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1. Introduction

I n a recent issue of the journal The Fibonacci Quarterly [1] the second author asked the readers to prove
the identity

n

∑
k=1

(−1)k−1
(

n
k

)
ak − bk

k
=

n

∑
k=1

(−1)k−1 (a − 1)k − (b − 1)k

k
, (1)

valid for all complex numbers a and b. Although not hard to prove, such an identity provides an unusual but
useful link between sums with and without binomial coefficients.

Our purpose in this paper is to derive a generalization of (1) involving an additional (that is third) complex
parameter. Polynomial combinatorial identities are equations that express relations between polynomials and
combinatorial quantities. These identities usually involve sums of polynomial terms weighted by quantities
like binomial coefficients, falling or rising factorials or other counting numbers. Common examples are
the binomial or multinomial theorem. Polynomial identities with a complex parameter in the binomial
coefficient are not unusual and can be found in the literature. Examples for such identities were derived
in the articles by Boyadzhiev [2], Wang and Wei [3] and Chen and Guo [4], for instance. Identities with two
or even three complex parameters also exist but are rare. Two particular examples that come to mind are the
Chu-Vandermonde identity and Hagen-Rothe identities [5–7]: For complex numbers x and y, and non-negative
integers m and n the Chu-Vandermonde identity is

n

∑
k=0

(
x
k

)(
y

m − k

)
=

(
x + y

n

)(
y − x
m − n

)
,

of which
n

∑
k=0

(
x
k

)(
y

n − k

)
=

(
x + y

n

)
,

is a special case. The Hagen-Rothe identities are similar. Still other sums related to ours were also studied by
Egorychev [8] and Lyapin and Chandragiri [9].
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Our three parameter generalization of (1) consists of two separate identities presented in a main lemma
in the third section. These identities will turn out to be immensely rich and will allow us to deduce a big
amount of important results as basic properties. These results will come from four different fields: polynomial
identities, trigonometric sums, sums involving the Horadam sequence, and combinatorial identities. In the
field of combinatorial identities we will focus on three different classes: Frisch-type identities, Klamkin-type
identities and combinatorial sums involving powers of integers.

2. Preliminaries

Before presenting our main results, we first collect several preliminary identities that will be frequently
used later.

Lemma 1. If k and n are integers and x is a complex number, then(
x − k
n − k

)
= (−1)n−k

(
n − x − 1

n − k

)
. (2)

In particular, (
−1 − k
n − k

)
= (−1)n−k

(
n
k

)
, (3)(

−k
n − k

)
= (−1)n−k

(
n − 1
k − 1

)
= (−1)n−k k

n

(
n
k

)
, (4)(

1 − k
n − k

)
= (−1)n−k

(
n − 2
k − 2

)
. (5)

Proof. Identity (2) follows directly from the −1 transformation.

Lemma 2. We have(
r + 1/2

s

)
=

(
2r + 1

2s

)(
2s
s

)(
r
s

)−1
2−2s, r, s ∈ C \Z−, r − s ̸∈ Z−, s ̸= −1/2, (6)(

1/2
r

)
= (−1)r+1

(
2r
r

)
2−2r

2r − 1
, r ∈ Z, (7)(

r − 1/2
s

)
=

(
2r
r

)(
r
s

)(
2(r − s)

r − s

)−1

2−2s, r, s ∈ C \Z−, r − s ̸∈ Z−, (8)(
−1/2

r

)
= (−1)r

(
2r
r

)
2−2r, r ∈ Z, (9)(

−3/2
r

)
= (−1)r

(
2r
r

)
(2r + 1)2−2r, r ∈ Z, (10)(

−1/2 − r
s

)
= (−1)s

(
2 (r + s)

r + s

)(
r + s

r

)(
2r
r

)−1
2−2s, r, s ∈ Z. (11)

Proof. These are consequences of the generalized binomial coefficients. They are easy to derive using the
Gamma function. They can also be found in Gould’s book [10].

Next, we recall some facts about Horadam sequences that will be needed later. The Horadam sequence
wj = wj(a, b; p, q) is defined, for all integers, by the recurrence relation [11]

w0 = a, w1 = b, wj = pwj−1 − qwj−2, j ≥ 2,

with
w−j =

1
q
(pw−j+1 − w−j+2) ,
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where a, b, p and q are arbitrary complex numbers with p ̸= 0, q ̸= 0, and p2 − 4q > 0. The sequence wj
generalizes many important number and polynomial sequences, for instance, the Fibonacci sequence Fj =

wj(0, 1; 1,−1), the Lucas sequence Lj = wj(2, 1; 1,−1), the Pell sequence Pj = wj(0, 1; 2,−1), the Chebyshev
polynomials of the first and second kind given by Tj(x) = wj(1, x; 2x, 1) and Uj(x) = wj(1, 2x; 2x, 1), and so
on. The j-th term of a Horadam sequence is given by

wj = wj(p, q) =
Aσj(p, q)− Bτ j(p, q)

σ(p, q)− τ(p, q)
, (12)

where
A = w1 − w0τ(p, q), B = w1 − w0σ(p, q),

and σ(p, q) and τ(p, q) are given by

σ = σ(p, q) =
p + δ

2
, τ = τ(p, q) =

p − δ

2
,

where δ =
√

p2 − 4q, so that σ(p, q) τ(p, q) = q.

The sequences Fj and Lj are classical sequences and are indexed as sequences A000045 and A000032 in
the On-Line Encyclopedia of Integer Sequences [12]. Koshy [13] and Vajda [14] have written excellent books
on them. In addition, the sequences uj = wj(0, 1; p, q) and vj = wj(2, p; p, q) are called the Lucas sequences of
the first kind and the second kind, respectively. Their explicit forms equal

uj = uj(p, q) =
σj(p, q)− τ j(p, q)
σ(p, q)− τ(p, q)

and vj = vj(p, q) = σj(p, q) + τ j(p, q).

Finally, we mention the gibonacci sequence (or generalized Fibonacci sequence) Gj = Gj(a, b) =

wj(a, b; 1,−1). This sequence was studied by Horadam [15] in 1961 under the notation Hj. Terms of the
gibonacci sequence can be accessed directly through the Binet-like formula:

Gj =
Aαj − Bβj

α − β
,

where α = (1 +
√

5)/2, β = (1 −
√

5)/2, and A = G1 − G0β and B = G1 − G0α. It is readily established that

G−j = (−1)j(G0Lj − Gj).

Lemma 3. For all r, s ̸= 0 we have the relations

σr = σur − qur−1,

τr = τur − qur−1,

σrδ = σvr − qvr−1,

τrδ = −τvr + qvr−1,

and more generally

σrs =
urs

us
σs − qs u(r−1)s

us
and τrs =

urs

us
τs − qs u(r−1)s

us
.

Proof. The statements can be verified directly by computation working with usσrs (respectively usτrs) and
q = στ.
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Lemma 4. For all integers r, s and t we have

σrus−t = σsur−t − qs−tσtur−s,

τrus−t = τsur−t − qs−tτtur−s,

σrus−tδ = σsvr−t − qs−tσtvr−s,

τrus−tδ = −τsvr−t + qs−tτtvr−s.

3. The main lemma and its immediate consequences

Lemma 5. If a, b and x are complex numbers and n is a non-negative integer, then

n

∑
k=1

(−1)k−1
(

x
n − k

)
ak − bk

k
=

n

∑
k=1

(
x − k
n − k

)
(1 − b)k − (1 − a)k

k
(13)

and
n

∑
k=1

(−1)k−1
(

x
n − k

)
ak + bk

k
= 2

n

∑
k=1

(
x − k
n − k

)
1
k
−

n

∑
k=1

(
x − k
n − k

)
(1 − b)k + (1 − a)k

k
. (14)

Proof. We have

(a − 1)k ± (b − 1)k =
k

∑
j=0

(
k
j

)
aj(−1)k−j ±

k

∑
j=0

(
k
j

)
bj(−1)k−j

=
k

∑
j=0

(
k
j

)
(−1)k−j(aj ± bj).

Therefore,

(−1)k
(

x − k
n − k

)
(a − 1)k ± (b − 1)k

k
=

k

∑
j=0

(
x − k
n − k

)(
k
j

)
(−1)j aj ± bj

k

=
k

∑
j=1

(
x − k
n − k

)(
k
j

)
(−1)j aj ± bj

k
+ (1 ± 1)

(
x − k
n − k

)
1
k

= ∑
j≥1

(
x − k
n − k

)(
k − 1
j − 1

)
(−1)j aj ± bj

j
+ (1 ± 1)

(
x − k
n − k

)
1
k

,

and thus

n

∑
k=1

(−1)k
(

x − k
n − k

)
(a − 1)k ± (b − 1)k

k
= ∑

j≥1
(−1)j aj ± bj

j

n

∑
k=1

(
x − k
n − k

)(
k − 1
j − 1

)
+ (1 ± 1)

n

∑
k=1

(
x − k
n − k

)
1
k

= ∑
j≥1

(−1)j aj ± bj

j

n

∑
k=j

(
x − k
n − k

)(
k − 1
j − 1

)
+ (1 ± 1)

n

∑
k=1

(
x − k
n − k

)
1
k

= ∑
j≥1

(−1)j aj ± bj

j

(
x

n − j

)
+ (1 ± 1)

n

∑
k=1

(
x − k
n − k

)
1
k

=
n

∑
j=1

(−1)j
(

x
n − j

)
aj ± bj

j
+ (1 ± 1)

n

∑
k=1

(
x − k
n − k

)
1
k

=
n

∑
k=1

(−1)k
(

x
n − k

)
ak ± bk

k
+ (1 ± 1)

n

∑
k=1

(
x − k
n − k

)
1
k

.

This completes the proof.
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When x = n then identity (13) reduces to (1), which with a = 1 and b = 0 gives the classical identity [2]

n

∑
k=1

(−1)k−1
(

n
k

)
1
k
= Hn, (15)

with Hn = 1 + 1/2 + · · ·+ 1/n being the nth harmonic number. Similarly, by setting x = n + 1, a = 1 and
b = 0 in identity (13), we obtain

n

∑
k=1

(−1)k−1
(

n + 1
k + 1

)
1
k
=

n

∑
k=1

n − k + 1
k

= (n + 1)Hn − n.

It follows from (n+1
k+1) =

n+1
k+1 (

n
k) that

n

∑
k=1

(−1)k−1
(

n
k

)
1

k(k + 1)
= Hn − 1 +

1
n + 1

.

Note that the left-hand side of the equation above is

n

∑
k=1

(−1)k−1
(

n
k

)
1
k
−

n

∑
k=1

(−1)k−1
(

n
k

)
1

k + 1
,

hence we have
n

∑
k=0

(−1)k
(

n
k

)
1

k + 1
=

1
n + 1

. (16)

The last expression is also known. It is stated, for instance, in the book [16] as Exercise 27 in Chapter 2
(p.105).

The additional complex parameter x in the binomial coefficient provides a very rich source for various
combinatorial identities. A first immediate consequence of the main Lemma 5 is the following result:

Theorem 1. If n is a non-negative integer and a and x are complex numbers, then

n

∑
k=1

(−1)k−1
(

x
n − k

)
1 − ak

k
=

n

∑
k=1

(
x − k
n − k

)
(1 − a)k

k
,

and
n

∑
k=1

(−1)k−1
(

x
n − k

)
1 + ak

k
= −

n

∑
k=1

(
x − k
n − k

)
(1 − a)k

k
+ 2

n

∑
k=1

(
x − k
n − k

)
1
k

.

Proof. Set b = 1 in (13) and (14) and simplify.

Another instant consequence are the following identities.

Theorem 2. If n is a non-negative integer and a and x are complex numbers, then

n

∑
k=1

(
x

n − k

)
ak − a−k

k
=

n

∑
k=1

(
x − k
n − k

) (1 + a)k
(

1 − a−k
)

k
, (17)

n

∑
k=1

(
x

n − k

)
(ak + a−k) =

n

∑
k=1

(
x − k
n − k

)
(1 + a)ka

(
1 − a−k

1 + a
+

1
ak+1

)
. (18)

Proof. Identity (17) is obtained by setting b = 1/a in (13) and writing −a for a. Identity (18) follows from
differentiating (17) with respect to a and multiplying through by a.

We also get immediately the next known result.
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Theorem 3. If a and x are complex numbers and n is a non-negative integer, then

n

∑
k=1

(
x − k
n − k

)
(1 + a)k−1 =

n

∑
k=1

(
x

n − k

)
ak−1. (19)

Proof. Differentiate (13) with respect to a and write −a for a.

Remark 1. Identity (19) is not new and can be found in a different form in Gould’s compendium [10] as
equation (1.10). It is also recorded by Chu [17, Eq. (4)].

Another important consequence is the next theorem.

Theorem 4. If n is a non-negative integer and x is a complex number and a is a complex variable, then

n

∑
k=1

(
x

n − k

)
ak

k
=

n

∑
k=1

(
x − k
n − k

)
(1 + a)k

k
−

n

∑
k=1

(
x − k
n − k

)
1
k

. (20)

In particular, we have
n

∑
k=1

(−1)k−1
(

x
n − k

)
1
k
=

n

∑
k=1

(
x − k
n − k

)
1
k

. (21)

Proof. Add (13) and (14) and write −a for a. The particular case follows by substituting a = −1 in (20).

Proposition 1. If n is a non-negative integer and a is a complex variable, then

n

∑
k=1

(
n
k

)
ak

k
=

n

∑
k=1

(1 + a)k

k
− Hn, (22)

n

∑
k=1

(−1)k−1 ak

k
=

n

∑
k=1

(−1)k−1
(

n
k

)
(1 + a)k

k
− Hn, (23)

and
n

∑
k=0

(−1)k
(

n
k

)
(1 + a)k

k + 2
=

1
(1 + a)2

(
(−1)nan+1

(
a

n + 2
+

1
n + 1

)
+

1
(n + 1) (n + 2)

)
. (24)

In particular,

n

∑
k=0

(−1)k
(

n
k

)
1

k + 2
=

1
(n + 1) (n + 2)

, (25)

n

∑
k=0

(n
k)

(1 + n)k (k + 2)
=

n + 1
n + 2

. (26)

Proof. Identity (22) is obtained by setting x = n in (20). Identity (23) follows upon setting x = −1 in (20)
and using Lemma 1, while (24) follows from x = 1. Note that in deriving (23) we used the equation (15).
Identity (26) comes from setting a = −(n + 2)/(n + 1) in (24).

Remark 2. Identities (22) and (23) will be called dual identities. We also note that setting x = 0 in (20) gives
the binomial transform of the binomial theorem.

The next theorem generalizes (19).

Theorem 5. If m is a positive integer, n is a non-negative integer, x is a complex number and a is a complex variable,
then

n

∑
k=m

(
x

n − k

)(
k
m

)
ak−m

k
=

n

∑
k=m

(
x − k
n − k

)(
k
m

)
(1 + a)k−m

k
. (27)
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Proof. The proof is by induction on m. The base case, m = 1, is valid because it is the derivative of (20).
Assume the truth of the hypothesis (27). Differentiating (27) with respect to a shows that the identity is valid
for m + 1 whenever it is valid for m and the proof is complete. Note that

(k − m)

(
k
m

)
= (m + 1)

(
k

m + 1

)
.

By using the identity 1
k (

k
m) =

1
m ( k−1

m−1) and shifting the summation index, equation (27) can be simplified
into

n

∑
k=m

(
x + 1
n − k

)(
k
m

)
ak−m =

n

∑
k=m

(
x − k
n − k

)(
k
m

)
(1 + a)k−m. (28)

Remark 3. Any identity derived from (27) remains valid under the interchange (x−k
n−k) ↔ (−1)k( x

n−k). Similarly,
the interchange (x−k

n−k) ↔ (−1)k(x+1
n−k) leaves any identity derived from (28) valid.

Substituting a = −1 and a = 0 into equation (28) yields the following results:

Proposition 2. If m is a positive integer, n is a non-negative integer and x is a complex number, then

n

∑
k=m

(−1)k
(

x + 1
n − k

)(
k
m

)
= (−1)m

(
x − m
n − m

)
,

n

∑
k=m

(
x − k
n − k

)(
k
m

)
=

(
x + 1
n − m

)
.

Evaluation at x = −1/2, on account of Lemma 2, yields the following combinatorial identities.

Proposition 3. If m is a positive integer and n is a non-negative integer, then

n

∑
k=m

(
2(n − k)

n − k

)(
k
m

)
22k

1 − 2(n − k)
=

(
2n
n

)(
n
m

)(
2m
m

)−1
22m, (29)

and
n

∑
k=m

(−1)k
(

n
k

)(
k
m

)(
2k
k

)−1
22k = (−1)m

(
2(n − m)

n − m

)(
2n
n

)−1 22m

1 − 2(n − m)
. (30)

Remark 4. By shifting the summation index it is not difficult to show that (29) also contains

n

∑
k=0

(
2k
k

)
2−2k

1 − 2k
=

(
2n
n

)
2−2n, (31)

as a special case. The combinatorial sum (31) can be found in Riordan’s book [18, p.130]. In addition we have
from (30) its counterpart

n

∑
k=0

(−1)k
(

n
k

)(
2k
k

)−1
22k =

1
1 − 2n

. (32)

Proposition 4. If m and n are non-negative integers such that n > m + 1, then

n

∑
k=m

(−1)kk
(

n − m
k − m

)
= 0.

In particular, for all n > 1,
n

∑
k=0

(−1)k
(

n
k

)
= 0,
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which is a well-known classical combinatorial identity that appears in numerous references; for instance, see Eq. (2.3.2)
in [16].

Proof. Set x = 0 in (28), use Lemma 1, shift the summation index and set a = 0.

Using the summation identity

n

∑
k=m

f (k) =
⌊n/2⌋

∑
k=⌊(m+1)/2⌋

f (2k) +
⌈n/2⌉

∑
k=⌊(m+2)/2⌋

f (2k − 1),

together with (28), we obtain the following result:

Proposition 5. Let m be a positive integer, n a non-negative integer, x a complex number and a a complex variable.
Then

n

∑
k=m

(
x − k
n − k

)(
k
m

)
(1 + a)k−m + (1 − a)k−m

2
=



⌊n/2⌋

∑
k=⌊(m+1)/2⌋

(
x + 1

n − 2k

)(
2k
m

)
a2k−m if m is even,

⌈n/2⌉

∑
k=⌊(m+2)/2⌋

(
x + 1

n − 2k + 1

)(
2k − 1

m

)
a2k−m−1 if m is odd,

and

n

∑
k=m

(
x − k
n − k

)(
k
m

)
(1 + a)k−m − (1 − a)k−m

2
=



⌈n/2⌉

∑
k=⌊(m+2)/2⌋

(
x + 1

n − 2k + 1

)(
2k − 1

m

)
a2k−m−1 if m is even,

⌊n/2⌋

∑
k=⌊(m+1)/2⌋

(
x + 1

n − 2k

)(
2k
m

)
a2k−m if m is odd.

Theorem 6. If m and n are non-negative integers, x is a complex number and a is a complex variable, then

n

∑
k=1

(
x

n − k

)(
k + m

m

)−1 ak+m

k
= −am

n

∑
k=1

(
x − k
n − k

)
1
k
+

n

∑
k=1

(
x − k
n − k

)(
k + m

m

)−1 (1 + a)k+m

k

−
m−1

∑
j=0

aj
n

∑
k=1

(
x − k
n − k

)(
k + m

j

)(
k + m

m

)−1 1
k

. (33)

Proof. The proof is by induction on m. The base case, m = 0, is identity (20). Now assume the veracity of (33),
the induction hypothesis, for a non-negative integer m. Replacing a with t and integrating with respect to t
from 0 to a shows that (33) holds for m + 1 whenever it holds for m. Note that

(k + m + 1)
(

k + m
m

)
= (m + 1)

(
k + m + 1

m + 1

)
.

Remark 5. Identity (33) is also valid under the interchange stated in Remark 3. Thus, for example, we have

n

∑
k=1

(−1)k
(

x − k
n − k

)(
k + m

m

)−1 ak+m

k
= −am

n

∑
k=1

(−1)k
(

x
n − k

)
1
k
+

n

∑
k=1

(−1)k
(

x
n − k

)(
k + m

m

)−1 (1 + a)k+m

k

−
m−1

∑
j=0

aj
n

∑
k=1

(−1)k
(

x
n − k

)(
k + m

j

)(
k + m

m

)−1 1
k

.

(34)



Open J. Math. Anal. 2025, 9(2), 66-86 74

Proposition 6. If m and n are non-negative integers and a is a complex variable, then

n

∑
k=1

(
n
k

)(
k + m

m

)−1
ak+m =

(
m + n

m

)−1
(
(1 + a)m+n −

m

∑
k=0

(
m + n

k

)
ak

)
. (35)

Proof. Set x = 0 in (34) and use Lemma 1.

Remark 6. Identity (35) is equivalent to Gould [10, Identity (4.13), p.47].

Substituting a = −1 into (33) yields the following result.

Proposition 7. If m and n are non-negative integers and x is a complex number, then

n

∑
k=1

(−1)k−1
(

x
n − k

)(
k + m

m

)−1 1
k
=

n

∑
k=1

(
x − k
n − k

)
1
k

m−1

∑
j=0

(−1)m−1−j
n

∑
k=1

(
x − k
n − k

)(
k + m

j

)(
k + m

m

)−1 1
k

. (36)

Proposition 8. If m and n are non-negative integers, then(
2n
n

)−1 n

∑
k=1

(
2(n − k)

n − k

)(
k + m

m

)−1 22k

k
=

n

∑
k=1

(−1)k−1
(

n
k

)(
2k
k

)−1 22k

k

− (−1)m
m−1

∑
j=0

(−1)j
n

∑
k=1

(−1)k
(

n
k

)(
2k
k

)−1(k + m
j

)(
k + m

m

)−1 22k

k
.

Proof. Set x = −1/2 in (36) and use Lemma 2.

Substituting x = 0, x = −1, and x = 1 into (33), and applying Lemma 1, we obtain the following results.

Proposition 9. If m and n are non-negative integers and a is a complex variable, then

n

∑
k=1

(−1)k
(

n
k

)(
k + m

m

)−1
(1 + a)k+m −

m−1

∑
j=0

aj
n

∑
k=1

(−1)k
(

n
k

)(
k + m

j

)(
k + m

m

)−1

= am

(
(−1)n

(
n + m

m

)−1
an − 1

)
,

n

∑
k=1

(−1)k
(

n
k

)(
k + m

m

)−1 (1 + a)k+m

k
−

m−1

∑
j=0

aj
n

∑
k=1

(−1)k
(

n
k

)(
k + m

j

)(
k + m

m

)−1 1
k

= am

(
n

∑
k=1

(−1)k
(

k + m
m

)−1 ak

k
− Hn

)

= am
n

∑
k=1

(
(−1)k

(
k + m

m

)−1
ak − 1

)
1
k

,

n

∑
k=1

(−1)k
(

n − 2
k − 2

)(
k + m

m

)−1 (1 + a)k+m

k
−

m−1

∑
j=0

aj
n

∑
k=1

(−1)k
(

n − 2
k − 2

)(
k + m

j

)(
k + m

m

)−1 1
k

= am

((
(−1)n

(
n + m

m

)−1
an − 1

)
1
n
−
(
(−1)n−1

(
n + m − 1

m

)−1
an−1 − 1

)
1

n − 1

)
.
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Proposition 10. If m and n are non-negative integers, x is a complex number and a and b are complex variables, then

n

∑
k=1

(
x

n − k

)(
k + m

m

)−1 ak − bk

k
=

n

∑
k=1

(
x − k
n − k

)(
k + m

m

)−1 1
k

(
(1 + a)k+m

am − (1 + b)k+m

bm

)

−
m−1

∑
j=0

(
aj−m − bj−m

) n

∑
k=1

(
x − k
n − k

)(
k + m

j

)(
k + m

m

)−1 1
k

.

(37)

Proof. Follows from (33).

The next three sections are dedicated to illustrating important basic applications of the combinatorial
identities derived in this section. We will explore three primary fields: identities involving trigonometric
functions, identities related to Horadam sequence and finally, we will consider three certain types of
combinatorial identities.

4. Some trigonometric identities

In this section we derive some possibly new trigonometric identities.

Proposition 11. If n is a non-negative integer, x is a complex number and θ is a real number, then

n

∑
k=1

(
x

n − k

)
cos(kθ)

k
=

n

∑
k=1

(
x − k
n − k

)
cos(kθ/2)

k

(
2 cos

(
θ

2

))k
−

n

∑
k=1

(
x − k
n − k

)
1
k

, (38)

and
n

∑
k=1

(
x

n − k

)
sin(kθ)

k
=

n

∑
k=1

(
x − k
n − k

)
sin(kθ/2)

k

(
2 cos

(
θ

2

))k
. (39)

Proof. Set a = eiθ , i =
√
−1, θ ∈ R in the main identity (20) and use Euler’s formula

eiθ = cos(θ) + i sin(θ),

together with
1 + a = eiθ/22 cos(θ/2).

Compare the real and imaginary parts. This completes the proof.

Corollary 1. If n is a non-negative integer and θ is a real number, then

n

∑
k=1

(
n
k

)
cos(kθ)

k
=

n

∑
k=1

cos(kθ/2)
k

(
2 cos

(
θ

2

))k
− Hn,

and
n

∑
k=1

(
n
k

)
sin(kθ)

k
=

n

∑
k=1

sin(kθ/2)
k

(
2 cos

(
θ

2

))k
.

Proof. Set x = n in Proposition 11.

Corollary 2. If n is a non-negative integer and θ is a real number, then

n

∑
k=1

(−1)k cos(kθ)

k
=

n

∑
k=1

(−1)k
(

n
k

)
cos(kθ/2)

k

(
2 cos

(
θ

2

))k
+ Hn,

and
n

∑
k=1

(−1)k sin(kθ)

k
=

n

∑
k=1

(−1)k
(

n
k

)
sin(kθ/2)

k

(
2 cos

(
θ

2

))k
.
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Proof. Set x = −1 in Proposition 11, use Lemma 1, and simplify.

Corollary 3. If n is a non-negative integer and θ is a real number, then

n

∑
k=1

(−1)k
(

2(n − k)
n − k

)
22k cos(kθ)

k
=

(
2n
n

) n

∑
k=1

(−1)k22k
(

n
k

)(
2k
k

)−1 1
k

(
cos

(
kθ

2

)(
2 cos

(
θ

2

))k
− 1

)
,

and

n

∑
k=1

(−1)k
(

2(n − k)
n − k

)
22k sin(kθ)

k
=

(
2n
n

) n

∑
k=1

(−1)k23k
(

n
k

)(
2k
k

)−1 1
k

sin
(

kθ

2

)(
cos

(
θ

2

))k
.

Proof. Set x = −1/2 in Proposition 11, use Lemma 2, and simplify.

Corollary 4. If n is a non-negative integer and θ is a real number, then

n

∑
k=1

(−1)k+1
(

2(n − k)
n − k

)
22k

2(n − k)− 1
cos(kθ)

k

=

(
2(n − 1)

n − 1

) n

∑
k=1

(−1)k22k
(

n − 1
k − 1

)(
2(k − 1)

k − 1

)−1 1
k

(
cos

(
kθ

2

)(
2 cos

(
θ

2

))k
− 1

)
,

and

n

∑
k=1

(−1)k+1
(

2(n − k)
n − k

)
22k

2(n − k)− 1
sin(kθ)

k

=

(
2(n − 1)

n − 1

) n

∑
k=1

(−1)k23k
(

n − 1
k − 1

)(
2(k − 1)

k − 1

)−1 1
k

sin
(

kθ

2

)(
cos

(
θ

2

))k
.

Proof. Set x = 1/2 in Proposition 11, use Lemma 2, and simplify.

Proposition 12. Let n be a non-negative integer, x a complex number and θ a real number. If θ + π/2 /∈ πZ, then

n

∑
k=1

(
x

n − k

)
tan2k(θ)

k
=

n

∑
k=1

(
x − k
n − k

)
cos−2k(θ)

k
−

n

∑
k=1

(
x − k
n − k

)
1
k

. (40)

If θ /∈ πZ, then

n

∑
k=1

(
x

n − k

)
tan−2k(θ)

k
=

n

∑
k=1

(
x − k
n − k

)
sin−2k(θ)

k
−

n

∑
k=1

(
x − k
n − k

)
1
k

. (41)

Proof. Set a = tan2(θ) and a = tan−2(θ), in turn, in the main identity (20) and simplify.

Proposition 13. If n is a non-negative integer, x is a complex number and θ is a real number, then

n

∑
k=1

(
x

n − k

)
cosk(θ/2)

k
=

n

∑
k=1

(
x − k
n − k

)
2k cos2k(θ/4)

k
−

n

∑
k=1

(
x − k
n − k

)
1
k

, (42)

and
n

∑
k=1

(
x

n − k

)
sink(θ/2)

k
=

n

∑
k=1

(
x − k
n − k

)
2k sin2k((θ + π)/4)

k
−

n

∑
k=1

(
x − k
n − k

)
1
k

. (43)

Proof. Set a = cos(θ/2) and a = sin(θ/2), in turn, in the main identity (20) and simplify.

To avoid repetitions we omit the special cases.
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5. Identities involving Horadam sequences

In this section we state new identities involving Horadam sequences wn = wn(w0, w1; p, q) introduced in
Section 2.

Proposition 14. If n is a non-negative integer, x is a complex number, t is an integer, and r, s are positive integers, then

n

∑
k=1

(
x

n − k

)
(−1)k

k

(
urs

qsu(r−1)s

)k

wsk+t =
n

∑
k=1

(
x − k
n − k

)
(−1)k

k

(
us

qsu(r−1)s

)k

wrsk+t − wt

n

∑
k=1

(
x − k
n − k

)
1
k

.

In particular,

n

∑
k=1

(
x

n − k

)
(−1)k

k

(
ur

qur−1

)k
wk+t =

n

∑
k=1

(
x − k
n − k

)
(−1)k

k

(
1

qur−1

)k
wrk+t − wt

n

∑
k=1

(
x − k
n − k

)
1
k

.

Proof. Set a = −ursσs/(qsu(r−1)s) in (20). Then Lemma 3 yields

n

∑
k=1

(
x

n − k

)
(−1)k

k

(
urs

qsu(r−1)s

)k

σsk =
n

∑
k=1

(
x − k
n − k

)
(−1)k

k

(
us

qsu(r−1)s

)k

σrsk −
n

∑
k=1

(
x − k
n − k

)
1
k

. (44)

Similarly, with a = −ursτs/(qsu(r−1)s) in (20) in conjunction with Lemma 3 we obtain

n

∑
k=1

(
x

n − k

)
(−1)k

k

(
urs

qsu(r−1)s

)k

τsk =
n

∑
k=1

(
x − k
n − k

)
(−1)k

k

(
us

qsu(r−1)s

)k

τrsk −
n

∑
k=1

(
x − k
n − k

)
1
k

. (45)

The identity follows upon multiplying (44) and (45) by σt, respectively τt, and combining according to
the Binet form (12). The special case is obtained by setting s = 1.

Proposition 15. If m and n are non-negative integers, r is an integer and x is a complex number, then

n

∑
k=1

(−1)k−1
(

x
n − k

)(
k + m

m

)−1 urk

vk
r k

=
m−1

∑
j=0

(−1)j−m ur(j−m)

vj−m
r

n

∑
k=1

(
x − k
n − k

)(
k + m

j

)(
k + m

m

)−1 1
k

+
(−1)m

qrm

n

∑
k=1

(
x − k
n − k

)(
k + m

m

)−1 u2rm+rk

vk
r k

.

(46)

In particular,
n

∑
k=1

(−1)k−1
(

x
n − k

)
urk

vk
r k

=
n

∑
k=1

(
x − k
n − k

)
urk

vk
r k

;

with the special value
n

∑
k=1

(−1)k−1
(

n
k

)
urk

vk
r
=

urn

vn
r

,

which has the interesting property that it is its own binomial transform.

Proof. Set a = −σr/vr and b = −τr/vr in (37).

Remark 7. In view of Remark 3, identity (46) also implies

n

∑
k=1

(
x − k
n − k

)(
k + m

m

)−1 urk

vk
r k

=
m−1

∑
j=0

(−1)j−m ur(j−m)

vj−m
r

n

∑
k=1

(−1)k−1
(

x
n − k

)(
k + m

j

)(
k + m

m

)−1 1
k

+
(−1)m

qrm

n

∑
k=1

(−1)k−1
(

x
n − k

)(
k + m

m

)−1 u2rm+rk

vk
r k

.
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In particular, at x = 0 we obtain

n

∑
k=1

(−1)k−1
(

n
k

)(
k + m

m

)−1 urk

vk
r
= (−1)m

(
n + m

m

)−1
(

m−1

∑
j=0

(−1)j ur(j−m)

vj−m
r

(
n + m

j

)
+

u2rm+rn

qrmvn
r

)
.

Remark 8. These results should be regarded as basic. To keep the paper readable we do not state the spacial
cases. We can obtain more general results by utilizing Lemma 4.

6. Combinatorial identities

Lemma 6. If r, k and s are complex numbers and x is a complex variable, then

∫ 1

0
yr+k−s (1 − y)s−1 dy =

1
s

(
k + r

s

)−1
, ℜ(r + k − s + 1) > 0 and 0 ̸= s ̸∈ Z−; (47)

∫ 1

0
yr−s (1 − y)k+s−1 dy =

1
k + s

(
k + r
k + s

)−1
, ℜ(r − s + 1) > 0 and ℜ(k + s) > 0; (48)

∫ 1

0
yk+s (1 − y)r−k−s dy =

1
r + 1

(
r

k + s

)−1
, ℜ(k + s + 1) > 0 and ℜ(r − k − s + 1) > 0, (49)

and ∫ 1

0
yn−k+s (1 − y)r−n−s =

1
r − k + 1

(
r − k

r − s − n

)
, ℜ(n − k + s + 1) > 0 and ℜ(r − n − s + 1) > 0. (50)

Proof. The integrals in (47)– (50) are immediate consequences of the Beta function, B(r, s), defined, as usual,
for complex numbers r and s such that ℜ(r) > 0 and ℜ(s) > 0, by

B (r, s) = B (s, r) =
∫ 1

0
yr−1 (1 − y)s−1.

With the help of the Gamma function, the integral is evaluated as

B (r, s) =
Γ(r)Γ(s)
Γ(r + s)

=
1
s

(
r + s − 1

s

)−1
=

1
r

(
r + s − 1

r

)−1
.

Note that in obtaining (49) and (50), we also used(
u + 1
v + 1

)
=

u + 1
v + 1

(
u
v

)
,

an identity which we will often use without comment in this paper.

6.1. Frisch-type identities

The following combinatorial identity is attributed to Frisch [19–22]:

n

∑
k=0

(−1)k
(

n
k

)(
b + k

c

)−1
=

c
n + c

(
n + b
b − c

)−1
, b, c, b − c ∈ C \Z−. (51)

Here, we derive generalizations and variants of this identity.

Theorem 7. If m is a positive integer, n is a non-negative integer, r and s are complex numbers such that ℜ(r− s+ 1) >
0 and s is not a non-positive integer and x is a complex number, then

n

∑
k=m

(−1)k−m

k

(
x

n − k

)(
k
m

)(
k + r

s

)−1
=

n

∑
k=m

s
k (k − m + s)

(
x − k
n − k

)(
k
m

)(
k + r

k − m + s

)−1
, (52)
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and

n

∑
k=m

1
k

(
x − k
n − k

)(
k
m

)(
k + r

s

)−1
=

n

∑
k=m

(−1)k−ms
k (k − m + s)

(
x

n − k

)(
k
m

)(
k + r

k − m + s

)−1
. (53)

Proof. Write −a for a in (27) and multiply through by ar−s+m(1 − a)s−1 to obtain

n

∑
k=m

(−1)k−m 1
k

(
x

n − k

)(
k
m

)
ak+r−s (1 − a)s−1 =

n

∑
k=m

1
k

(
x − k
n − k

)(
k
m

)
ar−s+m (1 − a)k−m+s−1 ,

and hence (52) after term-wise integration from 0 to 1 with respect to a by (47) and (48). Identity (53) follows
from (52) by the

(−1)k−m
(

x
n − k

)
↔
(

x − k
n − k

)
,

symmetry of (27).

Corollary 5. If m and n are non-negative integers and r and s are complex numbers such that ℜ(r − s + 1) > 0 and s
is not a non-positive integer, then

n

∑
k=m

(−1)k

k − m + s

(
n − m
k − m

)(
k + r

k − m + s

)−1
=

(−1)m

s

(
n + r

s

)−1
, (54)

and
n

∑
k=m

(−1)k
(

n − m
k − m

)(
k + r

s

)−1
=

(−1)ms
n − m + s

(
n + r

n − m + s

)−1
. (55)

Proof. Set x = 0 in Theorem 7 and use (4). Note that x = 0 in Theorem 7 removes the singularity at m = 0 on
account of (4).

Remark 9. Identity (55) generalizes Frisch’s identity (51) to which it reduces at m = 0. In addition, new
combinatorial identities can be derived by setting s = ±1/2 in Corollary 5. We leave this little exercise to the
interested reader.

Corollary 6. If m is a positive integer, n is a non-negative integer, r and s are complex numbers such that ℜ(r− s+ 1) >
0 and s is not a non-positive integer, then

n

∑
k=m

(−1)k
(

n − 2
k − 2

)(
k
m

)(
k + r

k − m + s

)−1 s
k(k − m + s)

=(−1)m

(
−
(

n − 1
m

)(
n + r − 1

s

)−1 1
n − 1

+

(
n
m

)(
n + r

s

)−1 1
n

)
,

(56)

n

∑
k=m

(−1)k
(

n − 2
k − 2

)(
k
m

)(
k + r

s

)−1 1
k

= (−1)m
(
−
(

n − 1
m

)(
n + r − 1

n − m + s − 1

)−1 1
(n − 1)(n − m + s − 1)

+

(
n
m

)(
n + r

n − m + s

)−1 1
n(n − m + s)

)
s.

(57)

Proof. Set x = 1 in Theorem 7.
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Corollary 7. If m is a positive integer, n is a non-negative integer, r and s are complex numbers such that ℜ(r− s+ 1) >
0 and s is not a non-positive integer, then

n

∑
k=m

(−1)k
(

n
k

)(
k
m

)(
k + r

k − m + s

)−1 s
k(k − m + s)

= (−1)m
n

∑
k=m

(
k
m

)(
k + r

s

)−1 1
k

, (58)

n

∑
k=m

(−1)k
(

n
k

)(
k
m

)(
k + r

s

)−1 1
k
= (−1)m

n

∑
k=m

(
k
m

)(
k + r

k − m + s

)−1 s
k(k − m + s)

. (59)

Proof. Set x = −1 in Theorem 7.

Proposition 16. If m and n are non-negative integers and s is a complex number such that ℜ( 1
2 − s) > 0 and s is not a

non-positive integer, then

n

∑
k=m

(−1)k
(

n − m
k − m

)(
2k
k

)−1( k
m − s

)−1 22(k−m)

k − m + s
= (−1)m

(
2(n − s)

n − s

)(
2(m − s)

m − s

)−1(2n
n

)−1(n
s

)−1 1
s

, (60)

n

∑
k=m

(−1)k
(

n − m
k − m

)(
2(k − s)

k − s

)(
2k
k

)−1(k
s

)−1
= (−1)m

(
2(m − s)

m − s

)(
2n
n

)−1( n
m − s

)−1 22(n−m)s
n − m + s

. (61)

Proof. Set r = −1/2 in Corollary 5.

Proposition 17. If m and n are non-negative integers and s is a complex number such that ℜ( 3
2 − s) > 0 and s is not a

non-positive integer, then

n

∑
k=m

(−1)k
(

n − m
k − m

)(
k

k − m + s

)(
2k + 1

2(k − m + s)

)−1(2(k − m + s)
k − m + s

)−1 22(k−m)

k − m + s

=(−1)m
(

n
s

)(
2n + 1

2s

)−1(2s
s

)−1 1
s

,

(62)

n

∑
k=m

(−1)k
(

n − m
k − m

)(
k
s

)(
2k + 1

2s

)−1

=(−1)m
(

n
n − m + s

)(
2s
s

)(
2n + 1

2(n − m + s)

)−1(2(n − m + s)
n − m + s

)−1 22(n−m)s
n − m + s

.

(63)

Proof. Set r = 1/2 in Corollary 5.

Proposition 18. If m is a positive integer, n is a non-negative integer, s is a complex number such that ℜ( 1
2 − s) > 0

and s is not a non-positive integer, then

n

∑
k=m

(−1)k (n−2
k−2)(

k
m)2

2k

(2k
k )(

k
m−s)k(k − m + s)

=
(−1)m22m

(2(m−s)
m−s )s

(
(n

m)(
2(n−s)

n−s )

(2n
n )(

n
s)n

−
(n−1

m )(2(n−s−1)
n−s−1 )

(2(n−1)
n−1 )(n−1

s )(n − 1)

)
, (64)

n

∑
k=m

(−1)k (
n−2
k−2)(

k
m)(

2(k−s)
k−s )

(2k
k )(

k
s)k

=
(−1)m(2(m−s)

m−s )s
22m

(
(n

m)2
2n

(2n
n )(

n
m−s)n(n − m + s)

−
(n−1

m )22(n−1)

(2(n−1)
n−1 )(n−1

m−s)(n − 1)(n − m + s − 1)

)
.

(65)

Proof. Set r = −1/2 in Corollary 6.
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Proposition 19. If m is a positive integer, n is a non-negative integer, s is a complex number such that ℜ( 3
2 − s) > 0

and s is not a non-positive integer, then

n

∑
k=m

(−1)k (n−2
k−2)(

k
m)(

k
m−s)2

2k

( 2k+1
2(k−m+s))(

2(k−m+s)
k−m+s )k(k − m + s)

=
(−1)m22m

s

(
(n

m)(
n
s)

(2n+1
2s )(2s

s )n
−

(n−1
m )(2(n−s)

n−s )

(2n
n )(

n
s)(n − 1)

)
, (66)

n

∑
k=m

(−1)k (
n−2
k−2)(

k
m)(

k
s)

(2k+1
2s )k

=
(−1)m(2s

s )s
22m

(
(n

m)(
n

m−s)2
2n

( 2n+1
2(n−m+s))(

2(n−m+s)
n−m+s )n(n − m + s)

−
(n−1

m )(2(m−s+1)
m−s+1 )22(n−1)

(2n
n )(

n
m−s+1)(n − 1)(n − m + s − 1)

)
.

(67)

Proof. Set r = 1/2 in Corollary 6.

Proposition 20. If m is a positive integer, n is a non-negative integer, s is a complex number such that ℜ( 1
2 − s) > 0

and s is not a non-positive integer, then

n

∑
k=m

(−1)k (n
k)(

k
m)2

2k

(2k
k )(

k
m−s)k(k − m + s)

=
(−1)m22m

(2(m−s)
m−s )s

n

∑
k=m

( k
m)(

2(k−s)
k−s )

(2k
k )(

k
s)k

, (68)

n

∑
k=m

(−1)k (
n
k)(

k
m)(

2(k−s)
k−s )

(2k
k )(

k
s)k

=
(−1)m(2(m−s)

m−s )s
22m

n

∑
k=m

( k
m)2

2k

(2k
k )(

k
m−s)k(k − m + s)

. (69)

Proof. Set r = −1/2 in Corollary 7.

Proposition 21. If m is a positive integer, n is a non-negative integer, s is a complex number such that ℜ( 3
2 − s) > 0

and s is not a non-positive integer, then

n

∑
k=m

(−1)k (n
k)(

k
m)(

k
m−s)2

2k

( 2k+1
2(k−m+s))(

2(k−m+s)
k−m+s )k(k − m + s)

=
(−1)m22m

(2s
s )s

n

∑
k=m

( k
m)(

k
s)

(2k+1
2s )k

, (70)

n

∑
k=m

(−1)k (
n
k)(

k
m)(

k
s)

(2k+1
2s )k

=
(−1)m(2s

s )s
22m

n

∑
k=m

( k
m)(

k
m−s)2

2k

( 2k+1
2(k−m+s))(

2(k−m+s)
k−m+s )k(k − m + s)

. (71)

Proof. Set r = 1/2 in Corollary 7.

Remark 10. Again, four additional interesting special cases will come from setting s = ±1/2 in Corollaries 6
and 7.

6.2. Klamkin-type identities

The identity
n

∑
k=0

(
n
k

)(
x

k + b

)−1
=

x + 1
x − n + 1

(
x − n

b

)−1
, (72)

is attributed to Klamkin [19,21,22]. Here, we derive generalizations and variants of this identity.

Theorem 8. Let m be a positive integer, n a non-negative integer, r and s complex numbers such that ℜ(r− n− s+ 1) >
0 and s is not a negative integer. Let x be a complex number. Then

n

∑
k=m

1
k

(
x

n − k

)(
k
m

)(
r

k + s

)−1
=

n

∑
k=m

r + 1
k (m + r − k + 1)

(
x − k
n − k

)(
k
m

)(
m + r − k

m + s

)−1
(73)
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and

n

∑
k=m

(−1)k

k

(
x − k
n − k

)(
k
m

)(
r

k + s

)−1
=

n

∑
k=m

(r + 1) (−1)k

k (m + r − k + 1)

(
x

n − k

)(
k
m

)(
m + r − k

m + s

)−1
. (74)

Proof. Multiply through (27) by as+m(1 − a)r−m−s and integrate term-wise from 0 to 1 using (49) and (50).

Corollary 8. Let m be a non-negative integer, n a non-negative integer, r and s complex numbers such that ℜ(r − n −
s + 1) > 0 and s is not a negative integer. Then

n

∑
k=m

(−1)k

m + r − k + 1

(
n − m
k − m

)(
m + r − k

m + s

)−1
=

(−1)n

r + 1

(
r

n + s

)−1
, (75)

and

n

∑
k=m

(
n − m
k − m

)(
r

k + s

)−1
=

r + 1
m + r − n + 1

(
m + r − n

m + s

)−1
. (76)

Proof. Set x = 0 in Theorem 8. Again, note that the singularity at m = 0 was removed by virtue of (4).

Remark 11. Identity (76) reduces to Klamkin’s identity (72) at m = 0. The choices s = ±1/2 in Corollary 8 will
yield two additional sums.

Corollary 9. Let m be a positive integer, n a non-negative integer, r and s complex numbers such that ℜ(r − n − s +
1) > 0 and s is not a negative integer. Then

n

∑
k=m

(−1)k
(

n − 2
k − 2

)(
k
m

)(
m + r − k

m + s

)−1 r + 1
k(m + r − k + 1)

=(−1)n

((
n − 1

m

)(
r

n + s − 1

)−1 1
n − 1

+

(
n
m

)(
r

n + s

)−1 1
n

)
,

(77)

n

∑
k=m

(
n − 2
k − 2

)(
k
m

)(
r

k + s

)−1 1
k

= (r + 1)
(
−
(

n − 1
m

)(
m + r − n + 1

m + s

)−1 1
(n − 1)(m + r − n + 2)

+

(
n
m

)(
m + r − n

m + s

)−1 1
n(m + r − n + 1)

)
.

(78)

Proof. Set x = 1 in Theorem 8.

Corollary 10. Let m be a positive integer, n a non-negative integer, r and s complex numbers such that ℜ(r − n − s +
1) > 0 and s is not a negative integer. Then

n

∑
k=m

(−1)k
(

k
m

)(
r

k + s

)−1 1
k
=

n

∑
k=m

(−1)k
(

n
k

)(
k
m

)(
m + r − k

m + s

)−1 r + 1
k(m + r − k + 1)

, (79)

n

∑
k=m

(
n
k

)(
k
m

)(
r

k + s

)−1 1
k
= (r + 1)

n

∑
k=m

(
k
m

)(
m + r − k

m + s

)−1 1
k(m + r − k + 1)

. (80)

Proof. Set x = −1 in Theorem 8.
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Proposition 22. Let m be a non-negative integer, n a non-negative integer, s a complex number such that ℜ( 1
2 − n −

s) > 0 and s is not a negative integer. Then

n

∑
k=m

(−1)k
(

n − m
k − m

)(
2(k − m)

k − m

)(
2(k + s)

k + s

)−1( k + s
m + s

)−1 1
2m − 2k + 1

= (−1)m
(

2(n + s)
n + s

)−1

22(n−m), (81)

n

∑
k=m

(−1)k
(

n − m
k − m

)(
2(k + s)

k + s

)−1

22k = (−1)m
(

2(n − m)

n − m

)(
2(n + s)

n + s

)−1(n + s
m + s

)−1 22m

2m − 2n + 1
. (82)

Proof. Set r = −1/2 in Corollary 8.

Proposition 23. Let m be a non-negative integer, n a non-negative integer, s is a complex number such that ℜ( 3
2 − n −

s) > 0 and s is not a negative integer. Then

n

∑
k=m

(−1)k
(

n − m
k − m

)(
m − k
m + s

)(
2(m − k) + 1

2(m + s)

)−1 1
2m − 2k + 3

=(−1)s+1
(

2(m + s)
m + s

)(
2(n + s)

n + s

)−1 22(n−m)(2(n + s)− 1)
3

,

(83)

n

∑
k=m

(−1)k
(

n − m
k − m

)(
2(k + s)

k + s

)−1

22k (2(k + s)− 1)

=(−1)s+1
(

m − n
m + s

)(
2(m − n) + 1

2(m + s)

)−1(2(m + s)
m + s

)−1 22m3
2m − 2n + 3

.

(84)

Proof. Set r = 1/2 in Corollary 8.

Proposition 24. Let m be a positive integer, n a non-negative integer, s is a complex number such that ℜ( 1
2 − n− s) > 0

and s is not a negative integer. Then

n

∑
k=m

(−1)k (n−2
k−2)(

k
m)(

2(k−m)
k−m )

(2(k+s)
k+s )( k+s

k−m)k(2m − 2k + 1)
=

(−1)m

22m

(
(n

m)2
2n

(2(n+s)
n+s )n

−
(n−1

m )22(n−1)

(2(n+s−1)
n+s−1 )(n − 1)

)
, (85)

n

∑
k=m

(−1)k (
n−2
k−2)(

k
m)2

2k

(2(k+s)
k+s )k

= 22m
(
(−1)m (n

m)(
2(n−m)

n−m )

(2(n+s)
n+s )( n+s

n−m)n(2m − 2n + 1)

− (−1)s (n−1
m )(m−n

m+s)

(2m−2n+1
2(m+s) )(2(m+s)

m+s )(n − 1)(2m − 2n + 3)

)
.

(86)

Proof. Set r = −1/2 in Corollary 9.

Proposition 25. Let m be a positive integer, n a non-negative integer, s is a complex number such that ℜ( 3
2 − n− s) > 0

and s is not a negative integer. Then

n

∑
k=m

(−1)k (n−2
k−2)(

k
m)(

m−k
m+s)

(2m−2k+1
2(m+s) )k(2m − 2k + 3)

=
(−1)s(2(m+s)

m+s )

22m3

(
(n−1

m )(2n + 2s − 3)22(n−1)

(2(n+s−1)
n+s−1 )(n − 1)

−
(n

m)(2n + 2s − 1)22n

(2(n+s)
n+s )n

)
,

(87)
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n

∑
k=m

(−1)k (
n−2
k−2)(

k
m)(2k + 2s − 1)22k

(2(k+s)
k+s )k

=
(−1)s22m3

(2(m+s)
m+s )

(
(n−1

m )(m−n+1
m+s )

(2m−2n+3
2(m+s) )(n − 1)(2m − 2n + 5)

−
(n

m)(
m−n
m+s)

(2m−2n+1
2(m+s) )n(2m − 2n + 3)

)
.

(88)

Proof. Set r = 1/2 in Corollary 9.

Proposition 26. Let m be a positive integer, n a non-negative integer, s is a complex number such that ℜ( 1
2 − n− s) > 0

and s is not a negative integer. Then

n

∑
k=m

(−1)k ( k
m)2

2k

(2(k+s)
k+s )k

= (−1)m22m
n

∑
k=m

(n
k)(

k
m)(

2(k−m)
k−m )

(2(k+s)
k+s )( k+s

k−m)k(2m − 2k + 1)
, (89)

n

∑
k=m

(−1)k (
n
k)(

k
m)2

2k

(2(k+s)
k+s )k

= (−1)m22m
n

∑
k=m

( k
m)(

2(k−m)
k−m )

(2(k+s)
k+s )( k+s

k−m)k(2m − 2k + 1)
. (90)

Proof. Set r = −1/2 in Corollary 10.

Proposition 27. Let m be a positive integer, n a non-negative integer, s is a complex number such that ℜ( 3
2 − n− s) > 0

and s is not a negative integer. Then

n

∑
k=m

(−1)k (
k
m)(2k + 2s − 1)22k

(2(k+s)
k+s )k

=
(−1)s+122m3

(2(m+s)
m+s )

n

∑
k=m

(n
k)(

k
m)(

m−k
m+s)

(2m−2k+1
2(m+s) )k(2m − 2k + 3)

, (91)

n

∑
k=m

(−1)k (
n
k)(

k
m)(2k + 2s − 1)22k

(2(k+s)
k+s )k

=
(−1)s+122m3

(2(m+s)
m+s )

n

∑
k=m

( k
m)(

m−k
m+s)

(2m−2k+1
2(m+s) )k(2m − 2k + 3)

. (92)

Proof. Set r = 1/2 in Corollary 10.

Remark 12. Again, four additional interesting special cases will come from setting s = ±1/2 in Corollaries 9
and 10.

6.3. Combinatorial identities involving powers of integers

Lemma 7. If r and k are non-negative integers, then

dr

dyr

(
(1 − ey)k

)∣∣∣∣
y=0

=
k

∑
i=0

(−1)i
(

k
i

)
ir. (93)

Proof. Since

(1 − ey)k =
k

∑
i=0

(−1)i
(

k
i

)
eiy;

we have
dr

dyr (1 − ey)k =
k

∑
i=0

(−1)i
(

k
i

)
ireiy;

and hence (93).

Remark 13. The evaluated derivatives in (93) can also be expressed as

dr

dyr (1 − ey)k
∣∣∣∣
y=0

= (−1)kk!
{

r
k

}
,
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where {r
k} are the Stirling numbers of the second kind, defined by

{
r
k

}
=

1
k!

k

∑
i=0

(−1)k−i
(

k
i

)
ir,

and having the useful property {
r
k

}
= 0 if r < k. (94)

Theorem 9. If x is a complex number, m is a positive integer and n and r are non-negative integers, then

n

∑
k=0

(−1)k

k + m

(
x

n − k

)(
k + m

m

)
kr =

r

∑
k=0

(−1)kk!
k + m

(
x − k − m

n − k

)(
k + m

m

){
r
k

}
(95)

and
n

∑
k=0

1
k + m

(
x − k − m

n − k

)(
k + m

m

)
kr =

r

∑
k=0

k!
k + m

(
x

n − k

)(
k + m

m

){
r
k

}
. (96)

Proof. Write − exp a for a in (27), differentiate r times with respect to a and evaluate at a = 0 to obtain

n

∑
k=m

(−1)k−m

k

(
x

n − k

)(
k
m

)
(k − m)r =

r+m

∑
k=0

(−1)k−m (k − m)!
k

(
x − k
n − k

)(
k
m

){
r

k − m

}
,

which can be written as (95) after shifting indices. Identity (96) follows from (95) by symmetry.

Corollary 11. If m is a positive integer and n and r are non-negative integers, then

n

∑
k=0

(−1)k

k + m

(
n + m
k + m

)(
k + m

m

)
kr =

r

∑
k=0

(−1)kk!
k + m

(
k + m

m

){
r
k

}
, (97)

and
n

∑
k=0

1
k + m

(
k + m

m

)
kr =

r

∑
k=0

k!
k + m

(
n + m
k + m

)(
k + m

m

){
r
k

}
. (98)

Proof. Set x = n + m in (95) and (96) and use (4).

Remark 14. Identity (98) generalizes the known identity (consult for instance [23,24])

n

∑
k=0

kr =
r

∑
k=0

k!
(

n + 1
k + 1

){
r
k

}
,

to which it reduces at m = 1 and which expresses the sum of powers of integers in terms of Stirling numbers
of the second kind.

Remark 15. Setting x = ±1/2 + m in Theorem 9 will yield two other interesting sums.

7. Conclusion

The motivation for writing this paper was Problem B-1358 in the 2024 issue of the Fibonacci Quarterly
[1]. What we considered initially more or less a note, turned out to be a very powerful result. Our
generalized identities presented in Lemma 5 enabled us to provide a range of applications to four
different fields: polynomial identities, trigonometric identities, identities involving Horadam numbers, and
combinatorial identities. In each field we have found generalizations of existing results. Our findings
dealing with Frisch-type identities, Klamkin-type identities and power sums are important examples of such
generalizations. It is worth mentioning, however, that there are gaps remaining. As indicated in Remarks 8,
9-12, and 15 more appealing results are still to be discovered. This is left as a potential future work.
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