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1. Introduction

I n recent time, differential equations and inequalities of fractional order have attracted serious interests
of mathematicians and scientists owing to their applications in several situations involving nonlocal

structure and memory effects. These situations arise from science, engineering, medicine, economics, finance
and so on. The study of fractional order differential equations emanated from the field of fractional calculus,
which is dated back to the conversation about half-order derivative of a function between L’Hopital and
Leibniz in 1965 [1,2]. The main objects of concern in fractional calculus are integrals and derivatives of
non-integer orders. Over time, various definitions of these objects, such as those by Riemann-Liouville, Riez,
Weyl, Hadamard, Grünwald-Letnikov, and Caputo, have appeared and been improved. Fractional derivatives
of Riemann-Liouville and Caputo have been seriously engaged in this regard [3–7].

The Riemann-Liouville (left) fractional integral of order α > 0 is defined for a continuous function f with
some singular kernel as follows:

aIα
t f (t) =

1
Γ(α)

∫ t

a

f (x)
(t − x)1−α

dx, (1)

where Γ(z) =
∫ ∞

0 xz−1e−xdx is the usual Gamma function.
Riemann-Liouville fractional derivatives of order α ∈ (n − 1, n] for f is defined by

RL
aDα

t ( f )(t) =
1

Γ(n − α)

dn

dtn

∫ t

a

f (x)
(t − x)α−n+1 dx =

dn

dtn aIn−α
t f (t). (2)

Caputo fractional derivatives of order α ∈ (n − 1, n] for f is defined by

C
aDα

t ( f )(t) =
1

Γ(n − α)

∫ t

a

1
(t − x)α−n+1

dn f (x)
dtn dx = aIn−α

t f (n)(t). (3)

By Definitions (2) and (3), it is seen that both Riemann-Liouville and Caputo fractional derivatives are
given with respect to fractional integrals with singular kernel. Hence, they inherit some nonlocal structures
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and historic memory. However, there are shortcomings in the definitions of Riemann-Liouville and Caputo
fractional derivatives in the sense that they lack certain vital properties associated with the classical derivative.
They do not satisfy such properties as the product rule, quotient rule, chain rule, power rule, Rolle’s theorem,
mean value theorem, Green’s theorem and the property that the derivative of constant should be zero, (Caputo
fractional derivative of a constant is zero, though), and so on. These shortcomings limit the applicability of
these derivatives to real life phenomena. In order to circumvent these challenges, Khalil et al. [8] introduced
a new definition of fractional derivative known as conformable fractional derivative of a function, which
involves a limit instead of integral with singular kernel.

Given a function f : [0, ∞) → R, then the conformable fractional derivative of order α is defined in [8] by

(Tα
t f ) (t) = lim

ε→0

f (t + εt1−α)− f (t)
ε

, (4)

for all t > 0 and α ∈ (0, 1]. If f is α-differentiable in some interval (0, a), a > 0, and if limt→0 (Tα
t f ) (t)

exists, then it is known that (Tα
t f )(0) = limt→0 (Tα

t f ) (t). It can be seen that definition (4) thus extends the
limit definition of the classical derivative. This local structure thereby makes it more flexible for conformable
fractional derivative to accommodate many classical theorems of calculus, which in turn allows for the
extension of classical results to the fractional order set up. Further properties of conformable derivative are
examined by authors in [9–11], some of its applications to science and engineering can be found in [12–14].
One can see [15,16] for geometric and physical interpretations of the conformable fractional derivative. Basic
concepts of conformable fractional calculus as related to the present work are highlighted in §2 of this paper.

The anisotropic conformable fractional differential operator is defined for continuous α-differentiable
function u by

n

∑
k=1

∂α

∂xα
k

(∣∣∣∣∂αu
∂xα

k

∣∣∣∣pk−2 ∂αu
∂xα

k

)
, (5)

with α ∈ (0, 1], pk > 1, k = 1, · · · , n and | · | denotes Euclidean norm. (See §2 for the definition of ∂α

∂xα
k

).
Setting pk = 2 and pk = p for all k in (5), this operator reduces to conformable Laplacian and the conformable
pseudo-p-Laplacian, respectively. The anisotropic Laplacian has numerous applications in several areas of
mathematical analysis and across various fields in engineering and sciences. In particulars, they are used in
modeling fluid dynamics in the anisotropic media having different conductivities in different direction [17] and
also to model anisotropic characteristics of some reinforced materials [18] as well as to model the propagation
of epidemic diseases in nonhomogeneous domain. Models involving anisotropic Laplacian arise also in image
segmentation and computer vision [19,20].

Anisotropic Picone identities for classical gradient operator is proved in [21] for differentiable functions
u ≥ 0, v > 0 in a domain of Rn and exponents pk > 1 as follows:

n

∑
k=1

∣∣∣∣ ∂u
∂xk

∣∣∣∣pk

−
n

∑
k=1

∂

∂xk

(
upk

vpk−1

) ∣∣∣∣ ∂v
∂xk

∣∣∣∣pk−2 ∂v
∂xk

≥ 0, (6)

with equality if and only if u = cv for some constant c > 0. Picone type identities have proved to an
effective tool in the study of existence and nonexistence of positive solutions to differential equations, Sturmian
comparison principle, domain monotonicity, Hardy’s inequality, Caccioppoli inequality, e. t. c. (see [21–26]
and the references cited therein). Motivated by (6), we [27] recently prove the following conformable Picone
type inequalities for anisotropic fractional gradient operator (Dα

xk
:= ∂α

∂xα
k

) on a compatible domain

n

∑
k=1

|Dα
xk

u|pk −
n

∑
k=1

Dα
xk

(
upk

vpk−1

)
|Dα

xk
v|pk−2Dα

xk
v ≥ 0, (7)

where several Hardy type inequalities and Heisenberg Pauli-Weyl uncertainty principles are derived as its
consequences. Similar Picone identities have been proved for single valued functions by authors in [28,29].

The aim of this paper therefore is to prove some nonlinear anisotropic Picone type identities and give its
applications to deriving Sturmian comparison principle and Liouville type results for anisotropic fractional
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conformable elliptic differential equations and systems. Elliptic partial differential equations and systems
occur as models of various phenomena in physics, such as electrostatics, heat and mass diffusion and
hydrodynamics, quantum wave etc., (see [30,31] for instance). Their practical applications are also abound
in all branches of mathematics, including harmonic analysis, geometry, Lie theory, and spectral analysis (see
[32,33] for instance). The prototypes of elliptic PDEs are the Laplacian and Poisson equations.

The remaining part of this paper is as follows: §2 collects basic definitions and fundamental results
relating to the concept of conformable fractional calculus as will be relevant to our results. In §3, Picone
identities are proved and their applications to Sturmian comparison and Liouville principles are presented.

2. Preliminaries

This section collects basic definitions and fundamental results relating to the concept of conformable
fractional calculus, functional spaces and conformable fractional eigenvalue problem as will be used in the
rest of this paper.

2.1. Conformable fractional derivative

Consider the conformable fractional derivative of a function f : [0, ∞) → R with order α as defined by
(4). It has been well established that a function f : [0, ∞) → R is continuous at x0 > 0 if f is α-differentiable for
α ∈ (0, 1]. The next theorem presents some basic properties which conformable fractional derivative inherits
from the classical derivative.

Theorem 1. [8,9] Let α ∈ (0, 1], and let f , g be α-differentiable at a point x > 0. Then

1. Linearity: Tα
x (a f + bg)(x) = a(Tα

x f )(x) + b(Tα
x g)(x), a, b ∈ R.

2. Product rule: Tα
x ( f g)(x) = g(Tα

x f )(x) + f (Tα
x g)(x).

3. Quotient rule: Tα
x

(
f
g

)
(x) = g(Tα

x f )(x)− f (Tα
x g)(x)

g2(x) , g ̸= 0.
4. Vanishing derivative of a constant function: Tα

x (λ) = 0 for all constant function f (x) = λ.
5. Power rule: Tα

x (xs) = sxs−α for s ∈ R.
6. If in addition f is differentiable, then (Tα

x f )(x) = x1−α f ′(x).

Definition 1 (α-fractional integral). [8,9] Let f be a continuous function on [0, ∞), x > a ≥ 0. Then for
α ∈ (0, 1],

Iα
a

(
f (x)

)
= I1

a

(
xα−1 f (x)

)
=
∫ x

a
f (t)

dt
t1−α

=
∫ x

a
f (t)dαt. (8)

Here the integral is the usual Riemann improper integral. It is easy to show that: Tα
x (Iα

a f )(x) = f (x),
whenever f is continuous in the domain of Iα. Likewise, Iα

a (Tα
x f )(x) = f (x)− f (a).

Lemma 1 (Chain rule). [8,9] Assume f is α-differentiable with respect to v, and v is α-differentiable with respect to x.
For α ∈ (0, 1], we have

Tα
x

(
f (v)

)
(x) =

(
Tα

v f
)
(v) · vα−1

(
Tα

x v
)
(x).

Lemma 2 (Integration by Parts formula). [8,9] Suppose f , g : [0, ∞) → R are α-differentiable at a point x > 0 for
α ∈ (0, 1]. Then ∫ ∞

0

(
Tα

x f (x)
)

g(x)dαx = f (x)g(x)
∣∣∣∞
0
−
∫ ∞

0
f (x)

(
Tα

x g(x)
)

dαx.

It is desirable to extend the above definitions and properties to the case of differential of a function of
several variables since many physical processes are modelled based on equations involving partial derivatives.
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Definition 2. [10] Let f be a function of n-variables x1, x2, · · · , xn. Then the conformable partial derivative of
f of order α ∈ (0, 1] with respect to variable xk, denoted by Dα

xk
:= ∂α

∂xα
k

, is defined as

Dα
xk

f (x̄) =
∂α f
∂xα

k
(x1, x2, · · · , xn)

= lim
ε→0

f (x1, · · · , xk−1, xk + εx1−α
k , · · · , xn)− f (x1, x2, · · · , xn)

ε
,

where, x̄ = (x1, x2, · · · , xn), k = 1, 2, · · · , n.

In the case that f has conformable partial derivative of order α with respect to each variable xk, k =

1, · · · , n. Then conformable vector can be defined at a point q by

Dα
x f (q) =

(
Dα

x1
( f (q)), Dα

x2
( f (q)), · · · , Dα

xn( f (q))
)

.

Consider the scalar field f (x̄) and the vector field
−→
F (x̄) that are assumed to posses conformable partial

derivative of order α with respect to all components xk, k = 1, 2, · · · , n.

Definition 3 (Conformable gradient). The conformable gradient of order α as a vector field is given by

Dα
x f (x) =

n

∑
k=1

(
Dα

xk
f
)

ek,

where ek is the unit vector in the direction of k. The conformable gradient of order α as a scalar field is given
by

Dα
x f (x) =

n

∑
k=1

(Dα
xk

Fk).

Remark 1. We note that conformable partial derivative (also conformable gradient) satisfies partial derivative
versions of Theorem 1, Lemma 1 and Lemma 2.

Definition 4. By the above discussion, anisotropic conformable fractional differential operator (5) is therefore
defined for continuous α-differentiable function f as

n

∑
k=1

Dα
xk

(
|Dα

xk
f (x)|pk−2Dα

xk
f (x)

)
for α ∈ (0, ∞], pk > 1.

We can now study fractional elliptic partial differential equations of the form

n

∑
k=1

Dα
xk

(
|Dα

xk
f (x)|pk−2Dα

xk
f (x)

)
= g(x, f ), x ∈ Ω ⊆ Rn,

in the appropriate fractional function spaces.

2.2. Conformable Green’s theorem

Integration by parts formula, divergence theorem and Green’s theorem within the framework of
conformable fractional derivative will be applied severally. Then, there is a need to develop compatible
divergence and Green’s theorems for anisotropic conformable partial derivatives of order α.
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Definition 5. [10] Let the vector field F has the conformable partial derivatives of order β on Ω ⊆ Rn. Then
we denote by Pβ

x the vector

Pβ
x F =

n

∑
i=1

{
eT

xi

(
Dβ

x (F)T
)

exi

}
exi =

n

∑
i=1

∂βFxi

∂xβ
xi

exi .

Definition 6. [10] Let the vector field F has the conformable partial derivatives of order β on an open region
Ω, V ⊆ Ω be simply connected and S is the boundary surface of V which is positively outward oriented. Then∫∫∫

V
Dα

x F dαV =
∫∫

S
Pα−1

x F · n dαS.

Remark 2. This supports the fact that the conformable integral is anti-derivative of conformable derivative.

Lemma 3 (Conformable Green’s Theorem). [10] Let C ⊂ R2 be a simple positively oriented, piecewise smooth and
closed region. Let Ω be the interior of C. If f = f (x, y) and g = g(x, y) have continuous conformable partial derivatives
on Ω. Then ∫∫

Ω

(
Dα

x g − Dα
y f
)

dαS =
∫

C
Dα−1

y f dαx + Dα−1
x gdαy. (9)

In what follows we consider a bounded open region Ω ⊂ Rn with piecewise smooth and simple boundary.
Note that the condition for the boundary to be simple amounts to ∂Ω being orientable. We say Ω ⊂ Rn with
this condition is said to be compatible.

2.2.1. Green’s identities

Suppose Ω ⊂ Rn is compatible, and α-partial conformable fractional derivatives Dα
xk

satisfy

n

∑
k=1

∫
Ω

Dα
xk

gk(x)dαx =
n

∑
k=1

∫
∂Ω

Dα−1
xk

(
Dα

xk
gk(x)

)
· νdαS (10)

for all gk ∈ Dα(Ω̄), k = 1, 2, · · · , n. Here Ω̄ = Ω∪ ∂Ω, Dα(Ω̄) denotes the space of all functions with continuous
α-partial conformable fractional derivative on Ω upto the boundary ∂Ω, and ν is the outward pointing unit
normal on ∂Ω. Next we state Green’s first and second identities for α-partial conformable fractional derivative.

Theorem 2 (Green’s identities). [27] Let Ω ⊂ Rn be compatible, we have
1. Green’s first identity: Let u, v ∈ Dα(Ω̄), then∫

Ω

(
Dα

xuDα
xv + vDα

x Dα
xu
)

dαx =
∫

∂Ω
vDα−1

x Dα
xu · νdαS. (11)

2. Green’s second identity: Let u, v ∈ Dα(Ω̄), then∫
Ω

(
uDα

xuDα
xv − vDα

x Dα
xu
)

dαx =
∫

∂Ω

(
uDα−1

x Dα
xv · ν − vDα−1

x Dα
xu · ν

)
dαS. (12)

Remark 3. If v = 1 in these Green’s identities we obtain the following analogue of Gauss mean value formula

for α-conformable harmonic function satisfying Dα
x Dα

xu = 0 in a compatible domain:
∫

∂Ω Dα−1
x

(
Dα

xu
)
· νdαS =

0.

2.3. Conformable fractional function spaces

Definition 7. Let 1 ≤ p < ∞, and Lp
α(Ω) denote the space of all functions u : Ω → R satisfying the condition(∫

Ω |u(x)|pdα

) 1
p < ∞. Associated with the norm

∥u∥p,α :=
(∫

Ω
|u(x)|pdα

) 1
p

,
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the space Lp
α(Ω) is a Banach space.

In what follows, we define the Sobolev space D
pk
α (Ω) of all functions which are absolute continuous and

Dα
xk

u(x) ∈ Lpk
α (Ω). We will work in the closure of C∞

0 , denoted by
◦

D
pk
α (Ω) (the space of all absolute continuous

α-partial conformable fractional differentiable function with compact support), which is a separable, reflexive
Banach space with respect to the norm function

∥u∥
D

pk
α (Ω)

:=
n

∑
k=1

(∫
Ω
|Dα

xk
u|pk dαx

) 1
pk

.

2.4. Anisotropic conformable fractional eigenproblem

Consider the conformable fractional Dirichlet eigenvalue problem{
Tα

x Tα
x u(x) + λu(x) = 0, x ∈ (0, a), a > 0,

u(0) = u(a) = 0,
(13)

with α ∈ (0, 1]. Here λ is an eigenvalue and u(x) is the associated eigenfunction. Conformable fractional
Sturm Liouville problem (which include (13) as a special case) has been studied in [34–36] through series of
methods. Denote Lα by

Lα := −Tα
x Tα

x ,

by [35, Lemma 3.6], we know that Lα is self-adjoint on L2
α((0, a)). Following these references, it is obvious

that (13) has infinitely many real and simple eigenvalues that can be arranged in an increasing order: λ1 <

λ2 < · · · λn · · · . Moreso, the associated eignfunctions to distinct eigenvalues form an α-orthogonal basis in
L2

α((0, π)). By a direct computation, it is known that the eigenfunctions of (13) for x ∈ (0, 1) are sin(nπxα) and
the corresponding eigenvalues are α2n2π2.

Now, let x = (x1, x2, · · · , xn), where xk ∈ Ωk ⊂ Rnk , Ωk being a compartible domain. The anisotropic
conformable eigenvalue problem is given by

−∑n
k=1 Dα

xk
(|Dα

xk
u|pk−2Dα

xk
u) = λ ∑n

k=1 ωk(x)|u|pk−2u in Ω,

u > 0, in Ω,

u = 0 on ∂Ω,

(14)

where 0 < ωk(x) ∈ L∞(Ω) for k = 1, 2, · · · , n and Ω := ∏n
k=1 Ωk.

By the (weak)-positive solution of (14) we refer to a positive solution u ∈
◦

D
pk
α (Ω) solving

n

∑
k=1

∫
Ω
|Dα

xk
u|pk−2Dα

xk
uDα

xk
ψ dαx = λ

n

∑
k=1

∫
Ω

ωk(x)|u|pk−2uψ dαx,

for all ψ ∈ C∞
0 (Ω).

It can be proved that (14) has a unique eigenvalue λ = λ1
α with the property of having a positive associated

eigenfunction u1 ∈
◦

D
pk
α (Ω), which is called the principal eigenfunction. However, one can show that the first

eigenvalue, λ1
α, is simple and isolated via the conformable fractional Rayleigh quotient

λ1
α = inf

0<u∈
◦

D
pk
α (Ω)

∑n
k=1
∫

Ω |Dα
xk
|pk dαx

∑n
k=1
∫

Ω |u|pk dαx
.

Problem of this nature as described above has been studied in the context fractional Laplacian by several
authors such as [37,38]. The Rayleigh quotient above can be used to obtain upper estimates for the first
eigenvalue. For example [34], consider n = 1, Ω = [0, 1], using a trial function u(x) = xα − x2α with boundary
conditions u(0) = u(1) = 0. we have for pk = 2:
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λ1
α ≤

∫ 1
0 [D

α
x(xα − x2α)]2xα−1dx∫ 1

0 [x
α − x2α]2xα−1dx

=
α2
∫ 1

0 [1 − 2xα]2xα−1dx∫ 1
0 [x

α − x2α]2xα−1dx
= 10α2.

So this chain of inequalities

π2α2 = λ1
α ≤ λ̄ = 10α2, (15)

gives a valid upper estimate.

3. Main results: Anisotropic Picone identity and applications

In this section, we prove some Picone type identities for anisotropic fractional gradient operator on a
compatible domain, and then give their applications to proving Sturmian comparison principle and Liouville
type theorems.

3.1. Anisotropic conformable Picone type identity

Theorem 3. Let u and v be α-order conformable differentiable functions a.e. in an open domain Ω ⊂ Rn, such that
u, v > 0 are non-constant. Let fk : (0, ∞) → (0, ∞) be a conformable differentiable function such that

f α
k (y) ≥ (pk − 1) [ fk(y)]

pk−2
pk−1 y1−α for all y.

For 0 < α ≤ 1 and pk > 1, k = 1, 2, · · · , n, define

A (u, v) =
n

∑
k=1

|Dα
xk

u|pk +
n

∑
k=1

|u|pk f α
k (v)

[ fk(v)]
2 vα−1|Dα

xk
v|pk −

n

∑
k=1

pk
|u|pk−2u

fk(v)
|Dα

xk
v|pk−2Dα

xk
vDα

xk
u,

and

B(u, v) =
n

∑
k=1

|Dα
xk

u|pk −
n

∑
k=1

Dα
xk

(
|u|pk

fk(v)

)
|Dα

xk
v|pk−2Dα

xk
v.

Then A (u, v) = B(u, v) ≥ 0. Moreover, A (u, v) = 0 a.e. in Ω if and only if Dα
xk
(u/v) = 0 for all k =

1, 2, · · · , n.

Remark 4. Consider a positive continuously conformable differentiable function fk on the interval (0, ∞)

satisfying the differential inequality

f α
k (y) ≥ (pk − 1) [ fk(y)]

pk−2
pk−1 y1−α.

1. Two examples of functions that satisfy the above inequality are fk(y) = ypk−1 and fk(y) = e(pk−1)y, while
the former maintains equality. Here, by f α

k (y) we mean α-conformable derivative of fk(y) with respect to
y, that is, Tα

y ( fk)(y) := f α
k (y).

2. Equality in the above inequality, which implies fk(y) = ypk−1, is one of the conditions to obtain equality
part of the Picone inequality, i.e., A (u, v) ≥ 0. (other two conditions are equalities in Young’s inequality
and Cauchy-Schwarz inequality).

3. It is instructive to note that no restriction is placed on the sign of u as in many literature. The case u ≥ 0
and fk(v) = vpk−1 reduces the above theorem to the Picone identities in [27].

Proof of Theorem 3. By the quotient and chain rules for conformable partial derivative we compute

Dα
xk

(
|u|pk

fk(v)

)
=

Dα
xk
|u|pk

fk(v)
−

|u|pk Dα
xk
[ fk(v)]

[ fk(v)]2
=

pk|u|pk−2uDα
xk

u
fk(v)

−
|u|pk vα−1 f α

k (v)Dα
xk

v
[ fk(v)]2

.

Substituting this into the expression of B(u, v) we get B(u, v) = A (u, v).
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To prove that A (u, v) ≥ 0, we write

A (u, v) =
n

∑
k=1

|Dα
xk

u|pk −
n

∑
k=1

pk
|u|pk−2u

fk(v)
|Dα

xk
v|pk−1|Dα

xk
u|+

n

∑
k=1

|u|pk f α
k (v)

[ fk(v)]
2 vα−1|Dα

xk
v|pk

+
n

∑
k=1

pk
|u|pk−2u

fk(v)
|Dα

xk
v|pk−2

{
|Dα

xk
v||Dα

xk
u| − Dα

xk
vDα

xk
u
}

,

which further implies

A (u, v) =
n

∑
k=1

pk

{
1
pk

|Dα
xk

u|pk +
1
qk

[
1

fk(v)

(
u|Dα

xk
v|
)pk−1

]qk
}
−

n

∑
k=1

pk
|u|pk−2u

fk(v)
|Dα

xk
v|pk−1|Dα

xk
u|

+
n

∑
k=1

{
|u|pk f α

k (v)

[ fk(v)]
2 vα−1|Dα

xk
v|pk − pk

qk

[
1

fk(v)

(
u|Dα

xk
v|
)pk−1

]qk
}

+
n

∑
k=1

pk
|u|pk−2u

fk(v)
|Dα

xk
v|pk−2

{
|Dα

xk
v||Dα

xk
u| − Dα

xk
vDα

xk
u
}

. (16)

Recall from the Young’s inequality that for real numbers a, b ≥ 0 and exponents pk > 1, qk > 1 satisfying
1/qk + 1/pk = 1:

ab ≤ (1/pk)apk + (1/qk)bqk . (17)

with equality if and only if apk = bqk for all k = 1, 2, · · · , n. Now choosing a and b as follows: a = |Dα
xk

u| and

b = 1
fk(v)

(
u|Dα

xk
v|
)pk−1

, we have by (17) that

1
pk

|Dα
xk

u|pk +
1
qk

[
1

fk(v)

(
u|Dα

xk
v|
)pk−1

]qk

≥ |u|pk−2u
fk(v)

|Dα
xk

v|pk−1|Dα
xk

u|,

which clearly implies that line one on the RHS of (16) is non-negative, but equal to zero only if

|Dα
xk

u| = 1

[ fk(v)]
qk/pk

(
u|Dα

xk
v|
)

. (18)

Applying the condition f α
k (y) ≥ (pk − 1) [ fk(y)]

pk−2
pk−1 y1−α we obtain

|u|pk f α
k (v)

[ fk(v)]
2 vα−1|Dα

xk
v|pk − pk

qk

[
1

fk(v)

(
u|Dα

xk
v|
)pk−1

]qk

≥ 0,

which yields that line two on the RHS of (16) is non-negative, but equal to zero only if

vα−1 f α
k (v) = (pk − 1) [ fk(v)]

pk−2
pk−1 . (19)

Clearly line three on the RHS of (16) is non-negative by the virtue of Cauchy-Schwarz inequality in the
form

Dα
xk

uDα
xk

v ≤ |Dα
xk

u||Dα
xk

v|.

Combining all of these shows that A (u, v) ≥ 0.
Observe further that equality is attained in the relation A (u, v) ≥ 0 if and only if (18) and (19) together

with below (20)

|Dα
xk

u||Dα
xk

v| = Dα
xk

uDα
xk

v, k = 1, 2, · · · , n, (20)

hold simultaneously.
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Solving for (19) we get fk(v) = vpk−1. Suppose A (u, v)(x0) = 0 and u(x0) ̸= 0, then the inequality (18)
with fk(v) = vpk−1 and (20) imply Dα

xk
(u/v) = 0. If u(x0) = 0, then Dα

xk
u = 0 a.e. on {u(x) = 0} and

Dα
xk
(u/v)(x0) = 0.

3.2. Applications

3.2.1. Sturmian Comparison Principle

It is well known that comparison principles do play significant roles in the qualitative study of partial
differential equations. Here, we prove a nonlinear version of the Sturmian comparison principle for anisotropic
conformable elliptic partial differential equations.

Theorem 4. Let hk(x) and Hk(x) be nonnegative weight functions such that hk(x) < Hk(x) for each k = 1, 2, · · · n in a
compatible domain Ω ⊂ Rn. Let fk : (0, ∞) → (0, ∞) be a continuous α-differentiable function such that yα−1 f α

k (y) ≥

(pk − 1) [ fk(y)]
pk−2
pk−1 .

Suppose there exists a positive solution u (that is, 0 < u ∈
◦

D
pk
α (Ω)) satisfying−∑n

k=1 Dα
xk

(
|Dα

xk
u|pk−2Dα

xk
u
)
= ∑n

k=1 hk(x)|u|pk−2u in Ω,

u = 0 on ∂Ω
(21)

for k = 1, 2, · · · n. Then any nontrivial solution v of the weighted anisotropic elliptic equation−∑n
k=1

upk
fk(v)

Dα
xk

(
|Dα

xk
v|pk−2Dα

xk
v
)
= ∑n

k=1 Hk(x)upk in Ω,

v = 0 on ∂Ω
(22)

must change sign.

Proof. Suppose that v satisfying (22) does not change sign. Without loss of generality, we assume that v > 0.
Then by Theorem 3 we have

0 ≤
∫

Ω
A (u, v)dαx =

∫
Ω

B(u, v)dαx,

thereby implying

0 ≤
n

∑
k=1

∫
Ω
|Dα

xk
u|pk dαx −

n

∑
k=1

∫
Ω

Dα
xk

(
upk

fk(v)

)
|Dα

xk
v|pk−2Dα

xk
vdαx.

By the divergence theorem we arrive at

0 ≤
n

∑
k=1

∫
Ω
|Dα

xk
u|pk dαx +

n

∑
k=1

∫
Ω

upk

fk(v)
Dα

xk

(
|Dα

xk
v|pk−2Dα

xk
v
)

dαx

+
n

∑
k=1

∫
Ω

upk

fk(v)
Dα−1

xk
Dα

xk

(
Dα

xk
v|pk−2Dα

xk
v
)
· νdα A. (23)

Since u ∈
◦

D
pk
α (Ω) is a positive solution of (21) we know that u vanishes on the boundary, and by definition

of solution we know that (21) implies

n

∑
k=1

∫
Ω
|Dα

xk
u|pk dαx =

n

∑
k=1

∫
Ω

hkupk dαx. (24)
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Substituting (22) and (24) into (23), together with the fact that u and v belong to the space
◦

D
pk
α (Ω), yields

0 ≤
n

∑
k=1

∫
Ω
[hk(x)− Hk(x)] upk dαx,

which is a contradiction to the assumption hk(x) < Hk(x) for each k = 1, 2, · · · , n. Hence, v changes sign.

Corollary 1. Suppose the hypothesis of Theorem 3 hold. If 0 < u ∈
◦

D
pk
α (Ω) is a solution of (21), then any nontrivial

solution of −Dα
xk

(
|Dα

xk
v|pk−2Dα

xk
v
)
= Hk(x) fk(v) in Ω

v = 0 on ∂Ω
(25)

changes sign in Ω for each k = 1, 2, · · · , n.

Proof. Substituting (24) and (25) into (23) yields a contradiction and the conclusion follows at once.

3.2.2. Liouville type principle

The next application is the proof of a Liouville type result for anisotropic conformable elliptic partial
differential equations. Here, Λ is a positive constant bigger than the principal eigenvalue λ1

α, comparable to
(15).

Theorem 5. Suppose pk > 1, Λ > 0 is a constant and fk : (0, ∞) → (0, ∞) is a continuous α-differentiable function

such that yα−1 f α
k (y) ≥ (pk − 1) [ fk(y)]

pk−2
pk−1 . Then, the anisotropic conformable elliptic partial differential inequality−∑n

k=1 Dα
xk

(
|Dα

xk
v|pk−2Dα

xk
v
)
≥ Λ ∑n

k=1 fk(v), x ∈ Ω,

v = 0, x ∈ ∂Ω,
(26)

has no positive solution in
◦

D
pk
α (Ω).

Proof. Assume that v > 0 is a solution to (26). Let λ1
α(Ω) be the first eigenvalue corresponding to the first

eigenfunction u1 ∈
◦

D
pk
α (Ω) such that λ1

α(Ω) < Λ. Taking |u1|pk

fk(v)
as a test function, which is valid since |u1|pk

fk(v)
∈

◦
D

pk
α (Ω) is admissible in the weak formulation of (26). Therefore, by (26) we have

Λ
n

∑
k=1

∫
Ω
|u1|pk dx −

n

∑
k=1

∫
Ω
|Dα

xk
v|pk−2Dα

xk
vDα

xk

(
|u1|pk

fk(v)

)
dx ≤ 0,

which by Theorem 3 implies that

Λ
n

∑
k=1

∫
Ω
|u1|pk dx −

n

∑
k=1

∫
Ω
|Dα

xk
u1|pk dx ≤ −

∫
Ω

A (u1, v)dx ≤ 0.

Hence, by the last inequality and the hypothesis on the first eigenvalue, we have

Λ ≤
∑n

k=1
∫

Ω |Dα
xk

u1|pk dx

∑n
k=1
∫

Ω |u1|pk dx
= λ1

α(Ω) < Λ,

which is a contradiction.

Next we prove the following Liouville type theorem for anisotropic conformable elliptic partial
differential system.
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Theorem 6. Let g(v) be α-conformable integrable in Ω ⊆ Rn. Suppose (u, v) is a pair of solution to an anisotropic
conformable elliptic partial differential system

−∑n
k=1 Dα

xk
(|Dα

xk
u|pk−2Dα

xk
u) = g(v), x ∈ Ω,

−∑n
k=1 Dα

xk

(
upk
fk(v)

)
|Dα

xk
v|pk−2Dα

xk
v = ug(v), x ∈ Ω,

u > 0, v > 0, x ∈ Ω,

u = 0, v = 0, x ∈ ∂Ω,

(27)

where fk(v) > 0, f α
k (v) ≥ (pk − 1) [ fK(v)]

pk−2
pk−1 v1−α and pk ≥ 1 for all k = 1, 2, · · · , n. Then u = cv a.e. in Ω for

some constant c > 0.

Proof. Multiplying the first equation in System (27) by 0 < u ∈
◦

D
pk
α (Ω), integrating over Ω and applying the

divergence theorem, we have

n

∑
k=1

∫
Ω
|Dα

xk
u|pk dαx =

∫
Ω

g(v)udαx. (28)

By Theorem 3, (28) and the second equation in System (27), we obtain∫
Ω

A (u, v)dαx =
∫

Ω
B(u, v)dαx

=
n

∑
k=1

∫
Ω
|Dα

xk
u|pk dαx −

n

∑
k=1

∫
Ω

Dα
xk

(
upk

fk(v)

)
|Dα

xk
v|pk−2Dα

xk
vdαx

=
∫

Ω
[ug(v)− ug(v)] dαx = 0.

Thus, A (u, v) = 0 which implies Dα
xk
(u/v) = 0 (that is, u/v = c a.e. in Ω for some constant c > 0).

3.2.3. Anisotropic quasilinear system with singular nonlinearities

Lastly, we show that Theorem 3 yields a linear relation between u and v solving anisotropic quasilinear
system with singular nonlinearities. Given the following system of anisotropic conformable elliptic equations


−∑n

k=1 Dα
xk
(|Dα

xk
u|pk−2Dα

xk
u) = ∑n

k=1 fk(v), x ∈ Ω,

−∑n
k=1 Dα

xk
(|Dα

xk
v|pk−2Dα

xk
v) = ∑N

k=1
[ fk(v)]2

upk−1 , x ∈ Ω,

fk(v) > 0, u > 0, v > 0, x ∈ Ω,

fk(v) = 0, u = 0, v = 0, x ∈ ∂Ω.

(29)

Theorem 7. Let (u, v) be a pair of solutions to (29) and f be α-conformable differentiable such that f α
k (v) ≥ (pk −

1) [ fk(v)]
pk−2
pk−1 v1−α, and pk ≥ 1 for all k = 1, 2, · · · , n. Then u = cv a.e. in Ω for some constant c.

Proof. Since (u, v) is a pair of solutions to (29). It follows that

n

∑
k=1

∫
Ω
|Dα

xk
u|pk−2Dα

xk
uDα

xk
ϕ1dαx =

n

∑
k=1

∫
Ω

fk(v)ϕ1dαx, (30)

n

∑
k=1

∫
Ω
|Dα

xk
v|pk−2Dα

xk
vDα

xk
ϕ2dαx =

n

∑
k=1

∫
Ω

[ fk(v)]2

upk−1 ϕ2dαx, (31)

for any pair of positive functions ϕ1, ϕ2 ∈
◦

D
pk
α (Ω).
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Letting ϕ1 → u and ϕ2 = upk
fk(v)

in (30) and (31), respectively, we obtain

n

∑
k=1

∫
Ω
|Dα

xk
u|pk dαx =

n

∑
k=1

∫
Ω

fk(v)udαx

=
n

∑
k=1

∫
Ω
|Dα

xk
v|pk−2Dα

xk
vDα

xk

(
upk

fk(v)

)
dαx.

Hence,

0 =
n

∑
k=1

∫
Ω
|Dα

xk
u|pk dαx −

n

∑
k=1

∫
Ω
|Dα

xk
v|pk−2Dα

xk
vDα

xk

(
upk

fk(v)

)
dαx =

∫
Ω

B(u, v)dαx,

which implies that B(u, v) = 0 using the nonnegativity of B(u, v). However, by Theorem 3, B(u, v) =

A (u, v) = 0 yields u = cv a.e. in Ω for some constant c. This completes the proof.
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