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Abstract: In this paper, we derive summation formulae for the generalized Legendre-Gould Hopper

(m)
polynomials (gLeGHP) SH,Sm)(x,y,z, w) and W

respective generating functions. Further, we derive the summation formulae for polynomials related to

by using different analytical means on their
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SH,S’") (x,y,z,w) and W as applications of main results. Some concluding remarks are also given.
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1. Introduction

ecently, Hassan, [1] interoduced the Generalized Legendre-Gould-Hopper polynomials (gLeGHP)

(m)
5H,Sm> (x,y,z,w) and W and studied their properties. These polynomials are defined by the
following expansion series:

] (5] k=2 ntke—mk
H( )(x y,z,w) = n! 2 , @
k—07—=0 (k—2r)! (n — mk)!
RHr(zm) (x/y/Z; w) o Z Z 1)k T’ k—ryn+kz—mk ®
n! — =0 (D)% [(k— )1 (n — mk)!
and are defined by the following generating functions:
t'rl
exp(yt + wy*t"™)Co(— 2infzm Z SH (x,y,z, w)m, 3)
w gl n
X, y,z,w)t
exp () Coly ") Col —wt") = 1 ”—y)n!. (4)
(m)
The polynomials SHr(,m) (x,y,z,w) and %ﬁyzw) are defined by the operational definitions:
(m) L1 Ny (m)
sHy ' (x,y,z,w) = exp (Dx ﬁ)H (y,z,w), ®)
(m)
rRHjy (x/ylz/ w) _ _ -1 J ( )
g T e ( D; aD_1> (y,z,Dyb), (6)

w
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where Hr(lm) (y,z, w) are the Generalized Gould-Hopper polynomials defined by the generating function [2] :
Zgmy o (m) t"
eXp(yt+wy t ) - Z Hi’l (yzsz) E/ (7)
n=0 :

and these polynomials are the solutions of the generalized heat equation:

9 pym) _ 9" gm (m) _
55 1 Wz w) = i Hy ' (y,z,w), Hy ' (y,2,0) =y". ®)
In particular, we note that:
H’EZ) (]/,Z/ w) - Hn(ylz/ w)/ (9)

where H,(y,z,w) denotes the 3-variable Hermite polynomials (3VHP), that can be defined by means of the
generating function:

(o) n
exp(yt + wyztz) = 2 Hy,(y,z,w) i (10)
n=0 :

Also, we note the following special case for these polynomials:

Hy(y,0,w) = Hu(y, w), (11)

where H, (y, w) are 2-variable Hermite-Kampé de Fériet polynomials (2VHKAFP) [3], that can be defined by
means of the generating function:

[e) n

exp(yt +wt?) = Y Hu(y,w) - (12)

Further, in particular, we note that:
2
SH,(1 )(x,y,z,w) = sHu(x,y,z,w), (13)

RHY (x,,2,w) _ rRHu(x,y,z,w)
n! N n!

, (14)

where sHy(x,y,z,w) and %,yzw) are denoted the 4-variable Legendre-Hermite polynomials (4VLeHP),

that can be defined by means of the generating functions:

exp(yt + wy*t?) Co(—y*xt) = iOan (%Y, z,w)f;n,, (15)
= !
exp(yt)Co(yZxt?)Co (—y*wt?) = i MZ (16)
Also, we note the following special cases for these polyn;mlals:
sHu(x,y,0,w) = sHu(x,y,w), 17)
rHu(x,y,0,w) RHn(x,y,w)/ (18)

n! - n!
H, (x,y,w
where sH,(x,y,w) and %

can be defined by means of the generating functions:

are denoted the 3-variable Legendre-Hermite polynomials (3VLeHP), that

o n

t
exp(yt +wt?)Co(—xt*) = Y SHn(x,y,w)E, (19)
n=0 ’
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[ee)

exp(yt) Co(xt?)Co(—wt?) = Y
n=0

RHi’l (x/ ]/, w) ﬁ

2 (20)

The study of the properties of multi-variable generalized special functions has provided new means
of analysis for the solution of large classes of partial differential equations often encountered in physical
problems. The relevance of the special functions in physics is well established. Most of the special functions
of mathematical physics as well as their generalizations have been suggested by physical problems. The
importance of multi-variable Hermite polynomials has been recognized [4-6] and these polynomials have
been exploited to deal with quantum mechanical and optical beam transport problems.

It happens very often that the solution of a given problem in physics or applied mathematics requires
the evalution of infinite sums, involving special functions. Problems of this type arise, for example, in
the computation of the higher-order moments of a distribution or to evaluate transition matrix elements
in quantum mechanics. In Ref. [4], it has been shown that the summation formulae of special functions,
often encountered in applications ranging from electromagnetic processes to combinatorics, can be written
in terms of Hermite polynomials of more than one variable. The work of this paper is motivated by the
results on summation formulae for Hermite, Gould-Hopper and Laguerre-Gould Hopper polynomials due to

[4,7-9]. In this pa tablish tion formulae for the gLeGHP ¢H\™ g R Cyzw) |
,7-9]. paper we establish summation formulae for the gLe sHy ' (x,y,z,w) an o y

using different analytical means on their respective generating functions. Further, we derive the summation

()
formulae for polynomials related to SH,(Im) (x,y,z,w) and W as applications. Finally, by combining
operational and series rearrangement techniques, we derive certain other forms summation formulae for

(m)
H{™ (34,2, ) and 418 )
2. Summation formulae for the generalized Legendre-Gould Hopper polynomials

First, we prove the following result involving the gLeGHP gHr(lm) (x,y,z,w):
Theorem 1. The following Summation formula for the gLeGHP SHy(,m) (x,y,z,w) holds true:

m nr kp n r k m m
SH}EH-Z’('X/y/Z/v) = Z Z <k> ( ) (l) (P) (—y)l+qH]£+;_l_q(y,z,v — w)er(l+>r_k_p(x,y,z, w).  (21)

k,p=01,q=0 p q
Proof. Replacing t by t+u in Eq. (3) and using the formula ( [10], p.52 (2)):
o0 n 00 n
Zf(n)M: Z f(n_;_m)LL (22)

in the resultant equation, we find the following generating function for the gLeGHP SH,S’") (x,y,z,w):

(o] tVl r
exp(y(t+u) + wy(t+u)")Co(—yx(t+ ") = Y sHE(x,y,2,0) =, (23)
n,r=0 T
which can be written as
Co(— 2z 2my __ . . z m - H(m) ii 24
(—Pox(t+ ") = exp(—y(t+u) —wy(t+u)") Y sHUD (xy,2,0) 5 )
n,r=0 s

Replacing w by v in Eq. (24) and equating the resultant equation to itself, we find

" u

Z SHr(z@r(xr?/erU)aﬁ

n,r=0 n,r=0

r n

(m) t" u

= exp(—y(t+u)exp(y(t+u) + (v —w)y*(t + u)™) i SHnnir(x’y’Z’w)ﬂﬁ’

(25

r
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which on expanding the first exponential in series and using the generating function (7) in the second
exponential on the r.h.s., becomes

) 00 +u>l <) (t+u)k =) "oy
Y sH o) = L R Y H ez —w) S Y sH (xyzw)
n,r=0 1=0 k=0 n,r=0
(26)
Again, using formula (22) in the first and second summation on the r.h.s., we have
ad tu’ ad Hyr & thyr = " u”
Y sH(xy,0) P Z DY o L Hlﬁﬂn(%zﬂ—w)ﬁfu Y sHYD (v zw) 5
n,r=0 r! lg= - k,p=0 " P =0 nlr!
(27)

Now, replacing k by k-1, p by p-q, n by n-k and r by r-p in the r.h.s. of Eq. (27) and using the lemma ( [10],
p-100 (1))
Y. ) Alkn)=Y ) A(k,n—k), (28)
n=0k=0 n=0k=0
in the resultant equation, we find

1
tn Llr ad nr k,p ( ]/) +q H]E_i,_}J ]— q(]// Z,0— w) SH;ST_zf_k_p(x/y/ z, w)

- (m) _ n,r
H xX,Y,z,0) —— = t"u". (29
L stz = 0 L b Tgl(n — K — p)itk = Di(p — g)! @)

Finally, on equating the coefficients of like powers of t and u in Eq. (29), we get assertion (21) of Theorem 1. O

Remark 1. Replacing v by w in assertion (21) of Theorem 1 and using relation (8), we deduce the following
consequence of Theorem 1.

Corollary 1. The following Summation formula for the gLeGHP SH,Sm) (x,y,z,w) holds true:

SHSl’i)r(x/y’Z’w) = anZ kfi <Z> (r) (?) (p>( 1) kr Hr(tJr)r (XY, 2,0). (30)

k,p=01,4—0 P q
Next, we prove the following result involving products of the gLeGHP SH,({") (x,y,z,w):

Theorem 2. The following Summation formula involving products of the gLeGHP SH,(lm) (x,y,z,w) holds true:

sH,(1 )(x v,z v)sH(m)(X Y,Z,V) Z Z ( )(p) (ll() <P>(y)k—l(y)P—q

k,p—=01,=0 q
< H" (y,2,0 —w)H{" (Y, Z,V — W)sH"\(x,y,2,0)sH") (X, Y, Z,W). (1)

Proof. Consider the product of the gLeGHP SH,Sm) (x,y,z,w) generating function (3) in the following form:

exp(yt + YT + wyt™ + WYZT™)Co(—yFxt?™)Co(—Y?2 X TH™)
( ) t'rl TV
_ ZZSH (x,y,z,w)sH,""(X,Y, Z, W)—'W (32)
n=0r=

Replacing w by v and W by V in Eq. (32) and equating the resultant equation to itself, we find

m ti’l T m
Y Z‘,sH (x,9,2,0) sH"™ (X, Y,2,V) = — = exp(—yt = YT) exp(yt + (v — w)y*t")
n=0r= t
T

x exp(YT + (V= W)Y?T™) Y Y sH (x,y,2,0) sH™ (X, Y, Z, W),

n=0r=0

(33)



Open J. Math. Anal. 2025, 9(1), 1-10 5

which on expanding the first exponential in series and using the generating function (7) in the second and
third exponential on the r.h.s., becomes

e oo ) t+YT
ZZSn xy,zv)sH()(XYZfozz yki')
n=0r=0 L —0 !
Hy" 1,2, v —w) BT XY,z W) e (3
XZZO 20— w)H" (v, 2,V - e Zos w (%, y,z,w)sH™( ) G
A nr=

Now, using formula (22) in the first summation on the r.h.s., we have

o [e0] ( ) tn Tr [e0] o
225 b xy,zv)SH (XYZV——f Yy (- y,zv—w)
n=0r=0 k,1=0p,q=0
tk+l p ( ) (m) T
X W(—Y) H"(Y,Z,V - w X 2 sH (x,y,z,w)sH™ (X, Y, Z, W) i 39)

n,r=0

Finally, replacing k by k-1, p by p-q, n by n-k and r by r-p and using (28) in the r.h.s. of the above equation and
then equating the coefficients of like powers of t and T , we get assertion (31) of Theorem 2. [

Remark 2. Replacing v by w and V by W in assertion (31) of Theorem 2 and using relation (8), we deduce the
following consequence of Theorem 2.

Corollary 2. The following Summation formula involving products of the gLeGHP SH,Sm) (

ez s ooy zm = 3 (1) ()5 () vty

k,p:O l,q:O p q

X,Y,z,w) holds true:

X sH,srf)k(x,y,z,w)er(T;(X,Y,Z, W) (36)

(m)
Further, we prove the following result involving the gLeGHP W

(m)
Theorem 3. The following Summation formula for the gLeGHP W holds true:

(m) nr kp
rRH, . (—w,y,z,—x) n\ [\ (k\ [P\ ,,;(m m
R -l L <k> (P) (l> (q> HIy 0 22 0) B 1422~

k,p=01,4=0

RHyD iy (vy,2,w)

(n+r—k—p)!

(37)

Proof. Replacing t by t + u in Eq. (4) and using the formula (22) and then making use the same previous
process given in the proof of Theorem 1, we get assertion (37) of Theorem 3. O

(m)
Also, we prove the following result involving products of the gLeGHP W:

(m)
Theorem 4. The following summation formula involving products of the gLeGHP W holds true:

RHY(lm) (_w/ ]// z, _x) RHtgm) (_W/ Y/ Z/ _X)

n! 7!
Z Z < )( )(k> (p> Hz(m)(y,ZZ,w)Hq(m)(Y,ZZ,W)ng’f;(fy,z‘z’7w)
k,p—=01,=0 p)\l)\q

(m) (m
H 7 7 7 Hr—
< H (v, 22, ) M 20

(n—k)!

(38)
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(m)
Proof. Consider the product of the gLeGHP W generating function (4) in the following form:

exp(yt + YT)Co(y*xt™)Co(—y*wt™)Co (Y2 XT™)Co(—YZWT™)
© RHY" (x,y,2,0) RHVV(X,Y,Z,W) " T

o0
=) ) nl rl nlrl”

n=0r=0

(39)

Replacing x by —w , w by —x , X by —W and W by —X in Eq. (39) and equating the resultant equation to itself
and then using Egs. (7) and (28) respectively, we get assertion (38) of Theorem 4. [

3. Applications

I. Taking r = 0 in Eq. (21) and replacing v by v + w in the resultant equation, we get

(m) & (K 1pg(m) )
sHy (x,y,z,0+w) = ) (k) <l)(—y) H. " (y,z,9)sH, 1 (x,y,z,w), (40)
k,1=0

which on taking v = 0 and using relation (8), yields

(m) &\ (K Lk (m)
sHy (x,y,z,w) = Z (k> (l> (=1)'y"sH, "1 (x,y,z,w). (41)
k,1=0

Next, taking m = 2 in Egs. (21), (30), (40) and (41) , we get the following summation formulae for the
4VLeHP sH,(x,y,z,w):

S (7 (RY (P
sHurr(x,y,2,0)= ), ), P ; (—=y) "Hiyp1-q(y, 2,0 —w)sHyyr k- p(x,y,2,w),

k,p=01,9=0 p q
(42)
wro RPN O [k
SHH+7(x/y/Z/ w) - Z (k) ( ) (l) (p> (_1)l+q yk+p SHYH-V—k—p(x/y/Z/w)/ (43)
k,p=01,4=0 P q
nk n k 1
stixyzo+0) = 3 (1) (7)) Hioal0) stz ), (4
k,I1=0
oK\ [k Ik
SHn(x/y/er) = (k) (l) (_1) Yy Sank(x/y/Z/w) (45)
k,1=0

Again, taking z = 0 in Eqgs. (42), (43), (44) and (45), we get the following summation formulae for the
3VLeHP ¢Hy(x,y, w):

sHuir(x,y,0) = ’n’r 3 (Z) (r> (I;) (p) (—]/)IWHH%I*:;(%U —w) SHnJrrfka(xryrw)r (46)

k,p=01,q=0 p q
wro kPN e\ [k
sHier (3 y,0) = (1) () () (0) 0y sty iy ), 47)
k,p=01,4=0 p q
nk
n\ (k
sty o) = ¥ (1) (7)) Heoa 00 sHoatxm0), 9)
k,1=0
n,k
. k
SHa(x,y, ) = ( ()(—1>lykan_k<x,y,w>. (49)
k,1=0 k !



Open J. Math. Anal. 2025, 9(1), 1-10 7

II. Taking m=2 in Egs. (31) and (36), we get the following summation formulae involving products of the
4VLeHP ¢H,(x,y,z,w):

sHu(x,y,2,0)sH (X, Y, Z,V) = HZV: E (Z) <r> (ll() <p> (_y)k—l(_y)p—q

k,p=01,g=0 p q
X Hi(y,z,0 —w)Hy(Y, Z,V = W)sH,_r(x,y,z,w)sHy—p(X,Y,Z,W), (50)

sHu(x,y,2,w)sH (X, Y, Z, W) = 2 kzp <Z> (’) <’l‘) <P>(—1)l+q(—y)k(—yy’

k,p=01,4=0 p q
X sHy_(x,y,z,w)sHy— (X, Y, Z,W). (51)

Again, taking z = Z = 0in Egs. (50) and (51), we get the following summation formulae involving
products of the 3VLeHP sHy(x,y, z):

sHu(x,y,0)sH,(X,Y,V) g Z (k) <P) (]l() <P>(_y)k—l(_y)r7—q

k,p=01,4=0 1
x Hi(y,v —w)Hg(Y,V = W)sH,_i(x,y,w)sHr—p(X, Y, W), (52)

sty = 3% (1) (0 (8) (M) vty

k,p=01,g=0 q
X sHy_r(x,y,w)sHy—p(X, Y, W). (53)

III. Taking r=0 in Egs. (37), we get the following Summation formula for the gLeGHP w:

(m) nk (m)
rRHy ' (—w,y,z,—x) & (n (m) g rRH, k(x Y,z,w)
p = k,zZ:;o (k) (l)H (v,2z,w)H, "} (—y,2z, —w) X TR . (54)

Next, taking m = 2 in Eqgs. (37) and (54), we get the following Summation formulae for the 4VLeHP
rRHn(xy,2,w)
n! :

o £ B 000t crn

k,p=01,4=0 q
H, ., ,(xyzw
Rfp4r—k p( Yy ), (55)
(n+r—k—p)!

rRHu(—w,y,z,—x) kN [k B _ rRHy k(x,y,z,w)
T‘l! - klZ:O k l Hl(yrzz/ w)kal( ylzz’ w) X (7’1 _k)[ ° (56)

Again, taking z = 0 in Egs. (55) and (56), we get the following summation formulae for the 3VLeHP

RHn(xy,2)
n! .

= £ R Q)0 (Dmtmsorscnmm <SGl
(57)
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nk
REn(—w,y,—x) _ Y (:) (Il{) Hy(y,w)Hy_;(—y, —w) x W (58)

n!
k,1=0
IV. Taking m = 2 in Eq. (38), we get the following summation formula involving products of the 4VLeHP

rRHu(xy,z,w) .
n! .

RHn(—w/]//Z/ _x) RHI’(_W/ Y/ Z/ _X)
n! r!
wro kPN e\ [k p
-y ¥ (k>< )(z)( )Hl(y,Zz,w)Hq(Y,ZZ,W)Hkl(—y,Zz,—w)
k,p=01,4=0 p q
rRHu_k(x,y,z,w) RHr—p(X,Y, Z, W)
(n— k)1 (r—p)

X Hp_g(—Y,2Z, W) (59)

Also, taking z = Z = 0in Eq. (59), we get the following summation formula involving products of the
3VLeHP &Hnlrws).

RHu(—w,y, —x) RH, (=W, Y, —X) _ HXE kfi (Z) (r) (llc) <P) H(y,w)Hy (Y, W)Hi_i(—y, —w)

m rt k;p=01,g=0 p q
RHi’lfk (xl yr w) RHr—p (X/ Y/ W)
X Hp,q(—Y,—W) (11— h)! r—p)! . (60)

4. Concluding Remarks

In view of Egs. (5), (6) and (7) , we can combin operational and series rearrangement techniques to derive

(m)
certain other forms summation formulae for er(,m) (x,y,z,w) and W respectively.
Replacing t by t+u in Eq. (7) and using the formula (22) and then making use the same previous process

given in the proof of Theorem 1, we get

m o kP k m m
H,5+),(y,z,v) = Z Z (Z) (1’) <l> <P>(_y)l+q ,§+; - q(y,Z,U—W)Hr(H)rfkfp(y,z,w). (61)

k,p=01,9=0 p q

Next, operating exp ( D;! aa 2) on Eq. (61) and then using operational definition (5), we get the following
(m) (

summation formula for sH,;"’ (x, Y,z,w):

SH7(1+)r (x,y,2,0) Z Z < >(p) (?) (p)(—y)HqHSﬁ e p(y,z w)sH,EJri7 I q(x,y,z,v—w). (62)

k,p=01,=0 q

Also, replacing v by D; ! in Eq. (61) and then operating exp ( - Dy laﬁi—l) on the both side and using

(m)
operational definition (6), we get the following summation formula for W :

(m)

(m) nr o kp H (x,y,2,v—w)
RHnJrr(x’ Y,z U) <7’l> <7’> <k> (P) l+q (m) R k+p—1—q e
e s = Yy — ,Z,W) X . (63

(I’l + 7’)! k0140 k P I q ( y) n+r k— p(y ) (k i p— 1 — q)' ( )

Further, taking w=0 in Egs. (62) and (63), we get respectively

nr kp
s wunzo = ¥ 5 (D)) () () v e e, 6

k,p=01,4=0 p q Y
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ez 0000
(n+r)! kpmor=o \k/ \p/ X1/ \q y (k+p—1—2q)!

Now, Consider the product of the Generalized Gould-Hopper polynomials Hr(,m)(

function (7) in the following form:

¥,z,w) generating

£ T
exp(yt + wyt" + YT + WYZT™) = 2 H™ (y,2,w) H™ (Y, Z, W) ——. (66)
n,r=0

Replacing w by v and W by V in Eq. (66) and equating the resultant equation to itself and then following the
same process given in the proof of Theorem 2, we get

wsnan-£ £ 000 o

x H" (y,2,0)H") (Y, 2, W) H" (y, 2,0~ w) H" (Y, Z,V = W).  (67)

Operating exp < 32 ) exp ( % 82/2) on Eq. (67) and then using operational definition (5), we get

SH™ (x,y,2,0)sH™ (X, Y, Z,V) = nzr: kf: (Z) <;> (?) (5) (=) (=y)P

k,p=01,9=0

m

(Y,Z,W)sH"™ (x,y,2,0 — w)sH{" (X,Y,Z,V — W),
(68)

xHﬁ’fZ{(y,z,w) ,( ;,

Also, replacing v by D, ! and V by D‘;l in Eq. (67) and then operating exp ( — Dy 131)%) exp ( — D;(l agfl)
v 14

on the both side and using operational definition (6), we get

RH,S“(;!,y,z,v) RHﬁ’”><>ZY,z,V> _3 ¥ (k) (p) (?) (Z))(_y)kl(_y)pq

k,p=01,9=0

RH™ (x,y,2,0— w) RH" (X, Y, Z,V — W)

x H") (v, 2, w)H") (Y, Z,W) ; :
(69)
Further, taking w = W = 0 in Egs. (68) and (69), we get respectively
(m) (m) N AN AN YL AV = P
st ez st x v, zv = ¥ % () (0)(5) (2) e
k,p=01,=0 p q
<y Y8 sH (x,y,2,0) sHY™ (X, Y, 2,V), (70)
RH(m)(x Y,2,0) RH(m)(X Y,Z, V) 5P\ (7 [k p kel
Pl g (1)) ()0
n! 7! kp=019=0 k)\p/)\l)\q
(m) (m)
<y RH™ (x,y,2,0) gRHy " (X, Y, Z, V)‘ 1)

I q!
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