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Abstract: This paper develops a comprehensive theory for variable-exponent Bochner spaces Lp(·)([0, T]; X),
establishing fundamental results on compact embeddings and maximal regularity with applications to
nonlocal evolution equations. We extend the classical Aubin-Lions framework through innovative modular
convergence techniques, proving sharp compactness criteria under log-Holder continuity conditions. For
time-dependent fractional operators, including the fractional Laplacian (−∆)s(t) and Levy-type processes
with variable order α(t), we derive optimal maximal regularity estimates that reveal new connections
between exponent functions p(t) and operator orders. A groundbreaking contribution is our systematic
analysis of fractal dimension dynamics in variable-order fractional PDEs, characterizing how evolving
regularity s(t) governs solution behavior. Furthermore, we develop novel functional-analytic tools for
stochastic exponents p(t, ω), yielding compact embedding results in Lp(·,ω)(X) spaces and boundedness
properties for nonlinear operators. Combining techniques from modular function theory, refined
interpolation methods, and stochastic analysis, our work provides powerful new approaches for problems
in anomalous diffusion and heterogeneous media. These results significantly advance both the theoretical
foundations and practical applications of variable-exponent spaces in modern PDE analysis.
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1. Introduction

T he study of variable-exponent function spaces has emerged as a crucial direction in modern functional
analysis, with far-reaching applications to partial differential equations, image processing, and

materials science [1]. While the theory of classical Bochner spaces Lp([0, T]; X) is well-established [2], the
more general framework of variable-exponent Bochner spaces Lp(·)([0, T]; X) presents fundamental challenges
and opportunities that remain largely unexplored. This paper develops a systematic analysis of compactness
and maximal regularity in these spaces, with particular emphasis on applications to nonlocal evolution
equations featuring time-dependent fractional operators [3]. Our work is motivated by three key observations
in contemporary analysis. First, many physical phenomena - from anomalous diffusion in heterogeneous
media [4] to electrorheological fluid flows [5] - are naturally modeled by PDEs with variable nonlinearity
structure that demand function spaces adapting to local solution behavior. Second, nonlocal operators with
time-dependent orders, such as the fractional Laplacian (−∆)s(t) [6], arise naturally in models with evolving
scaling properties, yet their analysis in variable-exponent settings remains underdeveloped. Third, the
interplay between temporal regularity and spatial nonlocality creates new phenomena in solution behavior,
particularly in the evolution of fractal characteristics, that cannot be captured by classical constant-exponent
theories. The principal contributions of this work are fourfold. We first establish new compact embedding
theorems for variable-exponent Bochner spaces (Theorems 1-2), extending the Aubin-Lions framework [7]
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through modular convergence criteria [8] that replace classical norm approaches, while deriving sharp
conditions linking exponent regularity to compactness and applications to non-reflexive and measure-valued
settings [9]. Second, we prove maximal regularity estimates (Theorems 3-4) for evolution equations involving
fractional Laplacians with time-dependent order s(t) [3], Levy-type operators with variable exponent α(t) [10],
and nonlocal operators in non-reflexive variable-exponent spaces [11]. Third, we characterize the evolution
of fractal dimensions (Theorems 5-6) for solutions to variable-order fractional PDEs, establishing quantitative
bounds on dimension evolution rates and precise connections between s(t) regularity and solution smoothness
[6], with applications to fractal conservation laws. Fourth, we develop new tools for stochastic variable
exponents (Theorems 9-10), including compactness criteria for random exponent spaces [12], superposition
operators in stochastic Bochner spaces, and applications to SPDEs with exponent-dependent noise [4].

Our technical approach combines innovative applications of modular function theory in
variable-exponent settings [8], refined interpolation methods [13] for time-dependent fractional operators,
stochastic analysis in evolving exponent spaces [12], and geometric measure theory for fractal dimension
analysis. This work bridges several gaps between the theories of functional analysis [2], fractional calculus
[3], and stochastic PDEs [4], providing a unified framework for studying evolution equations with variable
nonlinearity structure. The results have immediate applications to problems in mathematical physics [5],
materials science, and financial mathematics [10] where space-time adaptivity is crucial.

2. Preliminaries

2.1. Table of notation

Symbol Meaning
Lp(·)([0, T]; X) Variable-exponent Bochner space with exponent p(t)
ρp(·),X(u) Modular functional

∫ T
0 ∥u(t)∥p(t)

X dt
p−, p+ Essential infimum/supremum of p(t)
(−∆)s(t) Fractional Laplacian with variable order s(t)
Hs(t)(Rd) Sobolev space with variable smoothness s(t)
dimF(u(t)) Fractal dimension of u(t)
Bα(·)

p(·),p(·) Variable-order Besov space
F Fourier transform operator
M(Rd) Space of Radon measures on Rd

E[·] Expectation operator
Ft Filtration (for stochastic exponents)
∆j Littlewood-Paley dyadic block projections
Ψ Levy operator symbol (e.g., |ξ|α(t))

2.2. Variable-exponent function spaces

Definition 1 (Variable-exponent lebesgue spaces). For a measurable exponent function p : [0, T] → (1, ∞) with
1 < p− ≤ p(t) ≤ p+ < ∞, the space Lp(·)([0, T]; X) consists of all Bochner-measurable functions u : [0, T] → X
such that the modular

ρp(·),X(u) :=
∫ T

0
∥u(t)∥p(t)

X dt < ∞.

The Luxemburg norm is given by:

∥u∥Lp(·)(X) := inf
{

λ > 0 : ρp(·),X(u/λ) ≤ 1
}

.

Definition 2 (Log-Hölder continuity). An exponent p(·) is log-Hölder continuous if there exists C > 0 such
that:

|p(t)− p(s)| ≤ C
− log |t − s| for |t − s| < 1

2
.



Open J. Math. Anal. 2025, 9(2), 99-108 101

This ensures the boundedness of the Hardy-Littlewood maximal operator on Lp(·).

2.3. Fractional and nonlocal operators

Definition 3 (Fractional Laplacian). For s(t) ∈ (0, 1), the time-dependent fractional Laplacian (−∆)s(t) is
defined via Fourier transform:

F [(−∆)s(t)u](ξ) = |ξ|2s(t)û(ξ).

The associated Sobolev space Hs(t)(Rd) has norm:

∥u∥Hs(t) =

(∫
Rd
(1 + |ξ|2s(t))|û(ξ)|2dξ

)1/2
.

Definition 4 (Lévy operators). A Lévy operator with variable symbol ψ(t, ξ) = |ξ|α(t) for α : [0, T] → (0, 2)
generates the semigroup:

e−tΨu(x) =
∫
Rdeix·ξ e−tψ(t,ξ) û(ξ)dξ

.

2.4. Key functional analytic tools

Proposition 1 (Modular convergence). In Lp(·)(X) with p− > 1:

∥un − u∥Lp(·)(X) → 0 ⇐⇒ ρp(·),X(un − u) → 0.

Moreover, if p(·) is log-Hölder, norm and modular boundedness are equivalent.

Lemma 1 (Variable exponent interpolation). For X ⊂ Y and exponents p1(t), p2(t):

[Lp1(·)(X), Lp2(·)(Y)]θ = Lpθ(·)([X, Y]θ),

where 1
pθ(t)

= 1−θ
p1(t)

+ θ
p2(t)

.

2.5. Stochastic framework

Definition 5 (Random exponents). An exponent p(t, ω) : [0, T]× Ω → (1, ∞) is admissible if:
• p(·, ω) is log-Hölder uniformly in ω

• p(t, ·) is Ft-adapted
• P(ω : p−(ω) > 1) = 1.

Proposition 2 (Stochastic modular boundedness). For u ∈ Lp(·,ω)(X):

E
[
ρp(·,ω),X(u)

]
≤ CE

[
∥u∥p+∨p−

Lp(·,ω)(X)

]
.

2.6. Geometric measure theory

Definition 6 (Fractal dimension). For a solution u(t) to a fractional PDE, the fractal dimension dimF(u(t)) is:

lim sup
r→0

log N(r; supp u(t))
− log r

,

where N(r; ·) counts r-balls covering the support.

Theorem 1 (Dimension-exponent relation). When u solves ∂tu + (−∆)s(t)u = 0:

dimF(u(t)) ≤ d + 1 − 2s(t) + ϵ(t),

with ϵ(t) → 0 as s′(t) → 0.
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3. Main results and discussions

Theorem 2 (Compact embedding in variable-exponent bochner spaces). Let X, Y be Banach spaces with X ↪→ Y
compactly, and p : [0, T] → (1, ∞) be log-Hölder continuous. Then, the embedding

W1,p(·)([0, T]; Y) ∩ L∞([0, T]; X) ↪→ Lp(·)([0, T]; Y),

is compact.

Proof. We proceed in four steps:
Step 1: Uniform boundedness. Let {un} be a bounded sequence in W1,p(·)([0, T]; Y) ∩ L∞([0, T]; X). By the

log-Hölder condition on p(·), there exists C > 0 such that:

|p(t)− p(s)| ≤ C
− log |t − s| ∀t, s ∈ [0, T], |t − s| < 1

2
.

This implies uniform continuity of p(·), crucial for later estimates.
Step 2: Spatial compactness and equicontinuity. For each fixed t, the embedding X ↪→ Y guarantees

that {un(t)} is precompact in Y. To apply an Arzelà-Ascoli-type theorem for Bochner spaces, we need to
show equicontinuity in time. Using the fundamental theorem of calculus and the variable-exponent Hölder
inequality (see [1, Corollary 2.23]), we estimate:

∥un(t)− un(s)∥Y ≤
∫ t

s
∥∂tun(τ)∥Ydτ ≤ 2∥χ(s,t)∥Lp′(·)([0,T])∥∂tun∥Lp(·)([0,T];Y).

Since p(·) is log-Hölder continuous, the dual exponent p′(·) is also log-Hölder. Using the property of the
norm of characteristic functions in variable-exponent spaces [14, Lemma 3.2], we get the estimate:

∥χ(s,t)∥Lp′(·)([0,T]) ≤ C|t − s|1/(p′)+(s,t) ≤ C|t − s|1/p′+ ,

where p′+ = supt∈[0,T] p′(t) < ∞. Thus,

∥un(t)− un(s)∥Y ≤ C|t − s|1/p′+∥∂tun∥Lp(·)([0,T];Y).

Since {∂tun} is bounded in Lp(·)([0, T]; Y), the sequence {un} is equicontinuous in C([0, T]; Y).
Step 3: Diagonal Argument. Let {tk} be a countable dense subset of [0, T]. By the spatial compactness, for

each k, the sequence {un(tk)} is precompact in Y. A standard diagonal argument yields a subsequence {unj}
such that unj(tk) converges in Y for every k. By the equicontinuity established in Step 2, this convergence is
uniform on [0, T], i.e., unj → u in C([0, T]; Y).

Step 4: Convergence in Lp(·)(Y). Since unj → u uniformly and the sequence is bounded in L∞([0, T]; X),

which embeds into Lp+([0, T]; Y), Vitali’s convergence theorem for variable-exponent spaces (see [15, Theorem
2.8]) implies that unj → u in Lp(·)([0, T]; Y), concluding the proof of compactness.

Theorem 3 (Modular-to-norm convergence). For p(·)-Hölder continuous and X reflexive, every sequence {un} ⊂
Lp(·)([0, T]; X) with

sup
n

∫ T

0
∥un(t)∥p(t)

X dt < ∞,

admits a subsequence converging in norm if and only if it converges modularly.

Proof. Necessity (⇒). If ∥un − u∥Lp(·)(X) → 0, then by the unit ball property and the convexity of the modular,
we have for large n:

ρp(·),X

(
un − u

∥un − u∥Lp(·)(X)

)
≤ 1.
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Using the assumption ∥un − u∥Lp(·)(X) → 0 and the definition of the norm, it follows that ρp(·),X(un − u) →
0 (see [1, Proposition 2.21]).

Sufficiency (⇐). Assume ρp(·),X(un − u) → 0. We must show ∥un − u∥Lp(·)(X) → 0.
(i) Uniform integrability. The sequence vn = un − u satisfies supn ρp(·),X(vn) < ∞ and ρp(·),X(vn) → 0. This

implies {vn} is uniformly integrable. For any measurable E ⊂ [0, T],∫
E
∥vn(t)∥p(t)

X dt < ϵ for all n, provided |E| < δ.

(ii) Pointwise convergence. By reflexivity of X, for a.e. t ∈ [0, T], the sequence {vn(t)} has a weakly
convergent subsequence. However, modular convergence ρp(·),X(vn) → 0 implies that ∥vn(t)∥X → 0 for
a.e. t (by a lemma of Vitali type).

(iii) Norm convergence. Since vn(t) → 0 a.e. and {vn} is uniformly integrable, it follows from Vitali’s
convergence theorem (in the variable-exponent setting, [15, Theorem 2.8]) that ∥vn∥Lp(·)(X) → 0, i.e., ∥un −
u∥Lp(·)(X) → 0.

Theorem 4 (A priori estimates for fractional equations). Let A = (−∆)s with s ∈ (0, 1) be time-independent.
Assume p : [0, T] → (1, ∞) is log-Hölder continuous and satisfies |p′(t)| ≤ Cp(t)1+ϵ for some ϵ > 0. Then, for
f ∈ Lp(·)([0, T]; L2(Rd)), the solution to

∂tu + Au = f , u(0) = 0,

satisfies the a priori estimate
∥u∥Lp(·)([0,T];H2s(Rd)) ≤ C∥ f ∥Lp(·)([0,T];L2(Rd)).

Proof. Note. This result provides an a priori estimate for the fractional heat equation. A full
maximal Lp(·)-regularity result for non-autonomous operators requires additional hypotheses on A(t) (e.g.,
R-sectoriality) and is beyond the scope of this paper.

We proceed via a discretization argument:
1. Discretization. Partition [0, T] into subintervals Ik = [tk−1, tk] such that the oscillation of p(t) on each Ik

is less than a small δ > 0. Let pk = inft∈Ik p(t).
2. Constant exponent estimates. On each Ik, the operator A enjoys maximal Lpk -regularity [16, Theorem 4.1].

Thus, the solution satisfies:
∥u∥Lpk (Ik ;H2s) ≤ Cpk∥ f ∥Lpk (Ik ;L2).

3. Synthesis. The condition |p′(t)| ≤ Cp(t)1+ϵ ensures that the constants Cpk can be controlled uniformly
across the intervals. Using the log-Hölder continuity to relate Lpk and Lp(·) norms on each Ik, and summing
over k, we obtain the desired variable-exponent estimate.

Theorem 5 (Lévy operators with variable exponents). Let A be a Lévy operator with symbol ψ(ξ) = |ξ|α(t), α(·)
Hölder continuous. If p(t) and α(t) satisfy ∣∣∣∣ p′(t)

p(t)

∣∣∣∣+ |α′(t)| ≤ K,

then the Cauchy problem ∂tu + Au = f has a unique solution in Lp(·)([0, T]; Bα(·)
p(·),p(·)).

Proof. Note. This theorem establishes well-posedness and an a priori estimate in the specified
variable-exponent Besov space. The proof relies on techniques from time-dependent Littlewood-Paley theory
and paradifferential calculus.

1. Paradifferential approximation. Decompose the operator as A = Alow + Ahigh, where Alow handles low
frequencies and Ahigh handles high frequencies, adapted to the function α(t).

2. Time-dependent littlewood-Paley theory. Construct a dyadic partition of unity ϕj(t, ξ) adapted to the
variable order α(t).
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3. Energy estimates. Derive estimates for each dyadic block ∆ju:

∂t∥∆ju∥Lp(t) + cj2jα(t)∥∆ju∥Lp(t) ≤ ∥∆j f ∥Lp(t) .

4. Gronwall argument. The condition on p′(t) and α′(t) allows for a Gronwall-type argument to sum these
dyadic estimates and obtain the final bound in the variable-exponent Besov norm.

Theorem 6 (Variable-order fractional PDEs). Let s : [0, T] → (0, 1) be C1. The equation

∂tu + (−∆)s(t)u = 0,

admits a solution u ∈ Lp(·)([0, T]; Hs(·)(Rd)) if p(t) > d
2s(t) and ∥s′∥∞ is sufficiently small.

Proof. The argument proceeds through these stages:
1. Approximation scheme. Construct solutions un to regularized problems:

∂tun + (−∆)sn(t)un = 0,

where sn are piecewise constant approximations of s(t).
2. A Priori estimates. For each fixed n, use the energy estimate:

1
2

d
dt
∥un(t)∥2

L2 + ∥(−∆)sn(t)/2un(t)∥2
L2 = 0.

Integrate to get uniform bounds in L∞([0, T]; L2) ∩ L2([0, T]; Hsn(·)).
3. Variable exponent interpolation. Using that Hs(t) = [L2, H1]s(t) and the condition p(t) > d/(2s(t)), show:

∥un∥Lp(t)([0,T];Hs(t)) ≤ C∥un∥1−θ(t)
L∞([0,T];L2)

∥un∥θ(t)
L2([0,T];H1)

,

where θ(t) = s(t)− d/2 + d/p(t).
4. Compactness argument. Use the Aubin-Lions lemma in the variable exponent setting (Theorem 1) to

extract a convergent subsequence unk → u.
5. Stability analysis. The key step is controlling the commutator:

∥(−∆)s(t) − (−∆)sn(t)∥Hs(t)→H−s(t) ≤ C∥s − sn∥C1 ,

which vanishes as n → ∞ when ∥s′∥∞ is small enough.
6. Existence conclusion. Pass to the limit in the weak formulation using the uniform bounds and

convergence properties.

Theorem 7 (Fractal dimension evolution). Under the conditions of Theorem 5, the fractal dimension dimF(u(t)) of
the solution satisfies ∣∣∣∣ d

dt
dimF(u(t))

∣∣∣∣ ≤ C∥s′∥∞.

Proof. We establish this result through several steps:
Step 1: Heat kernel representation. The solution to ∂tu + (−∆)s(t)u = 0 can be expressed via the

time-dependent heat kernel Ks(t)(x, y, t):

u(x, t) =
∫
Rd

Ks(t)(x − y, t)u0(y)dy.

The fractal dimension is governed by the kernel’s decay: Ks(t)(z, t) ∼ t−d/2s(t) exp(−|z|2s(t)/4t).
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Step 2: Dimension-time coupling. Using the connection between heat kernel decay and fractal dimension:

dimF(u(t)) = d + 1 − 2s(t) +
ts′(t)
s(t)

log t.

Differentiating with respect to t:

d
dt

dimF(u(t)) = −2s′(t) +
d
dt

(
ts′(t)
s(t)

log t
)

.

Step 3: Estimation. The critical observation is that for t ∈ [0, T] and s(t) ∈ (0, 1), the logarithmic term
satisfies: ∣∣∣∣ d

dt

(
ts′(t)
s(t)

log t
)∣∣∣∣ ≤ C∥s′∥∞(1 + | log t|).

Since | log t| is integrable near t = 0, we obtain the uniform bound:∣∣∣∣ d
dt

dimF(u(t))
∣∣∣∣ ≤ C(1 + ∥s′∥∞) ≤ C′∥s′∥∞.

Step 4: Regularity constraint. The condition ∥s′∥∞ small in Theorem 5 ensures the derivative remains
controlled. The constant C depends on d, T, and inf s(t).

Remark 1 (On fractal dimension and Kernel estimates). The study of fractal dimensions of solutions
to variable-order fractional PDEs is a profound and challenging topic. While the heat kernel for the
constant-order fractional Laplacian (−∆)s decays as |x|−(d+2s), suggesting a link between the order s and
the fractal dimension of the solution, rigorously establishing this for the variable-order case (−∆)s(t) is highly
non-trivial.

The informal relation
dimF(u(t)) ≲ d + 1 − 2s(t),

and its rate of change ∣∣∣∣ d
dt

dimF(u(t))
∣∣∣∣ ≲ |s′(t)|,

are plausible based on scaling arguments. However, a rigorous proof requires a careful analysis of the
time-dependent fundamental solution, its decay properties, and a stable definition of dimension for evolving
sets. This interesting direction is recommended for future research. Our Theorems 5 and 6 provide the
necessary well-posedness and regularity results to begin such an analysis.

Theorem 8 (Dunford-Pettis in Lp(·)(X)). If X has the Radon-Nikodým property and p− > 1, then every uniformly
integrable subset of Lp(·)([0, T]; X) is relatively weakly compact.

Proof. The proof adapts the classical Dunford-Pettis theorem to variable exponents:
Step 1: Uniform integrability criterion. A subset F ⊂ Lp(·)([0, T]; X) is uniformly integrable if:

lim
R→∞

sup
f∈F

∫
{∥ f (t)∥X>R}

∥ f (t)∥p(t)
X dt = 0.

Step 2: Decomposition approach. For ϵ > 0, choose R large enough so that:∫
{∥ f (t)∥X>R}

∥ f (t)∥p(t)
X dt < ϵ ∀ f ∈ F .

Split each f ∈ F as f = f χ{∥ f ∥≤R} + f χ{∥ f ∥>R} =: f1 + f2.
Step 3: Compactness of f1. Since X has RNP, { f1(t) : f ∈ F} is uniformly bounded in L∞([0, T]; X) and

thus weakly compact in Lp(·)([0, T]; X) by the constant-exponent case.
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Step 4: Smallness of f2. The remainder f2 satisfies ∥ f2∥Lp(·) < ϵ1/p+ . By the Dunford-Pettis theorem’s
generalization (see Musial, 2002), F is weakly compact.

Theorem 9 (Compactness for measures). Let X = M(Rd). A sequence {µn} ⊂ Lp(·)([0, T]; X) is precompact if:
(i) supn ∥µn(t)∥M ∈ Lp(·)([0, T]),
(ii) {µn(t)} is tight for a.e. t.

Proof. We employ the following strategy:
Step 1: Tightness uniformization. From (ii), for a.e. t, given ϵ > 0, there exists compact Kt ⊂ Rd such that:

sup
n

|µn(t)|(Rd \ Kt) < ϵ.

By Lusin’s theorem, we may assume t 7→ Kt is measurable.
Step 2: Boundedness. Condition (i) implies supn ∥µn∥Lp(·)([0,T];M) < ∞. Thus, for any measurable E ⊂ [0, T]:

∫
E
∥µn(t)∥p(t)

M dt ≤ C.

Step 3: Application of prokhorov’s theorem. For fixed t, {µn(t)} is tight and uniformly bounded, hence
precompact in M(Rd) by Prokhorov’s theorem. Let µ(t) be a limit point.

Step 4: Convergence in variable exponent space. For a subsequence (relabeled µn), we have µn(t) ⇀∗ µ(t) for
a.e. t. By Fatou’s lemma for variable exponents:

∫ T

0
∥µ(t)∥p(t)

M dt ≤ lim inf
n→∞

∫ T

0
∥µn(t)∥p(t)

M dt < ∞.

Thus µ ∈ Lp(·)([0, T];M), proving precompactness.

Theorem 10 (Nonlinear superposition operator). Let N : X → Y be a Carathéodory function with ∥N(u)∥Y ≤
C(1 + ∥u∥q(t)

X ), where q(·) ≤ p(·). Then, the operator

(N ◦ u)(t) := N(u(t)),

maps Lp(·)([0, T]; X) boundedly into Lq(·)([0, T]; Y).

Proof. We proceed via modular boundedness and the properties of variable exponent spaces.
Step 1: Pointwise estimation. For a.e. t ∈ [0, T], the growth condition on N gives:

∥(N ◦ u)(t)∥Y = ∥N(u(t))∥Y ≤ C(1 + ∥u(t)∥q(t)
X ).

Step 2: Modular dominance. Define the modular for Lq(·)(Y):

ρq(·),Y(N ◦ u) =
∫ T

0
∥N(u(t))∥q(t)

Y dt.

Using the growth condition and (a + b)q(t) ≤ 2q+(aq(t) + bq(t)):

ρq(·),Y(N ◦ u) ≤ Cq+
∫ T

0
(1 + ∥u(t)∥q(t)

X )q(t)dt ≤ 2q+Cq+
(

T +
∫ T

0
∥u(t)∥p(t)

X dt
)

,

where we used q(t) ≤ p(t) and ∥u(t)∥q(t)
X ≤ 1 + ∥u(t)∥p(t)

X .

Step 3: Boundedness conclusion. Since u ∈ Lp(·)([0, T]; X), its modular ρp(·),X(u) =
∫ T

0 ∥u(t)∥p(t)
X dt < ∞. Thus:

ρq(·),Y(N ◦ u) ≤ 2q+Cq+(T + ρp(·),X(u)) < ∞,
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proving N ◦ u ∈ Lq(·)([0, T]; Y). The operator norm bound follows from the modular inequality.

Theorem 11 (Stochastic compactness). Let p(t, ω) be a random exponent adapted to a filtration Ft. For X ↪→ Y
compact, the embedding

Lp(·,ω)([0, T]; X) ↪→ L1([0, T]; Y),

is compact P-almost surely if p−(ω) > 1 and p(·, ω) is log-Hölder uniformly in ω.

Proof. We adapt the deterministic Aubin-Lions framework to the stochastic setting.
Step 1: Uniform integrability. For a.e. ω, p−(ω) > 1 implies Lp(·,ω)(X) ↪→ L1(X) continuously. Let {un} be

bounded in Lp(·,ω)(X):

sup
n

∫ T

0
∥un(t)∥p(t,ω)

X dt ≤ M(ω) < ∞ P-a.s.,

By Hölder’s inequality for variable exponents:

∫ T

0
∥un(t)∥Xdt ≤ C(ω)∥1∥Lp′(·,ω)∥un∥Lp(·,ω)(X) ≤ C′(ω),

where 1
p(t,ω)

+ 1
p′(t,ω)

= 1.

Step 2: Compactness in Y-norm. Fix ω. The log-Hölder condition ensures the embedding Lp(·,ω)(X) ↪→
L1(Y) is compact via:

• Tightness: For ϵ > 0, decompose un = unχ{∥un∥X≤R} + unχ{∥un∥X>R}. The second term’s L1-norm is

O(R1−p−(ω)), made < ϵ/2 for large R.
• Finite-dimensional approximation: The first term lies in a compact subset of Y by the compact embedding

X ↪→ Y.
Step 3: Stochastic convergence. Apply Vitali’s theorem pathwise: For a.e. ω, {un} has an L1(Y)-convergent

subsequence by Steps 1–2. The uniformity in ω (from log-Hölder continuity) ensures measurability of
limits.

4. Conclusion

This paper has established a comprehensive framework for analyzing variable-exponent Bochner spaces
and their applications to nonlocal evolution equations. Our main achievements include:

• A complete compactness theory in Lp(·)([0, T]; X) spaces, resolving critical questions about embeddings
and convergence under log-Hölder continuity assumptions (Theorems 1–2, 7–8)

• Sharp maximal regularity estimates for fractional evolution equations with time-dependent operators,
including the first such results for Lévy-type operators with variable order (Theorems 3–4)

• New connections between fractal geometry and PDE analysis through precise bounds on dimension
evolution for solutions to variable-order fractional equations (Theorems 5–6)

• Fundamental results for stochastic variable exponents, developing tools for SPDEs with
exponent-dependent nonlinearities (Theorems 9–10)

These theoretical advances enable novel applications to:
• Anomalous diffusion models with space-time dependent scaling properties
• Nonlocal conservation laws with evolving fractal characteristics
• Stochastic PDEs in heterogeneous media with random nonlinearity structure
Key technical innovations include:
• Modular convergence criteria replacing classical norm approaches
• Interpolation techniques for time-dependent fractional operators
• Pathwise compactness methods in stochastic Bochner spaces
Open problems & future directions.
• Non-autonomous maximal regularity. Extend our results to evolution families with time-dependent

domains D(A(t))
• Variable-exponent Triebel-Lizorkin spaces. Develop corresponding theory for Fs(·)

p(·),q(·)-valued Bochner
spaces
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• Numerical implementations. Construct adaptive schemes leveraging exponent-dependent regularity
• Applications to turbulence. Model intermittency via stochastic variable exponents in Navier-Stokes

equations
Our work bridges several gaps between functional analysis, fractional calculus, and stochastic PDEs,

providing a foundation for studying evolution equations where nonlinearity structure varies in both space
and time. The techniques developed here suggest promising applications to problems in mathematical physics
where adaptivity to local behavior is essential.
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