1
[xy + δ max(x, y)]2

dy
}

dx

=
1
δ

∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx. (22)

Similarly, we have

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

gq(y)dxdy =
∫ +∞

0
gq(y)

{∫ +∞

0

1
[xy + δ max(x, y)]2

dx
}

dy

=
1
δ

∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy. (23)

Combining Eqs. (21), (22) and (23) and using the equality 1/p + 1/q = 1, we get

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy
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≤
[

1
δ

∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p [1
δ

∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q

=
1
δ

[∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q
.

The desired inequality is established.

The proof of the theorem ends.

If we take δ = 1, the item 2 of Theorem 3 recovers Theorem 1 with α = 2 and β = 1, and the item 3 of
Theorem 3 recovers Theorem 1 with α = 2 and β = 0. These cases emphasize their complementary nature.
Like Theorem 1, Theorem 3 stands out as one of the few results that explore HH-type integral inequalities with
a non-homogeneous power-max kernel function. Proposition 6 will describe an equivalent formulation of this
theorem with only one function.

Remark 2. Let us now formulate some remarks on the item 3 of Theorem 3, considering the standard
integration domain (0,+∞)2.

• Using the fact that xy = max(x, y)min(x, y), the main double integral can be expressed in terms of
min(x, y) and max(x, y), as follows:∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy =
∫ +∞

0

∫ +∞

0

1
max2(x, y)[min(x, y) + δ]2

f (x)g(y)dxdy.

From this point of view, we deal with a one-parameter non-homogeneous min-max kernel function,
which is k(x, y) = 1/{max2(x, y)[min(x, y) + δ]2}.

• Noticing that max(x, y) = (1/2)(x + y + |x − y|), the main double integral can be rewritten as follows:

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy = 4
∫ +∞

0

∫ +∞

0

1
[2xy + δ(x + y + |x − y|)]2 f (x)g(y)dxdy.

So we have ∫ +∞

0

∫ +∞

0

1
[2xy + δ(x + y + |x − y|)]2 f (x)g(y)dxdy

≤ 1
4δ

[∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q
.

This is a new HH-type integral inequality, also defined with non-homogeneous kernel function.

3.2. Numerical work

We now illustrate Theorem 3 with some numerical examples. The values of δ are taken arbitrarily among
the values for which the integrals of the corresponding upper bounds converge.

Example 4. We consider the item 2 of the theorem. If we take δ = 2, p = 2 (so q = 2), f (x) = 1 and g(y) = 1,
we have∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy =
∫ +∞

1

∫ +∞

1

1
[xy + 2 max(x, y)]2

dxdy ≈ 0.1765864,

and

1
δ + 1

[∫ +∞

1

(2x − 1)δ + x2

x2(x + δ)2 f p(x)dx
]1/p [∫ +∞

1

(2y − 1)δ + y2

y2(y + δ)2 gq(y)dy
]1/q

=
1

2 + 1

∫ +∞

1

(2x − 1)× 2 + x2

x2(x + 2)2 dx ≈ 0.2159728.

Since 0.1765864 < 0.2159728, this is in accordance with the item 2.
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Example 5. We consider again the item 2 of the theorem. If we take δ = 1.5, p = 3 (so q = 3/2), f (x) = 1 and
g(y) = e−y, we have∫ +∞

1

∫ +∞

1

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy =
∫ +∞

1

∫ +∞

1

1
[xy + 1.5 max(x, y)]2

e−ydxdy ≈ 0.02270384,

and

1
δ + 1

[∫ +∞

1

(2x − 1)δ + x2

x2(x + δ)2 f p(x)dx
]1/p [∫ +∞

1

(2y − 1)δ + y2

y2(y + δ)2 gq(y)dy
]1/q

=
1

1.5 + 1

[∫ +∞

1

(2x − 1)× 1.5 + x2

x2(x + 1.5)2 dx
]1/3 [∫ +∞

1

(2y − 1)× 1.5 + y2

y2(y + 1.5)2 e−3y/2dy
]2/3

≈ 0.04039752.

Since 0.02270384 < 0.04039752, this is consistent with the item 2.

Example 6. We consider the item 3 of the theorem. If we take δ = 3, p = 4/3 (so q = 4), f (x) = e−1/x2
and

g(y) = e−1/y, we have∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy =
∫ +∞

0

∫ +∞

0

1
[xy + 3 max(x, y)]2

e−1/x2
e−1/ydxdy ≈ 0.07572791

and

1
δ

[∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q

=
1
3

[∫ +∞

0

2 × 3 + x
x(x + 3)2 e−4/(3x2)dx

}3/4 [∫ +∞

0

2 × 3 + y
y(y + 3)2 e−4/ydy

}1/4
≈ 0.1407864.

Since 0.07572791 < 0.1407864, this is in accordance with the item 3.

3.3. Additional results

The proposition below complements the item 3 of Theorem 3, dealing with only one function.

Proposition 6. Let δ > 0, p > 1, q = p/(p − 1) and f : (0,+∞) 7→ (0,+∞) be a function. Then the item 3 of
Theorem 3 is rigorously equivalent to

∫ +∞

0

[
2δ + y

y(y + δ)2

]1−p {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}p

dy ≤ 1
δp

∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx,

under the condition that the integral defining the upper bound converges.

Proof of Proposition 6. Let us first prove that the item 3 of Theorem 1 implies the stated inequality. To simplify
the notation, let us set

J =
∫ +∞

0

[
2δ + y

y(y + δ)2

]1−p {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}p

dy.

A suitable product decomposition of the integrand gives

J =
∫ +∞

0

[
2δ + y

y(y + δ)2

]1−p {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}

×
{∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}p−1

dy

=
∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g⋏(y)dxdy, (24)
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where

g⋏(y) =
[

2δ + y
y(y + δ)2

]1−p {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}p−1

.

The item 3 of Theorem 3 applied to the functions f and g⋏ ensures that

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g⋏(y)dxdy

≤ 1
δ

[∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ +∞

0

2δ + y
y(y + δ)2 gq

⋏(y)dy
]1/q

. (25)

Using q = p/(p − 1) and the definition of g⋏, we have

∫ +∞

0

2δ + y
y(y + δ)2 gq

⋏(y)dy =
∫ +∞

0

2δ + y
y(y + δ)2

[
2δ + y

y(y + δ)2

]q(1−p) {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}q(p−1)

dy

=
∫ +∞

0

2δ + y
y(y + δ)2

[
2δ + y

y(y + δ)2

]−p {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}p

dy

=
∫ +∞

0

[
2δ + y

y(y + δ)2

]1−p {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}p

dy

= J . (26)

Combining Eqs. (24), (25) and (26), we get

J ≤ 1
δ

[∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p
J 1/q.

Using the equality 1/p + 1/q = 1, we obtain

J 1/p = J 1−1/q ≤ 1
δ

[∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p
,

so that, by the definition of J ,

∫ +∞

0

[
2δ + y

y(y + δ)2

]1−p {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}p

dy ≤ 1
δp

∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx.

This is the desired inequality.
Let us now prove that this inequality implies the item 3 of Theorem 3. A suitable product decomposition

of the integrand, the Hölder integral inequality with respect to y and with the parameters p and q, and the
assumed inequality, give

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy

=
∫ +∞

0

{[
2δ + y

y(y + δ)2

]−1/q ∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx

}[
2δ + y

y(y + δ)2

]1/q
g(y)dy

≤
{∫ +∞

0

[
2δ + y

y(y + δ)2

]−p/q {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}p

dy

}1/p

×
[∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q

=

{∫ +∞

0

[
2δ + y

y(y + δ)2

]1−p {∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)dx
}p

dy

}1/p

×
[∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q

≤
[

1
δp

∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q

=
1
δ

[∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q
.
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The inequality in the item 3 of Theorem 1 is demonstrated, establishing the equivalence. This ends the
proof of the proposition.

Similar results can be obtained with the items 1 and 2 of Theorem 3. The details are omitted for the sake
of redundancy.

An important proposition is given below, which suggests a simplified and elegant integral inequality
derived from the item 3 of Theorem 3.

Proposition 7. Let δ > 0 and f , g : (0,+∞) 7→ (0,+∞) be two functions. Then we have

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy ≤ 2
δ2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

,

under the condition that the integrals defining the upper bound converge.

Proof of Proposition 7. It follows from the item 3 of Theorem 3 that

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy ≤ 1
δ

[∫ +∞

0

2δ + x
x(x + δ)2 f p(x)dx

]1/p [∫ +∞

0

2δ + y
y(y + δ)2 gq(y)dy

]1/q

=
1
δ

[∫ +∞

0

1
x
ℓ(x) f p(x)dx

]1/p [∫ +∞

0

1
y
ℓ(y)gq(y)dy

]1/q
, (27)

where
ℓ(x) =

2δ + x
(x + δ)2 ,

with δ > 0. Let us study this function. For any x > 0, standard differentiation rules give

ℓ′(x) = − 3δ + x
(x + δ)3 ≤ 0.

So ℓ(x) is non-increasing, and, for any x > 0, ℓ(x) ≤ ℓ(0) = 2/δ. This, followed by the equality 1/p +

1/q = 1, gives

1
δ

[∫ +∞

0

1
x
ℓ(x) f p(x)dx

]1/p [∫ +∞

0

1
y
ℓ(y)gq(y)dy

]1/q
≤ 1

δ

[∫ +∞

0

1
x
× 2

δ
f p(x)dx

]1/p [∫ +∞

0

1
y
× 2

δ
gq(y)dy

]1/q

=
2
δ2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

. (28)

Combining Eqs. (27) and (28), we find that

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy ≤ 2
δ2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

This concludes the proof of the proposition.

The fact that only the constant factor depends on δ in the upper bound is an advantage. We can manipulate
it in various ways to derive new integral inequalities, starting with the proposition below.

Proposition 8. Let θ > 1 and f , g : (0,+∞) 7→ (0,+∞) be two functions. Then we have

∫ +∞

0

∫ +∞

0

1
[xy + max(x, y)][xy + θ max(x, y)]

f (x)g(y)dxdy ≤ 2
θ

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

,

under the condition that the integrals defining the upper bound converge.
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Proof of Proposition 8. It follows from Proposition 7 that

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy ≤ 2
δ2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

,

with δ > 0. Let us now consider δ as a variable. Integrating both sides with respect to δ with δ ∈ (1, θ) and
expressing only the upper bound, we get

∫ θ

1

{∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy
}

dδ ≤
∫ θ

1

{
2
δ2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

}
dδ

=

(∫ θ

1

2
δ2 dδ

) [∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

=

[
−2

δ

]δ=θ

δ=1

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

=
2(θ − 1)

θ

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

(29)

For the left-hand side term, using the Fubini-Tonelli integral theorem and standard primitive rules, we
obtain ∫ θ

1

{∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy
}

dδ

=
∫ +∞

0

∫ +∞

0

{∫ θ

1

1
[xy + δ max(x, y)]2

dδ

}
f (x)g(y)dxdy

=
∫ +∞

0

∫ +∞

0

[
− 1

max(x, y)[xy + δ max(x, y)]

]δ=θ

δ=1
f (x)g(y)dxdy

=
∫ +∞

0

∫ +∞

0

1
max(x, y)

[
1

xy + max(x, y)
− 1

xy + θ max(x, y)

]
f (x)g(y)dxdy

= (θ − 1)
∫ +∞

0

∫ +∞

0

1
[xy + max(x, y)][xy + θ max(x, y)]

f (x)g(y)dxdy. (30)

Combining Eqs. (29) and (30), we have

(θ − 1)
∫ +∞

0

∫ +∞

0

1
[xy + max(x, y)][xy + θ max(x, y)]

f (x)g(y)dxdy

≤ 2(θ − 1)
θ

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

Since θ > 1, this is equivalent to

∫ +∞

0

∫ +∞

0

1
[xy + max(x, y)][xy + θ max(x, y)]

f (x)g(y)dxdy ≤ 2
θ

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

The proof of the proposition is concluded.

A sophisticated HH-type integral inequality with a logarithmic-power-max kernel function is shown in
the proposition below.

Proposition 9. Let υ > 1 and f , g : (0,+∞) 7→ (0,+∞) be two functions. Then we have

∫ +∞

0

∫ +∞

0

1
max2(x, y)

{
log
[

xy + υ max(x, y)
xy + max(x, y)

]
+

(1 − υ)xy max(x, y)
[xy + max(x, y)][xy + υ max(x, y)]

}
f (x)g(y)dxdy
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≤ 2 log(υ)
[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

,

under the condition that the integrals defining the upper bound converge.

Proof of Proposition 9. It follows from Proposition 7 that

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy ≤ 2
δ2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

,

with δ > 0. Since δ > 0, this can be rewritten as follows:

∫ +∞

0

∫ +∞

0

δ

[xy + δ max(x, y)]2
f (x)g(y)dxdy ≤ 2

δ

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

Let us now consider δ as a variable. Integrating both sides with respect to δ with δ ∈ (1, υ) and expressing
only the upper bound, we have

∫ υ

1

{∫ +∞

0

∫ +∞

0

δ

[xy + δ max(x, y)]2
f (x)g(y)dxdy

}
dδ ≤

∫ υ

1

{
2
δ

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

}
dδ

=

(∫ υ

1

2
δ

dδ

) [∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

= [2 log(δ)]δ=υ
δ=1

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

= 2 log(υ)
[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

(31)

For the left-hand side term, using the Fubini-Tonelli integral theorem and standard primitive rules, we
get

∫ υ

1

{∫ +∞

0

∫ +∞

0

δ

[xy + δ max(x, y)]2
f (x)g(y)dxdy

}
dδ

=
∫ +∞

0

∫ +∞

0

{∫ υ

1

δ

[xy + δ max(x, y)]2
dδ

}
f (x)g(y)dxdy

=
∫ +∞

0

∫ +∞

0

1
max(x, y)

[∫ υ

1

{
1

xy + δ max(x, y)
− xy

[xy + δ max(x, y)]2

}
dδ

]
× f (x)g(y)dxdy

=
∫ +∞

0

∫ +∞

0

1
max2(x, y)

[
log[xy + δ max(x, y)] +

xy
xy + δ max(x, y)

]δ=υ

δ=1

=
∫ +∞

0

∫ +∞

0

1
max2(x, y)

{
log[xy + υ max(x, y)]− log[xy + max(x, y)]

+ xy
[

1
xy + υ max(x, y)

− 1
xy + max(x, y)

]}
f (x)g(y)dxdy

=
∫ +∞

0

∫ +∞

0

1
max2(x, y)

{
log
[

xy + υ max(x, y)
xy + max(x, y)

]
+

(1 − υ)xy max(x, y)
[xy + max(x, y)][xy + υ max(x, y)]

}
f (x)g(y)dxdy. (32)

Combining Eqs. (31) and (32), we obtain

∫ +∞

0

∫ +∞

0

1
max2(x, y)

{
log
[

xy + υ max(x, y)
xy + max(x, y)

]
+

(1 − υ)xy max(x, y)
[xy + max(x, y)][xy + υ max(x, y)]

}
f (x)g(y)dxdy
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≤ 2 log(υ)
[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

The proof of the proposition is concluded.

We can rewrite this inequality using only positive terms, as follows:

∫ +∞

0

∫ +∞

0

1
max2(x, y)

log
[

xy + υ max(x, y)
xy + max(x, y)

]
f (x)g(y)dxdy

≤ 2 log(υ)
[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

+ (υ − 1)
∫ +∞

0

∫ +∞

0

xy
max(x, y)[xy + max(x, y)][xy + υ max(x, y)]

f (x)g(y)dxdy.

Another HH-type integral inequality is given below, again derived from Proposition 7. It has the property
of involving a kernel function defined with a special function.

Proposition 10. Let ν > 0 and f , g : (0,+∞) 7→ (0,+∞) be two functions. Then we have

∫ +∞

0

∫ +∞

0

1
max2(x, y)

H
(

xy
ν2 max2(x, y)

)
f (x)g(y)dxdy ≤ π2

3

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

,

where, for any z > 0,

H (z) =
+∞

∑
n=1

1
(n + z)2 ,

which is a special case of the Hurwitz zeta function, under the condition that the integrals defining the upper bound
converge.

Proof of Proposition 10. It follows from Proposition 7 that

∫ +∞

0

∫ +∞

0

1
[xy + δ max(x, y)]2

f (x)g(y)dxdy ≤ 2
δ2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

,

with δ > 0. Let us now consider δ as a variable by taking δ = nν with ν > 0 and n ∈ N\{0}. So we have

∫ +∞

0

∫ +∞

0

1
[xy + nν max(x, y)]2

f (x)g(y)dxdy ≤ 2
n2ν2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

Summing both sides with respect to n with n ∈ N\{0} and expressing only the upper bound via the

well-known formula
+∞
∑

n=1
1/n2 = π2/6, we have

+∞

∑
n=1

∫ +∞

0

∫ +∞

0

1
[xy + nν max(x, y)]2

f (x)g(y)dxdy ≤
+∞

∑
n=1

{
2

n2ν2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

}

=
2
ν2

(
+∞

∑
n=1

1
n2

)[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

=
2
ν2 × π2

6

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

=
π2

3ν2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

. (33)
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For the left-hand side term, using the Fubini-Tonelli integral theorem and standard primitive rules, we
obtain

+∞

∑
n=1

∫ +∞

0

∫ +∞

0

1
[xy + nν max(x, y)]2

f (x)g(y)dxdy

=
∫ +∞

0

∫ +∞

0

{
+∞

∑
n=1

1
[xy + nν max(x, y)]2

}
f (x)g(y)dxdy

=
1
ν2

∫ +∞

0

∫ +∞

0

1
max2(x, y)

{
+∞

∑
n=1

1

{n + xy/[ν max(x, y)]}2

}
f (x)g(y)dxdy

=
1
ν2

∫ +∞

0

∫ +∞

0

1
max2(x, y)

H
(

xy
ν2 max2(x, y)

)
f (x)g(y)dxdy. (34)

Combining Eqs. (33) and (34), we get

1
ν2

∫ +∞

0

∫ +∞

0

1
max2(x, y)

H
(

xy
ν2 max2(x, y)

)
f (x)g(y)dxdy ≤ π2

3ν2

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

This is equivalent to

∫ +∞

0

∫ +∞

0

1
max2(x, y)

H
(

xy
ν2 max2(x, y)

)
f (x)g(y)dxdy ≤ π2

3

[∫ +∞

0

1
x

f p(x)dx
]1/p [∫ +∞

0

1
y

gq(y)dy
]1/q

.

The proof of the proposition is completed.

To the best of our knowledge, it is the first HH-type integral inequality defined with a "Hurwitz zeta
power-max" kernel function, which is also non-homogeneous.

The theorem below can be seen as a functional generalization of the item 3 of Theorem 3. It follows the
framework of Theorem 2.

Theorem 4. Let a, b ∈ R ∪ {−∞,+∞} with a < b, c, d ∈ R ∪ {−∞,+∞} with c < d, α > 1, δ > 0, p > 1,
q = p/(p − 1), f : (a, b) 7→ (0,+∞) and g : (c, d) 7→ (0,+∞) be two functions, and ϕ : (a, b) 7→ (0,+∞) and
ψ : (c, d) 7→ (0,+∞) be two differentiable non-decreasing functions such that limz→a ϕ(z) = β, limz→b ϕ(z) = +∞,
limz→c ψ(z) = β and limz→d ψ(z) = +∞. Then we have

∫ d

c

∫ b

a

1

{ϕ(x)ψ(y) + δ max[ϕ(x), ψ(y)]}2 f (x)g(y)dxdy

≤ 1
δ

{∫ b

a

2δ + ϕ(x)
ϕ(x)[ϕ(x) + δ]2

f p(x)
1

[ϕ′(x)]p−1 dx
}1/p {∫ d

c

2δ + ψ(y)
ψ(y)[ψ(y) + δ]2

gq(y)
1

[ψ′(y)]q−1 dy
}1/q

,

under the condition that the integrals defining the upper bound converge.

Proof of Theorem 4. Applying the changes of variables u = ϕ(x) and v = ψ(y), so that x = ϕ−1(u) and
y = ψ−1(v), with dx =

[
1/ϕ′(ϕ−1(u))

]
du and dy =

[
1/ψ′(ψ−1(v))

]
dv, and paying attention to the integration

domain, we have∫ d

c

∫ b

a

1

{ϕ(x)ψ(y) + δ max[ϕ(x), ψ(y)]}2 f (x)g(y)dxdy

=
∫ +∞

0

∫ +∞

0

1
[uv + δ max(u, v)]2

f (ϕ−1(u))g(ψ−1(v))
1

ϕ′(ϕ−1(u))ψ′(ψ−1(v))
dudv

=
∫ +∞

0

∫ +∞

0

1
[uv + δ max(u, v)]2

f†(u)g†(v)dudv, (35)

where
f†(u) = f (ϕ−1(u))

1
ϕ′(ϕ−1(u))

, g†(v) = g(ψ−1(v))
1

ψ′(ψ−1(v))
.
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Applying the item 3 of Theorem 3 to the functions f† and g†, we obtain

∫ +∞

0

∫ +∞

0

1
[uv + δ max(u, v)]2

f†(u)g†(v)dudv

≤ 1
δ

[∫ +∞

0

2δ + u
u(u + δ)2 f p

† (u)du
]1/p [∫ +∞

0

2δ + v
v(v + δ)2 gq

†(v)dv
]1/q

=
1
δ

{∫ +∞

0

2δ + u
u(u + δ)2 f p(ϕ−1(u))

1
[ϕ′(ϕ−1(u))]p

du
}1/p

×
{∫ +∞

0

2δ + v
v(v + δ)2 gq(ψ−1(v))

1
[ψ′(ψ−1(v))]q

dv
}1/q

.

(36)

Now, reversing the changes of variables process in the upper bound by setting u = ϕ(x) and v = ψ(y),
we get

1
δ

{∫ +∞

0

2δ + u
u(u + δ)2 f p(ϕ−1(u))

1
[ϕ′(ϕ−1(u))]p

du
}1/p

×
{∫ +∞

0

2δ + v
v(v + δ)2 gq(ψ−1(v))

1
[ψ′(ψ−1(v))]q

dv
}1/q

=
1
δ

{∫ b

a

2δ + ϕ(x)
ϕ(x)[ϕ(x) + δ]2

f p(x)
1

[ϕ′(x)]p
ϕ′(x)dx

}1/p

×
{∫ d

c

2δ + ψ(y)
ψ(y)[ψ(y) + δ]2

gq(y)
1

[ψ′(y)]q
ψ′(y)dy

}1/q

=
1
δ

{∫ b

a

2δ + ϕ(x)
ϕ(x)[ϕ(x) + δ]2

f p(x)
1

[ϕ′(x)]p−1 dx
}1/p

×
{∫ d

c

2δ + ψ(y)
ψ(y)[ψ(y) + δ]2

gq(y)
1

[ψ′(y)]q−1 dy
}1/q

. (37)

Combining Eqs. (35), (36) and (37), we find that

∫ d

c

∫ b

a

1

{ϕ(x)ψ(y) + δ max[ϕ(x), ψ(y)]}2 f (x)g(y)dxdy

≤ 1
δ

{∫ b

a

2δ + ϕ(x)
ϕ(x)[ϕ(x) + δ]2

f p(x)
1

[ϕ′(x)]p−1 dx
}1/p {∫ d

c

2δ + ψ(y)
ψ(y)[ψ(y) + δ]2

gq(y)
1

[ψ′(y)]q−1 dy
}1/q

.

This concludes the proof of the theorem.

As an example, if we take a = 0, "b = +∞", c = 0, "d = +∞", ϕ(x) = xτ with τ > 0 and ψ(y) = yι with
ι > 0, since ϕ′(x) = τxτ−1 and ψ′(y) = ιyι−1, we get

∫ +∞

0

∫ +∞

0

1

[xτyι + δ max(xτ , yι)]2
f (x)g(y)dxdy

≤ 1
δ

[∫ +∞

0

2δ + xτ

xτ(xτ + δ)2 f p(x)
1

(τxτ−1)p−1 dx
]1/p [∫ +∞

0

2δ + yι

yι(yι + δ)2 gq(y)
1

(ιyι−1)q−1 dy
]1/q

=
1

δτ1−1/pι1−1/q

[∫ +∞

0

2δ + xτ

xp(τ−1)+1(xτ + δ)2
f p(x)dx

]1/p [∫ +∞

0

2δ + yι

yq(ι−1)+1(yι + δ)2
gq(y)dy

]1/q
.

Especially, when τ = 1 and ι = 1, we obtain the inequality of the item 3 of Theorem 3. Many more
functional examples of this kind can be presented, extending the scope of this theorem.

Functional generalizations of the items 1 and 2 of Theorem 3 can be extended in a similar way. The details
are omitted for reasons of redundancy.

4. Conclusion

In this article, we have established new HH-type integral inequalities based on a less studied class of
kernel functions, called non-homogeneous power-max kernel functions. They complement the most standard
homogeneous case, as studied in [2,5,18,19,25,26]. Our theory is centered on two main theorems, from
which several propositions are derived. They are rigorously proved and provide a deeper understanding
of these new inequalities. They are supported by simple but relevant numerical examples. Like all
HH-type integral inequalities, our results can find applications in several mathematical and applied fields,
including functional analysis, integral operators, and mathematical physics. Further investigations may
explore further generalizations, possible connections with other integral inequalities and the consideration of
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non-homogeneous power-max kernel functions. As an example of the last point, we can think of investigating
HH-type integral inequalities based on the kernel function

k(x, y) =
1

[min(xy, 1) + max(x, y)]α
,

with α > 1. We leave these directions for future research.
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Appendix: R codes of the numerical work

R codes associated with Subsection 2.2

1 library(pracma)

Listing 1: Use of the library pracma containing the functions dblquad and integral

1 alpha = 2.5

2 beta = 1

3 p = 2

4

5 f1 <- function(x, y){ 1 / (x * y + max(x, y))^alpha}

6 dblquad(f1, beta , Inf , beta , Inf)

7

8

9 fun1 <- function(x) { (1 / x^alpha) * (1 / ((beta + 1)^(alpha - 1)) -1 / ((x + 1)^alpha))}

10 int1 = integral(fun1 , beta , Inf)

11

12 fun2 <- function(x) { (1 / x^alpha) * (1 / ((beta + 1)^(alpha - 1)) -1 / ((x + 1)^alpha))}

13 int2 = integral(fun2 , beta , Inf)

14

15 (1 / (alpha - 1)) * (int1 ^(1 / p)) * (int2 ^((p - 1) / p))

Listing 2: Example 1

1 alpha = 1.1

2 beta = 2

3 p = 3

4

5 f1 <- function(x, y){ exp(-y) / ((x * y + max(x, y))^alpha)}

6 dblquad(f1, beta , Inf , beta , Inf)

7

8

9 fun1 <- function(x) { (1 / x^alpha) * (1 / ((beta + 1)^(alpha - 1)) -1 / ((x + 1)^alpha))}

10 int1 = integral(fun1 , beta , Inf)

11

12 fun2 <- function(x) { (1 / x^alpha) * (1 / ((beta + 1)^(alpha - 1)) -1 / ((x + 1)^alpha))

13 * exp(-(p / (p - 1)) * x)}

14 int2 = integral(fun2 , beta , Inf)

15

16 (1 / (alpha - 1)) * (int1 ^(1 / p)) * (int2 ^((p - 1) / p))

Listing 3: Example 2

1 alpha = 2

2 beta = 0

3 p = 4 / 3

4

5 f1 <- function(x, y){ exp(-1 / x^2) * exp(-1 / y) / ((x * y + max(x, y))^alpha)}

6 dblquad(f1, beta , Inf , beta , Inf)

7

8

9 fun1 <- function(x) { (1 / x^alpha) * (1 / ((beta + 1)^(alpha - 1)) -1 / ((x + 1)^alpha))

10 * exp(-p * (1/x^2))}

11 int1 = integral(fun1 , beta , Inf)

12

13 fun2 <- function(x) { (1 / x^alpha) * (1 / ((beta + 1)^(alpha - 1)) -1 / ((x + 1)^alpha))

14 * exp(-(p / (p - 1)) * (1/x))}

15 int2 = integral(fun2 , beta , Inf)

16

17 (1 / (alpha - 1)) * (int1 ^(1 / p)) * (int2 ^((p - 1) / p))

Listing 4: Example 3
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R codes associated with Subsection 3.2

1 delta = 2

2 p = 2

3

4 f1 <- function(x, y){ 1 / (x * y + delta * max(x, y))^2}

5 dblquad(f1, 1, Inf , 1, Inf)

6

7

8 fun1 <- function(x) { ((2 * x - 1) * delta + x^2)/(x^2 * (x + delta)^2) }

9 int1 = integral(fun1 , 1, Inf)

10

11 fun2 <- function(x) { ((2 * x - 1) * delta + x^2)/(x^2 * (x + delta)^2)}

12 int2 = integral(fun2 , 1, Inf)

13

14 (1 / (delta + 1)) * (int1 ^(1 / p)) * (int2 ^((p - 1) / p))

Listing 5: Example 4

1 delta = 1.5

2 p = 3

3

4 f1 <- function(x, y){ exp(-y) / (x * y + delta * max(x, y))^2}

5 dblquad(f1, 1, Inf , 1, Inf)

6

7

8 fun1 <- function(x) { ((2 * x - 1) * delta + x^2)/(x^2 * (x + delta)^2) }

9 int1 = integral(fun1 , 1, Inf)

10

11 fun2 <- function(x) { ((2 * x - 1) * delta + x^2)/(x^2 * (x + delta)^2)

12 * exp(-(p / (p - 1)) * x)}

13 int2 = integral(fun2 , 1, Inf)

14

15 (1 / (delta + 1)) * (int1 ^(1 / p)) * (int2 ^((p - 1) / p))

Listing 6: Example 5

1 delta = 3

2 p = 4 / 3

3

4 f1 <- function(x, y){ exp(-1 / x^2) * exp(-1 / y) / ((x * y + delta * max(x, y))^2)}

5 dblquad(f1, 0, Inf , 0, Inf)

6

7

8 fun1 <- function(x) { (2 * delta + x) / (x * (x + delta)^2) * exp(-p * (1 / x^2))}

9 int1 = integral(fun1 , 0, Inf)

10

11 fun2 <- function(x) { (2 * delta + x) / (x * (x + delta)^2)* exp(-(p / (p-1)) * (1 / x))}

12 int2 = integral(fun2 , 0, Inf)

13

14 (1 / delta) * (int1 ^(1 / p)) * (int2 ^((p - 1) / p))

Listing 7: Example 6
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