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Abstract: This paper proposes an explicit numerical scheme based on Delannoy polynomials in conjunction
with the tau method for solving the time-fractional diffusion equation involving the Caputo derivative. The
proposed method constructs approximate solutions using shifted Delannoy polynomials as basis functions,
allowing efficient and accurate treatment of the nonlocal nature of fractional derivatives. The method
transforms the time-fractional diffusion problem into a system of algebraic equations, which can be solved
explicitly. Several benchmark examples are provided to confirm the efficiency, accuracy, and applicability of
the new scheme.
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1. Introduction

T ime-fractional diffusion equations (TFDEs), which generalize classical diffusion processes using
fractional-order derivatives, have gained substantial attention due to their capability to model

memory-dependent phenomena such as subdiffusion in porous media, viscoelasticity, and anomalous
transport in complex systems [1–7]. The inclusion of a Caputo time-fractional derivative enables the
incorporation of long-range temporal interactions, making these equations ideal for modeling real-world
processes with hereditary effects.

Considerable progress has been achieved recently in the creation of spectral and collocation methods
in order to resolve fractional and integral equations. For instance, modified Chebyshev–Galerkin
approaches have been successfully implemented for higher-order boundary value problems [8], while Fermat
polynomial-based collocation schemes have shown effectiveness in handling singular kernels in integral
equations [9]. The third-kind Chebyshev polynomials have also been applied in the explicit solution of
nonlinear fractional Duffing equations [10]. Researchers have extended spectral methods using Legendre
derivatives for both differential and integral problems [11], and refined Galerkin techniques utilizing Bernoulli
polynomials have demonstrated accuracy in higher-order differential systems [12]. High-accuracy modified
spectral methods were developed for two-dimensional integral equations, offering improved convergence
[13], and the fractional Newell-Whitehead-Segel equation has been treated using an approximate collocation
scheme [14]. In the realm of metric space theory, fixed point theorems in G-metric spaces have been
explored with applications [15]. For time-fractional PDEs, spectral approaches based on first-kind Chebyshev
polynomials have been proposed for the Korteweg–de Vries–Burgers equation [16], while the Bagley–Torvik
equation has been tackled using a fourth-kind Chebyshev operational tau method [17]. Notably, the modeling
of human corneal geometry has been accomplished via a Caputo-fractional-based Chebyshev collocation
algorithm [18], and Petrov–Galerkin schemes employing second-kind Chebyshev polynomials have been
utilized in the Euler–Bernoulli beam context [19]. Time-fractional integro-differential equations with weak
singularities have been studied using Chebyshev Petrov–Galerkin methods [20]. In the context of wave
propagation, a spectral framework employing third-kind Chebyshev polynomials has been shown effective for
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solving hyperbolic telegraph equations in one and two dimensions [21]. Finally, Lucas polynomials have been
applied in a Petrov–Galerkin scheme to address time-fractional diffusion equations, emphasizing flexibility
and precision [22]. For more studies, see [23–25].

Solving TFDEs analytically is often unfeasible, motivating the development of robust and efficient
numerical techniques. Spectral methods, known for their exponential convergence properties for smooth
solutions, are particularly suited for fractional problems due to their global approximation capabilities and
their effectiveness in handling the nonlocality of fractional operators [26–28]. Among these, the tau method
and its variants offer a systematic framework for approximating solutions to differential equations via
orthogonal polynomials [29,30].

This work introduces a novel explicit tau-based spectral algorithm that employs shifted Delannoy
polynomials for solving time-fractional diffusion equations. Delannoy polynomials, due to their orthogonality
and computational tractability, serve as a powerful basis for spectral expansion. By leveraging their structural
properties, we derive an efficient and stable numerical scheme that directly approximates the solution without
the need for iterative solvers.

The following is a summary of this paper’s contributions:

• We develop an explicit spectral scheme using shifted Delannoy polynomials tailored to time-fractional
diffusion equations.

• The method transforms the fractional PDE into a tractable system of algebraic equations using the tau
framework.

• Extensive numerical experiments demonstrate the accuracy and computational advantages of the
proposed method.

The paper is organized as follows: §2 provides the necessary mathematical preliminaries, including
properties of Delannoy polynomials and the Caputo derivative. §3 outlines the formulation of the explicit
tau scheme. §4 presents numerical experiments. Lastly, §5 provides closing thoughts and recommendations
for the future.

2. Some key relations and formulas

2.1. An account on Caputo fractional derivative

Definition 1. In Caputo’s sense, the fractional-order derivative of g ∈ Cr[0, σ], where r = ⌈µ⌉ is defined as [1]:

Dµ
σU(σ) =

1
Γ(r − µ)

∫ σ

0
(σ − t)r−µ−1U(r)(t) dt, µ > 0, σ > 0, (1)

where, r − 1 < µ ≤ r, r ∈ N.

Moreover, the following Caputo’s Properties are vital.

Dµ
σC = 0, (for a constant C), (2)

Dµ
σ σℓ =

0, if ℓ ∈ N0 and ℓ < ⌈µ⌉,
ℓ !

Γ(ℓ+1−µ)
σℓ−µ, if ℓ ∈ N0 and ℓ ≥ ⌈µ⌉,

(3)

where N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}.

2.2. A statement on Delannoy polynomials and their shifted one

The power formula of Delannoy polynomials is

ψi(z) =
i

∑
j=0

(
i
j

)(
i + j

j

)
zj. (4)
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The inversion formula is

zi = (i!)2
i

∑
m=0

(−1)i−m (2m + 1)
(i − m)! (i + m + 1)!

ψm(z). (5)

Also, the orthogonality relation of ψr(z) is

∫ 0

−1
ψr(z)ψs(z) d z =

1
2r + 1

δr,s, (6)

where

δr,s =

{
1, if r = s,

0, if r ̸= s.
(7)

Now, define the shifted Delannoy polynomials ϕi(z) = ψi(z − 1) on the interval [0,1].
The orthogonality relation of ϕi(z) is

∫ 1

0
ϕr(z)ϕs(z) d z =

1
2r + 1

δr,s. (8)

The power form of ϕi(z) is

ϕi(z) =
i

∑
τ=0

(−1)i+τ (i + τ)!
(i − τ)!(τ)!2

zτ , (9)

and it’s inversion formula is

zi =
r

∑
τ=0

(−1)2 τ (2 τ + 1) Γ(r + 1)2

Γ(−τ + r + 1) Γ(τ + r + 2)
ϕτ(z). (10)

Remark 1. Polynomials ψj(z) and ϕj(z) are linked with shifted Legendre polynomials by the following
formulas:

ψj(z) = Pj(2 z + 1), (11)

ϕj(z) = Pj(2 z − 1). (12)

Remark 2. The orthogonality relations (6) and (8) are direct results of the orthogonality relations of Legendre
polynomials and their shifted ones [31,32].

3. Tau method for the time-fractional diffusion equation

Assuming the following TFDE ([33,34]):

Dα
t ξ(z, t)− µ ξzz(z, t) = f (z, t), 0 < α ≤ 1, (13)

controlled by

ξ(z, 0) =g(z), 0 < z < 1, (14)

ξ(0, t) =h1(t), ξ(1, t) = h2(t), 0 < t < 1, (15)

where µ is a positive constant, g(z), h1(t), h2(t) are provided functions that are continuous and f (z, t) is the
source term.

Now, define
PN = span{ϕi(z) ϕj(t) : 0 ≤ i, j ≤ N}, (16)

Consequently, we can infer that any function ξN (z, t) ∈ PN can be articulated as

ξN (z, t) =
N
∑
i=0

N
∑
j=0

Qij ϕi(z) ϕj(t) = ϕ(z) Q ϕ(t)T , (17)



Open J. Math. Anal. 2025, 9(2), 134-144 137

where, ϕ(z) = [ϕ0(z), ϕ1(z), . . . , ϕN (z)], and Q = (Qij)1≤i,j≤N+1 is the unknown matrix of dimension (N +

1)2.
The residual R(z, t) of Eq. (13) in the subsequent format

R(z, t) = Dα
t ξN (z, t)− µ ξNzz (z, t)− f (z, t). (18)

As the outcome of applying Tau method [35–37],We obtain

(R(z, t) , ϕr(z) ϕs(t)) = 0, 0 ≤ r ≤ N − 2, 0 ≤ s ≤ N − 1. (19)

Assume that

F = ( fr,s)(N−1)×N , frs = ( f (z, t) , ϕr(z) ϕs(t)), (20)

A = (ai,r)(N+1)×(N−1), ai,r = (ϕi(z) , ϕr(z)), (21)

B = (bj,s)(N+1)×N , bj,s = (ϕj(t) , ϕs(t)), (22)

H = (hir)(N+1)×(N−1), hir =

(
d2 ϕi(z)

d z2 , ϕr(z)
)

, (23)

K = (k j,s)(N+1)×N , k j,s =
(

Dα
t ϕj(t) , ϕs(t)

)
. (24)

Therefore, Eq. (19) can be rephrased as

N
∑
i=0

N
∑
j=0

Qij ai,r k j,s − µ
N
∑
i=0

N
∑
j=0

Qij hi,r bj,s = fr,s, 0 ≤ r ≤ N − 2, 0 ≤ s ≤ N − 1. (25)

Or in matrix form as
AT QK− µHTQB = F. (26)

Furthermore, the conditions in (14) lead to

N
∑
i=0

N
∑
j=0

Qij ai,r ϕj(0) = (g(z) , ϕr(z)), 0 ≤ r ≤ N ,

N
∑
i=0

N
∑
j=0

Qij bj,s ϕi(0) = (h1(t) , ϕs(t)), 0 ≤ s ≤ N − 1,

N
∑
i=0

N
∑
j=0

Qij bj,s ϕi(1) = (h2(t) , ϕs(t)), 0 ≤ s ≤ N − 1.

(27)

Now, an appropriate technique might be employed to solve the resultant algebraic system of equations of
order (N + 1)2, which includes Eqs. (26) and (27).

Theorem 1. The elements ai,r, bj,s, hi,r and ki,r in (25) are given by

(1) ai,r =
1

2i + 1
δi,r

(2) bj,s =
1

2j + 1
δj,s

(3) hi,r =
i

∑
j=2

r

∑
n=0

j (j − 1) γj,i γn,r

j + n − 1

(4) ki,r =
i

∑
j=1

r

∑
n=0

j! γj,i γn,r

Γ(j − α + 1) (−α + j + n + 1)



(28)
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where

γj,i =
i

∑
τ=0

(−1)τ−j
(

i
τ

)(
i + τ

τ

)(
τ

j

)
. (29)

Proof. The elements ai,r and bj,s are a directly results of the orthogonality relation of ϕr(z) provided in (8),
To find the elements hi,r.

The application of power formula (4), we can write

ϕi(z) =
i

∑
j=0

(
i
j

)(
i + j

j

)
(z − 1)j, (30)

it is able to be written after using relation (z − 1)r =
r
∑

n=0
zn(−1)r−n(r

n), as

ϕi(z) =
i

∑
j=0

i

∑
ℓ=j

(−1)ℓ−j
(

i
ℓ

)(
i + ℓ

ℓ

)(
ℓ

j

)
zj, (31)

After extending, rearranging, and collecting related terms from the above equation, we obtain

ϕi(z) =
i

∑
j=0

γj,i zj, (32)

where

γj,i =
i

∑
τ=0

(−1)τ−j
(

i
τ

)(
i + τ

τ

)(
τ

j

)
. (33)

Based on the definition of hi,r, we van write

hi,r =
∫ 1

0

d2 ϕi(z)
d z2 ϕr(z) dz =

i

∑
j=2

r

∑
n=0

j (j − 1) γj,iγn,r

∫ 1

0
zj+n−2 dz

=
i

∑
j=2

r

∑
n=0

j (j − 1) γj,i γn,r

j + n − 1
. (34)

To obtain ki,r, we use Definition 1 to get

ki,r =
∫ 1

0
Dα

t ϕi(t) ϕr(t) dt

=
i

∑
j=1

r

∑
n=0

j! γj,i γn,r

(j − α)!

∫ 1

0
t−α+j+n dt

=
i

∑
j=1

r

∑
n=0

j! γj,i γn,r

Γ(j − α + 1) (−α + j + n + 1)
. (35)

This proves Theorem 1.

4. Examples

Problem 1. [38] Consider

Dα
t ξ(z, t)− ξzz(z, t) =

1
Γ(2 − α)

t1−α z2 (1 − z) + 2 t (3 z − 1), 0 < α ≤ 1, (36)

controlled by
ξ(z, 0) = 0, 0 < z < 1, (37)



Open J. Math. Anal. 2025, 9(2), 134-144 139

and
ξ(0, t) = ξ(1, t) = 0, 0 < t < 1, (38)

where ξ(z, t) = t z2 (1 − z) is the precise answer to this issue.
If we use the approach we suggested at α = 0.5 for N = 3, We obtain the subsequent system.

8 Q0,1

3
√

π
− 12 Q2,0 −

8 Q0,2

5
√

π
+

16 Q0,3

7
√

π
=

1
2
+

1
9
√

π
,

8 Q0,1

15
√

π
− 4Q2,1 +

8 Q0,2

7
√

π
− 16Q0,3

45
√

π

=
1
6
+

1
45
√

π
,− 8 Q0,1

105
√

π
− 12

5
Q2,2 +

8 Q0,2

15
√

π
+

304 Q0,3

385
√

π

= − 1
315

√
π

,
8 Q1,1

9
√

π
− 20 Q3,0 −

8 Q1,2

15
√

π
+

16 Q1,3

21
√

π

=
1
2
+

1
45
√

π
,

8 Q1,1

45
√

π
− 20

3
Q3,1 +

8 Q1,2

21
√

π
− 16Q1,3

135
√

π

=
1
6
+

1
225

√
π

,− 8 Q1,1

315
√

π
− 4 Q3,2 +

8 Q1,2

45
√

π
+

304 Q1,3

1155
√

π

= − 1
1575

√
π

.

Q0,0 − Q0,1 + Q0,2 − Q0,3 = 0,

Q1,0 − Q1,1 + Q1,2 −
1
3

Q1,3 = 0,

Q2,0 − Q2,1 + Q2,2 − Q2,3 = 0,

Q3,0 − Q3,1 + Q3,2 − Q3,3 = 0,

Q0,0 − Q1,0 + Q2,0 − Q3,0 = 0,

Q0,1 − Q1,1 + Q2,1 − Q3,1 = 0,

Q0,2 − Q1,2 + Q2,2 − Q3,2 = 0,

Q0,0 + Q1,0 + Q2,0 + Q3,0 = 0,

Q0,1 + Q1,1 + Q2,1 + Q3,1 = 0,

Q0,2 + Q1,2 + Q2,2 + Q3,2 = 0,

problem can be resolved by using Gauss elimination method to get

Q0,0 → 1
24

, Q0,1 → 1
24

, Q0,2 → 0, Q0,3 → 0, Q1,0 → 1
40

, Q1,1 → 1
40

, Q1,2 → 0, Q1,3 → 0,

Q2,0 → − 1
24

, Q2,1 → − 1
24

, Q2,2 → 0, Q2,3 → 0, Q3,0 → − 1
40

, Q3,1 → − 1
40

, Q3,2 → 0, Q3,3 → 0,

and therefore ξN (z, t) = t z2 (1 − z), which is the precise answer.

Figure 1. The AE (left) and AS (right) for Example 1 at α = 0.75 and N = 8
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Additionally, Figure 1 illustrates the absolute errors (AE ) (left) and approximate solution (AS) (right) for
α = 0.75 and N = 3.

Problem 2. [39] Assuming

Dα
t ξ(z, t)− µ ξzz(z, t) = t3 (z − 1) z4 Γ(α + 4)

6
− 4 z2 (5 z − 3) tα+3, 0 < α ≤ 1, (39)

controlled by
ξ(z, 0) = ez, 0 < z < 1, (40)

and
ξ(0, t) = t2 + t + 1, ξ(1, t) = e

(
t2 + t + 1

)
, 0 < t < 1, (41)

where ξ(z, t) =
(
t2 + t + 1

)
ez is the analytic solution of this problem.

Table 1 compares the maximum AE between our technique and that of [39] at various α values when
µ = 1. Figure 2 illustrates the AE (left) and AS (right) for α = 0.75 and N = 8 when µ = 1. Table 2 shows the
AE for α = 0.3 and N = 8 when µ = 1. Figure 3 shows the AE at α = 0.3 and N = 8 when µ = 2. Finally,
Figure 4 illustrates the stability |ξN+1(z, t)− ξN (z, t)| at z = t and different values of N when α = 0.3. These
findings show that this method’s results are close to the exact solution.

Table 1. Comparison of the maximum AE for Example 2

α Ref. [39] (N = 64) Proposed approach (N = 8)
0.25 1.2889 × 10−5 4.14712 × 10−9

0.5 1.1727 × 10−5 2.07061 × 10−9

0.75 1.1645 × 10−5 4.14649 × 10−9

Figure 2. The AE (left) and AS (right) for Example 2 at α = 0.75 and N = 8

Table 2. The AE of Example 2 at α = 0.3 and N = 8

z t = 0.2 t = 0.5 t = 0.8
0.1 9.92485 × 10−10 1.28053 × 10−9 1.01728 × 10−9

0.2 1.3859 × 10−9 1.79685 × 10−9 1.49371 × 10−9

0.3 1.26077 × 10−10 1.67655 × 10−10 1.48779 × 10−10

0.4 1.17182 × 10−9 1.52828 × 10−9 1.32191 × 10−9

0.5 5.85545 × 10−11 7.65681 × 10−11 5.56186 × 10−11

0.6 1.05551 × 10−9 1.37827 × 10−9 1.20427 × 10−9

0.7 1.91402 × 10−12 2.99671 × 10−12 2.37526 × 10−11

0.8 9.63496 × 10−10 1.25716 × 10−9 1.07944 × 10−9

0.9 6.59603 × 10−10 8.53126 × 10−10 6.84238 × 10−10
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Figure 3. The AE for Example 2 at α = 0.3

●
●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
● ● ●

■
■

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■
■

◆
◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆

◆

◆

▲

▲
▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲ ▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲ ▲

▼

▼

▼
▼ ▼ ▼ ▼ ▼ ▼ ▼

▼ ▼
▼

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
▼

▼

▼
▼ ▼ ▼ ▼ ▼ ▼ ▼

▼
▼

○

○

○ ○ ○ ○
○

○
○

○ ○ ○ ○ ○ ○ ○
○

○

○ ○ ○ ○ ○ ○ ○
○

○

○
○ ○ ○ ○

○
○

□

□

□ □
□

□
□ □ □ □ □ □

□
□

□ □ □ □ □ □ □
□

□
□ □ □ □

□

□

□
□ □ □ □

0.0 0.2 0.4 0.6 0.8 1.0

10-16

10-12

10-8

10-4

1

t

s
ta
b
ili
ty

● =1 ■ =2 ◆ =3 ▲ =4 ▼ =5 ○ =6 □ =7

Figure 4. Stability |ξN+1(z, t)− ξN (z, t)| at z = t for example 2

Problem 3. [38] Assuming

Dα
t ξ(z, t)− ξzz(z, t) =

(
4 π2 t2 +

2 t2−α

Γ(3 − α)

)
sin(2 π z), 0 < α ≤ 1, (42)

controlled by
ξ(z, 0) = 0, 0 < z < 1, (43)

and
ξ(0, t) = ξ(1, t) = 0, 0 < t < 1, (44)

where ξ(z, t) = t2 sin(2 π z) constitutes the analytic solution to this problem.

Table 3 compares the maximum AE between our technique and that of [38] at α = 0.5. Figure 5 depicts
the maximum AE at various N values for α = 0.5. This image demonstrates the advantage of adopting our
strategy to obtain the maximum AE for small values of N . Table 4 shows the AE at α = 0.9 and N = 14. It is
clear that the estimated and exact solutions are relatively close.
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Table 3. Comparison of the maximum AE for Example 3

Ref. [38] at ∆t = 0.001 and M = 64 Presented approach at N = 14
7.70 × 10−4 8.03607 × 10−10

Figure 5. The AE for Example 3 at α = 0.5

Table 4. The AE of Example 3 at α = 0.9 and N = 14

z t = 0.3 t = 0.6 t = 0.9
0.1 1.65467 × 10−9 9.45648 × 10−10 9.08267 × 10−11

0.2 2.41125 × 10−9 4.83308 × 10−10 1.88788 × 10−9

0.3 1.59463 × 10−9 1.8858 × 10−9 1.66441 × 10−9

0.4 1.1292 × 10−9 1.41938 × 10−10 1.73461 × 10−9

0.5 7.24165 × 10−11 2.73845 × 10−10 6.03381 × 10−10

0.6 1.01843 × 10−9 2.76671 × 10−10 8.11171 × 10−10

0.7 1.63854 × 10−9 1.72031 × 10−9 1.29951 × 10−9

0.8 2.40511 × 10−9 5.05605 × 10−10 1.8508 × 10−9

0.9 1.67916 × 10−9 8.54546 × 10−10 7.47452 × 10−11

5. Concluding Remarks

This paper introduced an explicit Delannoy-tau spectral scheme for the numerical solution of the
time-fractional diffusion equation with the Caputo derivative. By employing shifted Delannoy polynomials
as basis functions, the method transforms the governing equation into a well-structured system of algebraic
equations that can be solved without iterations. The proposed technique blends the precision of spectral
approaches with the efficacy of explicit schemes, making it computationally attractive for large-scale or
real-time simulations. Numerical examples confirm the precision and resilience of the approach. Future work
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may explore the application of the presented framework to multidimensional TFDEs, variable-order fractional
models, and coupled systems arising in mathematical physics and engineering.
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