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Abstract: This article concerns the existence and multiplicity of homoclinic solutions for the following
fourth-order differential equation with p−Laplacian( ∣∣u′′(t)

∣∣p−2 u′′(t)
)′′

− ω
( ∣∣u′(t)

∣∣p−2 u′(t)
)′

+ V(t) |u(t)|p−2 u(t) = f (t, u(t)),

where p > 1, ω is a constant, V ∈ C(R,R) is noncoercive and f ∈ C(R2,R) is of subquadratic growth at
infinity. Some results are proved using variational methods, the minimization theorem and the generalized
Clark’s theorem. Recent results in the literature are extended and improved.
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1. Introduction

I n this paper, we consider the following fourth-order differential equation with a p-Laplacian:( ∣∣u′′(t)
∣∣p−2 u′′(t)

)′′
− ω

( ∣∣u′(t)
∣∣p−2 u′(t)

)′
+ V(t) |u(t)|p−2 u(t) = f (t, u(t)), (1)

where p > 1, ω is a constant, V ∈ C(R,R) is a positive function bounded from below and f ∈ C(R2,R) is
subquadratic in the second variable. As usual, we say that a solution u of (F ) is homoclinic (to 0) if u(t) → 0
as |t| → ∞. It is called nontrivial if u ̸= 0.

The fourth-order differential equations with p−Laplacian arise from the study of Non-Newtonian fluid
mechanics and nonlinear filtration theory.

When p = 2, formally equation (F ) reduces to the classical fourth-order differential equation

u(4)(t)− ωu′′(t) + V(t)u(t) = f (t, u(t)). (2)

Over the past two decades, based on critical point theory and variational methods, for various conditions on
V and the potential f , the existence and multiplicity of homoclinic solutions for Eq. (2) have been investigated
in the literature, see [1–14] and the references listed therein.

In the general case where p > 1 is arbitrary, according to our knowledge there are only a few results
concerning the existence of homoclinic solutions of equation (F ), see [15,16]. In [16], Tersian studied the
existence and multiplicity of homoclinic solutions of equation (F ) when the potential f takes the form f (t, x) =
a(t)h(t, x) and he obtained the following result.

Theorem 1. Let p ≥ 2 and a, h, V satisfy the following conditions (a) a ∈ C(R,R+) and a(t) → 0 as |t| → ∞; ( f1)

h ∈ C1(R2,R) and there exists 1 < q < 2 < p such that

h(t, x)x ≤ qH(t, x), ∀(t, x) ∈ R2, x ̸= 0,

Open J. Math. Anal. 2025, 9(2), 251-263; doi:10.30538/psrp-oma2025.0177 https://pisrt.org/psr-press/journals/oma

https://pisrt.org/psr-press/journals/oma/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oma


Open J. Math. Anal. 2025, 9(2), 251-263 252

where H(t, x) =
∫ x

0 h(t, y)dy; ( f2). There exists b ∈ L
p

p−q (R,R+)
⋂

L
p

2−q (R,R+) such that

|h(t, x)| ≤ b(t) |x|q−1 , ∀(t, x) ∈ R2;

( f3) There exist an interval J ⊂ R and a constant c > 0 such that

H(t, x) ≥ c |x|q , ∀(t, x) ∈ J ×R;

(v) There exist positive constants v1 and v2 such that ω < v̄ω∗ and

v1 ≤ V(t) ≤ v2, ∀t ∈ R,

where v̄ = min {1, v1} and ω∗ = infu ̸=0

∫
R[|u

′′(t)|p+|u(t)|p]dt∫
R|u′(t)|pdt .

Then equation (F ) has at least one nontrivial homoclinic solution. If moreover H(t, x) is even with respect
to the second variable, then equation (F ) has infinitely many nontrivial homoclinic solutions (un)n∈N such that
∥un∥L∞ → 0 as n → ∞.

The first aim of this paper is to generalize the previous results concerning the subquadratic case.
More precisely, our goal is to establish similar results without assuming the classical Ambrosetti-Rabinowitz
subquadratic condition ( f1). Consider then the following conditions.

(V) There exist positive constants r0 and v0 > 0 such that V(t) ≥ v0 for all t ∈ R and

lim
|s|→∞

meas({t ∈]s − r0, s + r0[/V(t) < M}) = 0, ∀M > 0,

where meas denotes the Lebesgue’s measure on R;
(F1) There are a constant 1 < µ < p and b ∈ Lr(R,R+), where r = p

p−µ such that

| f (t, x)| ≤ b(t) |x|µ−1 , ∀(t, x) ∈ R2;

(F2) There are a non empty open interval I =]c, d[⊂ R and a positive constant a0 such that

F(t, x) ≥ a0 |x|µ , ∀(t, x) ∈ I ×R;

f (t,−x) = − f (t, x), ∀(t, x) ∈ R×R. (3)

Our first main results are as follows

Theorem 2. Under assumptions (V), (F1) and (F2), system (F ) admits at least one nontrivial homoclinic solution.

Theorem 3. Suppose that (V), (F1), (F2) and (F3) hold. Then system (F ) admits infinitely many pairs of nontrivial
homoclinic solutions (un,−un) such that ∥un∥L∞ → 0 as n → ∞.

Example 1. Take p = 2 and µ = 3
2 and let V(t) = 1 + cos2t and

F(t, x) = a(t) |x|
3
2
(
π + Arctg(|x|

3
2 )
)
,

where

a(t) =

{
2 − |t| , i f |t| ≤ 1,
1
|t| , i f |t| ≥ 1.

Let a0 = π
2 , I =] − 1, 1[, r = 4 and b(t) = 3(3π+1)

4 a(t). One easily verifies that b ∈ Lr(R), | f (t, x)| ≤
b(t) |x|µ−1 for all (t, x) ∈ R2 and F(t, x) ≥ a0 |x|µ for all (t, x) ∈ I ×R. Therefore the assumptions (V), (F1),
(F2) and (F3) are satisfied.

Now consider the following assumption
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(F′
2) There exists t0 ∈ R such that

lim
(t,x)→(t0,0)

F(t, x)
|x|µ

> 0.

Our second main results are as follows.

Theorem 4. Assume that (V), (F1) and (F′
2) are satisfied. Then system (F ) has at least one nontrivial homoclinic

solution.

Theorem 5. Under assumptions (V), (F1), (F′
2) and (F3), system (F ) possesses infinitely many pairs of nontrivial

homoclinic solutions (un,−un) such that ∥un∥L∞ → 0 as n → ∞.

Example 2. Take p = 2, µ = 3
2 and V(t) = 1 + cos2t. Define a cut-off function χ ∈ C1(R+,R+) such that

χ(s) = 1 for 0 ≤ s ≤ 1, χ(s) = 0 for s ≥ 2 and −2 ≤ χ′(s) ≤ 2 for 1 < s < 2 and let

F(t, x) = a(t)χ(|x|) |x|
3
2 .

Let t0 = 0, r = 4 and b(t) = 11
2 a(t), It is easy to verify that b ∈ Lr(R), | f (t, x)| ≤ b(t) |x|µ−1 for all

(t, x) ∈ R2 and lim(t,x)→(t0,0)
F(t,x)

|x|
3
2

= 1 > 0. Therefore the assumptions (V), (F1), (F′
2) and (F3) are satisfied.

Remark 1. In the hypothesis (F1), if we replace the constant r = p
p−µ by any constant 1 ≤ ξ ≤ p, the same

conclusions remain valid under the other hypotheses.

Remark 2. Theorems 4 and 5 extend Theorems 2 and 3 to the case where the condition (F2) is replaced by
the weaker local assumption (F′

2). In particular, the existence of nontrivial homoclinic solutions can still be
ensured when the nonlinearity F(t, x) satisfies a local positivity condition around some point t0 ∈ R instead
of a uniform lower bound on an interval. This highlights the robustness of our variational approach under
minimal hypotheses on F.

Comparison with previous results

We would like to emphasize more precisely how our assumptions generalize those used in earlier works
such as Tersian [16] and related papers on fourth-order p-Laplacian equations. In Tersian’s framework, the
nonlinear term f (t, x) = a(t)h(t, x) satisfies an Ambrosetti-Rabinowitz-type subquadratic condition ( f1),
which imposes a structural relation between h(t, x)x and its primitive H(t, x). In contrast, our condition (F1)

only requires a standard subcritical growth of order µ < p, without any Ambrosetti-Rabinowitz inequality.
This substantially weakens the nonlinearity assumptions and allows a wider class of functions f . Moreover,
while Tersian assumed that the potential V is uniformly bounded and positive, our hypothesis (V) admits a
noncoercive setting: it suffices that V(t) ≥ v0 > 0 and that the set where V is small has vanishing measure
in sliding intervals. This requirement is less restrictive than coercivity and is analogous to conditions used
in Schrödinger-type problems on R. Finally, the symmetry assumption (F3) coincides with that in [16] and
ensures the existence of infinitely many even pairs of homoclinic solutions. Therefore, our results extend the
existing theorems in the subquadratic regime and apply to a broader class of potentials and nonlinearities.

Discussion of condition (V)

Condition (V) plays a crucial role in ensuring the compactness of the associated energy functional on R.
It allows the potential V to be noncoercive: (i.e., V is not assumed to be coercive at infinity) and possibly
oscillatory, provided that the region where V becomes small has vanishing measure in any fixed-length
interval. Typical examples include

V(t) = 1 + ϵsin2t, V(t) = 1 + |t|−α f or |t| ≥ 1, α > 0,

or more generally V(t) = V0(t) + W(t), where V0 is periodic and W tends to 0 in measure as |t| → ∞.
This hypothesis is analogous to the "vanishing-in-measure" condition used in nonlinear Schrödinger and
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Hamiltonian systems to recover compact embeddings in unbounded domains (see Lions [17]). Hence, our
framework naturally covers both coercive and noncoercive potentials and is well suited for problems with
oscillatory or almost-periodic structure.

The remaining of this paper is structured as follows. Some preliminary results are presented in §2. In §3
we give the proofs of our main results.

2. Preliminaries

Consider the Sobolev’s space

W2,p(R) =
{

u ∈ Lp(R)/u′ ∈ Lp(R), u′′ ∈ Lp(R)
}

,

equipped with the usual norm

∥u∥W2,p =
( ∫

R

[ ∣∣u′′(t)
∣∣p + ∣∣u′(t)

∣∣p + |u(t)|p
]
dt
) 1

p
.

In this section we recall some auxiliary inequalities and compactness properties that will be used later.
For clarity, we define all constants at the moment of their first appearance.

Lemma 1. There exists cp > 0 such that for all u ∈ W2,p(R),∫
R

∣∣u′(t)
∣∣p dt ≤ cp

∫
R

[ ∣∣u′′(t)
∣∣p + |u(t)|p

]
dt, ∀u ∈ W2,p(R).

This standard inequality follows from the embedding W2,p(R) ↪→ W1,p(R) and can be found,
for example, in ([18], Lemma 4.10). Moreover, under assumption (V), since the measure of the set
{t ∈ [s − r0, s + r0] : V(t) < M} tends to zero as |s| → ∞, the embedding of the corresponding energy space
into Lp(R) is compact (see [17]).

Lemma 2. Let v0 and ω∗ be defined in §1. If ω < v0ω∗ holds, then there exists a constant c0 > 0 such that∫
R

[ ∣∣u′′(t)
∣∣p − ω

∣∣u′(t)
∣∣p + V(t) |u(t)|p

]
dt ≥ c0 ∥u∥p

W2,p , ∀u ∈ W2,p(R). (4)

Proof. Let c0 = v0ω∗−ω
(cp+1)v0ω∗ , we have

∫
R

[ ∣∣u′′(t)
∣∣p − ω

∣∣u′(t)
∣∣p + V(t) |u(t)|p

]
dt ≥v0

∫
R

[ ∣∣u′′(t)
∣∣p − ω

v0

∣∣u′(t)
∣∣p + |u(t)|p

]
dt

=v0(1 −
ω

v0ω∗ )
∫
R

[ ∣∣u′′(t)
∣∣p + |u(t)|p

]
dt

+
ω

ω∗

∫
R

[ ∣∣u′′(t)
∣∣p − ω∗ ∣∣u′(t)

∣∣p + |u(t)|p
]
dt

≥v0(1 −
ω

v0ω∗ )
∫
R

[ ∣∣u′′(t)
∣∣p + |u(t)|p

]
dt

=c0(cp + 1)
∫
R

[ ∣∣u′′(t)
∣∣p + |u(t)|p

]
dt

≥c0

∫
R

[ ∣∣u′′(t)
∣∣p + ∣∣u′(t)

∣∣p + |u(t)|p
]
dt

=c0 ∥u∥p
W2,p ,

which completes the proof of Lemma 2.

Consider the following subspace E of W2,p(R)

E =

{
u ∈ W2,p(R)/

∫
R

[ ∣∣u′′(t)
∣∣p − ω

∣∣u′(t)
∣∣p + V(t) |u(t)|p

]
dt < ∞

}
,
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equipped with the norm

∥u∥ =
( ∫

R

[ ∣∣u′′(t)
∣∣p − ω

∣∣u′(t)
∣∣p + V(t) |u(t)|p

]
dt
) 1

p
.

Lemma 3. Under the condition ω < v0ω∗, we have

∥u∥L∞ ≤
( p

2c0

) 1
p ∥u∥ , ∀u ∈ E, (5)

where c0 is defined in Lemma 2.

Proof. Let u ∈ E, we have for r ≥ 0 ∫
|t|≥r

[
∣∣u′(t)

∣∣p + |u(t)|p]dt ≤ ∥u∥p
W2,p ,

and so
lim
r→∞

∫
|t|≥r

[
∣∣u′(t)

∣∣p + |u(t)|p]dt = 0.

It results from [19] that lim|t|→∞ u(t) = 0. Hence, by the continuity of u, there exists t∗ ∈ R such that

|u(t∗)| = max
t∈R

|u(t)| = ∥u∥L∞ . (6)

Consider two real sequences (tk)k∈N and (t−k)k∈N such that

... < t−3 < t−2 < t−1 < t1 < t2 < t3 < ...,

lim
k→∞

tk = +∞, lim
k→∞

t−k = −∞,

and
lim
k→∞

u(tk) = 0 = lim
k→∞

u(t−k).

Let us remark that

|u(t∗)|p = |u(tk)|p − p
∫ tk

t∗
|u(s)|p−2 u(s)u′(s)ds, (7)

and

|u(t∗)|p = |u(t−k)|p + p
∫ t∗

t−k

|u(s)|p−2 u(s)u′(s)ds. (8)

Combining (7), (8) and Young’s inequality yields

|u(t∗)|p =
1
2

(
|u(tk)|p + |u(t−k)|p

)
− p

2

∫ tk

t∗
|u(s)|p−2 u(s)u′(s)ds +

p
2

∫ t∗

t−k

|u(s)|p−2 u(s)u′(s)ds

≤1
2

(
|u(tk)|p + |u(t−k)|p

)
+

p
2

∫ tk

t−k

[ 1
p
∣∣u′(s)

∣∣p + p − 1
p

|u(s)|p
]
ds. (9)

Taking k → ∞ in (9), one gets

∥u∥p
L∞ = |u(t∗)|p ≤ p

2

∫
R

[ ∣∣u′′(t)
∣∣p + ∣∣u′(s)

∣∣p + |u(s)|p
]
ds ≤ p

2c0
∥u∥p ,

which implies (5).

Remark 3. Noting by η∞ =
(

p
2c0

) 1
p
, for s ≥ p and u ∈ E, we have

∫
R
|u(t)|s dt ≤ ∥u∥s−p

L∞ ∥u∥p
Lp ≤η

s−p
∞ ∥u∥s−p ∥u∥p

W2,p ≤ η
s−p
∞

c0
∥u∥s = ηs

s ∥u∥s , (10)
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where ηs
s =

η
s−p
∞
c0

.

Lemma 4. Assume that (V) is satisfied. Then E is compactly embedded in Lp(R).

Proof. Let (un) ⊂ E be a bounded sequence such that un ⇀ u in E. We shall show that un → u in Lp(R).
Suppose, without loss of generality, that un ⇀ 0 in E. For any s ∈ R, we denote Ir0(s) the open interval in R
centered at s with radius r0, i.e., Ir0(s) =]s − r0, s + r0[, where r0 is the constant given in (L). Let (si)i∈N ⊂ R
be a sequence of points such that R = ∪∞

i=1 Ir0(si) and each t ∈ R is contained in at most two such intervals.
For any r > 0 and M > 0, let

C(r, M) = {t ∈ R\]− r, r[/V(t) ≥ M} ,

D(r, M) = {t ∈ R\]− r, r[/V(t) < M} .

Choose Mϵ > 4
ϵ supn∈N ∥un∥p, we have

∫
C(r,Mϵ)

|un|p dt ≤ 1
Mϵ

∫
C(r,Mϵ)

V(t) |un(t)|p dt ≤ 1
Mϵ

∥un∥p <
ϵ

4
. (11)

Now, we have

∫
D(r,Mϵ)

|un|p dt ≤
∞

∑
i=1

∫
D(r,Mϵ)∩Ir0 (si)

|un|p dt

≤
∞

∑
i=1

(
∫

D(r,Mϵ)∩Ir0 (si)
|un|2p dt)

1
2 [meas(D(r, Mϵ) ∩ Ir0(si))]

1
2

≤ar

∞

∑
i=1

(
∫

Ir0 (si)
|un|2p dt)

1
2 ,

where ar = supi∈N[meas(D(r, Mϵ) ∩ Ir0(si))]
1
2 . By the inequality (4), we have

(∫
Ir0 (si)

|un|2p dt

) 1
2p

=

(∫
R

∣∣∣χ|Ir0 (si)
un

∣∣∣2p
dt
) 1

2p
≤ η2p

∥∥∥χ|Ir0 (si)
un

∥∥∥ ≤ η2p ∥un∥ .

Hence ∫
D(r,Mϵ)

|un|p dt ≤η
p
2par

∞

∑
i=1

∥∥∥χ|Ir0 (si)
un

∥∥∥p

=η
p
2par

∞

∑
i=1

∫
Ir0 (si)

[
∣∣u′′

n
∣∣p + ∣∣u′

n(t)
∣∣p + |un(t)|p]dt

≤2η
p
2par sup

n∈N
∥un∥p

W2,p ≤ 2
c0

η
p
2par sup

n∈N
∥un∥p .

By an easy computation, we show that ar → 0 as r → ∞. Therefore there exists rϵ > 0 such that∫
D(rϵ ,Mϵ)

|un|p dt <
ϵ

4
, (12)

which together with (11) implies∫
R\]−rϵ ,rϵ [

|un|p dt =
∫

C(rϵ ,Mϵ)
|un|p dt +

∫
D(rϵ ,Mϵ)

|un|p dt <
ϵ

2
. (13)

By Sobolev’s theorem, un → 0 uniformly on [−rϵ, rϵ]. Then there exists n0 > 0 such that∫
[−rϵ ,rϵ ]

|un|p dt <
ϵ

2
, ∀n ≥ n0. (14)
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Combining (13) with (14), by the arbitrary of ϵ we can obtain that uk → 0 in Lp(R,R).

To study the existence and multiplicity of homoclinic solutions of (F ) under our assumptions, we shall
employ the minimization theorem and the generalized Clark’s theorem.

Lemma 5. [Minimization theorem [20]]. Let E be a real Banach space and J ∈ C1(E,R) satisfying (PS) condition. If J
is bounded from below, then c = infE J is a critical point of J.

Lemma 6. [Generalized Clark’s theorem [21]]. Let E be a Banach space and J ∈ C1(E,R). Assume that J satisfies the
(PS) condition, it is even, bounded from below and J(0) = 0. If for any k ∈ N, there exists a k−dimensional subspace Ek

of E and ρk > 0 such that supEk∩Sρk
J < 0, where Sρ = {u ∈ E/ ∥u∥ = 1}, then at least one of the following conditions

holds
a) There exists a sequence of critical points (un) of J satisfying J(un) < 0 for all n ∈ N and limn→∞ ∥un∥E = 0.
b) There exists r > 0 such that for any 0 < α < r there exists a critical point u of J such that ∥u∥E = α and

J(u) = 0.

3. Proof of the main results

Let us consider the variational functional J : E → R associated to system (F )

J(u) =
1
p

∫
R

[ ∣∣u′′(t)
∣∣p − ω

∣∣u′(t)
∣∣p + V(t) |u(t)|p

]
dt −

∫
R

F(t, u(t))dt.

Lemma 7. Assume that (V) and (F1) are satisfied. If un ⇀ u, then f (., un) → f (., u) in Lν(R) as n → ∞, where
ν = p

p−1 .

Proof. Let un ⇀ u. Arguing indirectly, by Lemma 4, we may assume that there exists a subsequence (unk )

such that as k → ∞
unk → u in Lp(R) and unk → u a.e. in R, (15)

and ∫
R

∣∣ f (t, unk (t))− f (t, u(t))
∣∣ν dt ≥ ϵ0, ∀k ∈ N, (16)

for some positive constant ϵ0. Using (16) and up to a subsequence if necessary, we may assume that
∞
∑

k=1

∥∥unk − u
∥∥

Lp < ∞. Let w(t) =
∞
∑

k=1

∣∣unk (t)− u(t)
∣∣ for all t ∈ R. Then w ∈ Lp(R). By (F1), there holds

for all k ∈ N and t ∈ R∣∣ f (t, unk (t))− f (t, u(t))
∣∣ν ≤[

∣∣ f (t, unk (t))
∣∣+ | f (t, u(t))|]ν

≤2ν−1[
∣∣ f (t, unk (t))

∣∣ν + | f (t, u(t))|ν]

≤2ν−1bν(t)[
∣∣unk (t)

∣∣ν(µ−1)
+ |u(t)|ν(µ−1)]

≤2ν−1bν(t)[(
∣∣unk (t)− u(t)

∣∣+ |u(t)|)ν(µ−1) + |u(t)|ν(µ−1)]

≤2ν−1bν(t)[(w(t) + |u(t)|)ν(µ−1) + |u(t)|ν(µ−1)]

≤c1bν(t)[(w(t))ν(µ−1) + |u(t)|ν(µ−1)], (17)

where c1 = 2ν−1[1 + sup
{

1, 2ν(µ−1)−1
}
]. By Hölder’s inequality, we obtain for α = p−1

p−µ and β = p−1
µ−1

∫
R

bν(t)[(w(t))ν(µ−1) + |u(t)|ν(µ−1)]dt ≤
( ∫

R
bαν(t)dt

) 1
α
[( ∫

R
(w(t))βν(µ−1)dt

) 1
β
+
( ∫

R
|u(t)|βν(µ−1) dt

) 1
β
]

≤
( ∫

R
br(t)dt

) 1
α
[( ∫

R
(w(t))pdt

) 1
β
+
( ∫

R
|u(t)|p dt

) 1
β
]
. (18)
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Combining (15), (17) and (18), Lebesgue’s dominated convergence theorem implies that

lim
k→∞

∫
R

∣∣ f (t, unk (t))− f (t, u(t))
∣∣ν dt = 0,

which contradicts (16). Hence f (., un) → f (., u) in Lν(R) as n → ∞.

Lemma 8. Under assumptions (V) and (F1), the functional g(u) =
∫
R F(t, u(t))dt is continuously differentiable on E

and for all u, v ∈ E

g′(u)v =
∫
R

f (t, u(t))v(t)dt.

Proof. First, by (F1) and Hölder’s inequality we have∣∣∣∣∫R f (t, u(t))v(t)dt
∣∣∣∣ ≤ ∫R b(t) |u(t)|µ−1 |v(t)| dt

≤
( ∫

R
br(t)

) 1
r
( ∫

R
|u(t)|r

′(µ−1) |v(t)|r
′
dt
) 1

r′

= ∥b∥Lr

( ∫
R
|u(t)|

p(µ−1)
µ |v(t)|

p
µ dt

) µ
p

≤∥b∥Lr ∥u∥µ−1
Lp ∥v∥Lp .

Hence the functional v 7−→
∫
R f (t, u(t))v(t)dt is linear and continuous.

Next, let ϵ > 0 be given. Since b ∈ Lr(R), there exists Tϵ > 0 such that
( ∫

|t|≥Tϵ
br(t)dt

) 1
r ≤ ϵ. It is well

known that the functional u 7−→
∫
|t|≤Tϵ

F(t, u(t))dt is continuously differentiable on the space

W2,p
Tϵ

=
{

u ∈ Lp([−Tϵ, Tϵ],R)/u′, u′′ ∈ Lp([−Tϵ, Tϵ],R)
}

,

with derivative
∫
[−Tϵ ,Tϵ ]

f (t, u(t))v(t)dt. Let u, v ∈ E with ∥v∥ ≤ 1, then there exists a constant 0 < αϵ < 1 such
that for ∥v∥ ≤ αϵ, ∣∣∣∣∫

[−Tϵ ,Tϵ ]
[F(t, u(t) + v(t))− F(t, u(t))− f (t, u(t))v(t)]dt

∣∣∣∣ ≤ ϵ ∥v∥ . (19)

Now, by the Mean Value Theorem, we have∫
|t|≥Tϵ

[F(t, u(t) + v(t))− F(t, u(t))]dt =
∫
|t|≥Tϵ

[ f (t, u(t) + h(t)v(t))v(t)dt,

where h(t) ∈]0, 1[. Therefore, by (F1) and Hölder’s inequality, we obtain∣∣∣∣∫|t|≥Tϵ

[F(t, u(t) + v(t))− F(t, u(t))− f (t, u(t))v(t)]dt
∣∣∣∣

=

∣∣∣∣∫|t|≥Tϵ

[ f (t, u(t) + h(t)v(t))− f (t, u(t))]v(t)dt
∣∣∣∣

≤
∫
|t|≥Tϵ

b(t)[|u(t) + h(t)v(t)|µ−1 + |u(t)|µ−1] |v(t)| dt

≤ 2
∫
|t|≥Tϵ

b(t)[|u(t)|µ−1 + |v(t)|µ−1] |v(t)| dt

≤ 2
( ∫

|t|≥Tϵ

br(t)dt
) 1

r
[( ∫

|t|≥Tϵ

[|u(t)|r
′(µ−1) |v(t)|r

′
dt
) 1

r′ +
( ∫

|t|≥Tϵ

|v(t)|r
′µ dt

) 1
r′
]

≤ 2ϵ
[( ∫

R
|u(t)|p dt

) µ−1
p
( ∫

R
|v(t)|p dt

) 1
p
+
( ∫

R
|v(t)|p dt

) µ
p
]

= 2ϵ
[
∥u∥µ−1

Lp ∥v∥Lp + ∥v∥µ
Lp

]
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≤ 2ϵ
[
∥u∥µ−1

Lp ηp + η
µ−1
p

]
∥v∥ . (20)

Combining (19) and (20) yields for ∥v∥ ≤ αϵ∣∣∣∣∫R[F(t, u(t) + v(t))− F(t, u(t))− f (t, u(t))v(t)]dt
∣∣∣∣ ≤ ϵ

[
1 + 2

(
ηp ∥u∥µ−1

Lp + η
µ−1
p

)]
∥v∥ ,

which implies that g is differentiable on E and g′(u)v =
∫
R f (t, u(t))v(t)dt for all u, v ∈ E.

It remains to prove that g′ is continuous. Since u 7−→
∫
|t|≤Tϵ

f (t, u(t))dt is continuous, there is 0 < βϵ ≤ αϵ

such that for ∥w∥ ≤ βϵ ∣∣∣∣∫|t|≤Tϵ

[ f (t, u(t) + w(t))− f (t, u(t))]dt
∣∣∣∣ ≤ ϵ. (21)

On the other hand, we have

sup
∥v∥=1

∣∣∣∣∫|t|≥Tϵ

[ f (t, u(t) + w(t))− f (t, u(t))]v(t)dt
∣∣∣∣ ≤ sup

∥v∥=1

∫
|t|≥Tϵ

b(t)[(|u(t)|+ |w(t)|)µ−1 + |u(t)|µ−1] |v(t)| dt

≤2 sup
∥v∥=1

∫
|t|≥Tϵ

b(t)[|u(t)|µ−1 + |w(t)|µ−1] |v(t)| dt

≤2 sup
∥v∥=1

( ∫
|t|≥Tϵ

br(t)
) 1

r
[( ∫

|t|≥Tϵ

|u(t)|r
′(µ−1) |v(t)|r

′ ) 1
r′

+
( ∫

|t|≥Tϵ

|w(t)|r
′(µ−1) |v(t)|r

′ ) 1
r′
]

≤2ϵ sup
∥v∥=1

[( ∫
|t|≥Tϵ

|u(t)|p
) µ−1

p
( ∫

|t|≥Tϵ

|v(t)|p
) 1

p

+
( ∫

|t|≥Tϵ

|w(t)|p
) µ−1

p
( ∫

|t|≥Tϵ

|v(t)|p
) 1

p
]

≤2ϵη
µ
p

[
∥u∥µ−1 + ∥w∥µ−1

]
≤ 2ϵη

µ
p

[
∥u∥µ−1 + 1

]
. (22)

Combining (21) and (22) yields for ∥w∥ ≤ βϵ∥∥g′(u + w)− g′(u)
∥∥

E∗ ≤ ϵ + 2ϵη
µ
p (∥u∥µ−1 + 1).

Hence g ∈ C1(E,R).

Therefore, it is well known that the functional J is continuously differentiable on E and we have

J′(u)v =
∫
R

[ ∣∣u′′(t)
∣∣p−2 u′′(t)v′′(t)− ω

∣∣u′(t)
∣∣p−2 u′(t)v′(t) + V(t) |u(t)|p−2 u(t)v(t)

]
dt

−
∫
R

f (t, u(t))v(t)dt, ∀u, v ∈ E.

Moreover the critical points of J on E are the homoclinic solutions of (F ).

Lemma 9. Assume that (V) and (F1) hold. Then J satisfies the (PS)−condition.

Proof. Let (un) be a (PS)−sequence, that is (J(un)) is bounded and J′(un) → 0 as n → ∞, then there exists a
positive constant c2 such that |J(un)| ≤ c2. By (F1) and Hölder’s inequality, we obtain

∥un∥p =pJ(un) + p
∫
R

F(t, un(t))dt

≤pc2 + p
∫
R

b(t) |un(t)|µ dt

≤pc2 + p
( ∫

R
br(t)dt

) 1
r
( ∫

R
|un(t)|p dt

) µ
p
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≤pc2 + p ∥b∥Lr ∥un∥µ
Lp

≤pc2 + pη
µ
p ∥b∥Lr ∥un∥µ .

Since 1 < µ < p, then (un) is bounded in E.
Then, going to a subsequence if necessary, we can assume that un ⇀ u weakly in E. By Lemma 4, un → u

in Lp(R) and by Lemma 7, we have f (., un) → f (., u) in Lν(R) as n → ∞. Therefore, by Hölder’s inequality,
we obtain

∥un − u∥p =
(

J′(un)− J′(u)
)
(un − u) +

∫
R

(
f (t, un(t))− f (t, u(t))

)
(un(t)− u(t))dt

≤(J′(un)− J′(u))(un − u) + ∥ f (., un)− f (., u)∥Lν ∥un − u∥Lp → 0 as n → ∞.

Hence un → u in E and J satisfies the (PS) condition.

Proof of Theorem 2. By (F1), Hölder’s inequality and Remark 3, we have∫
R

F(t, u(t))dt ≤ 1
µ

∫
R

b(t) |u(t)|µ dt

≤ 1
µ

( ∫
R

br(t)dt
) 1

r
( ∫

R
|u(t)|r

′µ (t)dt
) 1

r′

=
1
µ
∥b∥Lr ∥u∥µ

Lp ≤
η

µ
p

p
∥b∥Lr ∥u∥µ .

Hence

J(u) =
1
p
∥u∥p −

∫
R

F(t, u(t))dt

≥ 1
p
∥u∥p −

η
µ
p

µ
∥b∥Lr ∥u∥µ .

Since 1 < µ < p, we deduce that J(u) → +∞ as ∥u∥ → ∞, i.e. J is coercive and bounded from below.
Since J satisfies the (PS) condition, then the minimization Theorem implies that J achieves its minimum at a
point u0 ∈ E. It remains to prove that u0 is nontrivial. Let v0 ∈ E be such that v0(t) = 0, t ∈ R \ I be a nonzero
function. Then for all λ > 0, we have by (F2)

J(λv0) =
λp

p
∥v0∥p −

∫
R

F(t, λv0(t))dt

=
λp

p
∥v0∥p −

∫
I

F(t, λv0(t))dt

≤λp

p
∥v0∥p − a0λµ

∫
I
|v0(t)|µ dt,

which shows that J(λv0) < 0 for λ > 0 sufficiently small since 1 < µ < p. Therefore J(u0) = minE J < J(0) = 0
and u0 is a nontrivial solution of (F ).

Proof of Theorem 3. Assumptions (F1) and (F3) imply that J(0) = 0 and J is even. Lemma 9 implies that
J satisfies the (PS) condition and by the proof of Theorem 2, J is bounded from below. To apply Lemma
6, it remains to prove that for all k ∈ N, there exists a k−dimensional subspace Ek of E and ρk > 0 such that
supEk∩Sρk

J < 0, where Sρ = {u ∈ E/ ∥u∥ = ρ}. For k ∈ N, set Ij =]xj−1, xj[, j = 1, ..., k, where xj = c+ j
k (d− c).

We have
⋃k

j=1 Ij ⊂ I =]c, d[. For j = 1, ..., k, let uj ∈ C∞
0 (Ij,R) such that

∥∥uj
∥∥ = 1. Consider the k−dimensional

subspace
Ek = span {u1, ..., uk} .
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For u =
k
∑

j=1
λjuj ∈ Ek, we have

∥u∥µ
Lµ =

∫
R
|u(t)|µ dt =

k

∑
j=1

∫
Ij

|u(t)|µ dt

=
k

∑
j=1

∫
Ij

∣∣λjuj(t)
∣∣µ dt

=
k

∑
j=1

∣∣λj
∣∣µ ∫

Ij

∣∣uj(t)
∣∣µ dt,

and by (F2), we obtain for all u ∈ Ek

∫
R

F(t, u(t))dt =
k

∑
j=1

∫
Ij

F(t, u(t))dt =
k

∑
j=1

∫
Ij

F(t, λjuj(t))dt

≥
k

∑
j=1

∫
Ij

a0
∣∣λjuj(t)

∣∣µ dt

=a0

k

∑
j=1

∣∣λj
∣∣µ ∫

Ij

∣∣uj(t)
∣∣µ dt = a0 ∥u∥µ

Lµ . (23)

Since Ek is a finite dimensional subspace, there exists a constant Ck > 0 such that

Ck ∥u∥ ≤ ∥u∥Lµ , ∀u ∈ Ek. (24)

Combining (23) and (24) yields for all u ∈ Ek

J(u) =
1
p
∥u∥p −

∫
R

F(t, u(t))dt ≤ 1
p
∥u∥p − a0 ∥u∥µ

Lµ ≤ 1
p
∥u∥p − a0Cµ

k ∥u∥µ .

Hence J(u) < 0 for u ∈ Ek with ∥u∥ small enough and then there exists a constant ρk > 0 such that
supEk∩Sρk

J < 0. The functional J satisfies all the conditions of Lemma 6. Therefore J possesses infinitely many

pairs of nontrivial critical points (un,−un) such that limn→∞ ∥un∥ = 0 and then by Remark 3, system (F ) has
infinitely many pairs of nontrivial homoclinic solutions (un,−un) such that limn→∞ ∥un∥L∞ = 0. The proof of
Theorem 3 is completed.

Proof of Theorem 4. Using assumptions (V) and (F1), we have proved above that J achieves its minimum on
E at a point u0. We will prove that u0 is nontrivial. By (W ′

2), there exist positive constants r, R, l0 such that

F(t, x) ≥ l0 |x|µ , ∀(t, x) ∈]t0 − r, t0 + r[×B(0, R). (25)

Let v ∈ C∞
0 (]t0 − r, t0 + r[,R) be a nonzero function. For all λ > 0 such that λ ∥v∥L∞ < R, we have

J(λv) =
λp

p
∥v∥p −

∫
R

F(t, λv(t))dt ≤ λp

p
∥v∥p − l0λµ

∫
R
|v(t)|µ dt,

which implies that J(λv) < 0 for λ > 0 small enough because 1 < µ < p. Hence J(u0) = minE J < 0 = J(0)
and u0 is a nontrivial homoclinic solution of (F ).

Proof of Theorem 5. Denote I =]t0 − r, t0 + r[ the open interval introduced above. For k ∈ N, we take k
disjoint intervals Ij =]xj−1, xj[ where xj = t0 − r + j

k (2r), j = 1, ..., k, we have
⋃k

j=1 Ij ⊂ I. For j = 1, ..., k, let
uj ∈ C∞

0 (Ij,R) such that
∥∥uj
∥∥ = 1. Consider the k−dimensional subspace Ek of E defined by

Ek = span {u1, ..., uk} .
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For u =
k
∑

j=1
λjuj ∈ Ek, we have

∥u∥µ
Lµ =

k

∑
j=1

∣∣λj
∣∣µ ∫

Ij

∣∣uj(t)
∣∣µ dt.

Since Ek is a finite dimensional subspace, there exists a constant Ck > 0 such that

Ck ∥u∥ ≤ ∥u∥Lµ , ∀u ∈ Ek. (26)

Let u =
k
∑

j=1
λjuj ∈ Ek be such that ∥u∥ < R

η∞
, then we have

∥∥λjuj
∥∥

L∞ ≤ ∥u∥L∞ ≤ η∞ ∥u∥ < R. (27)

Combining (25), (26) and (27) yields for u =
k
∑

j=1
λjuj ∈ Ek with ∥u∥ < R

η∞

J(u) =
1
p
∥u∥p −

∫
R

F(t, u(t))dt

=
1
p
∥u∥p −

k

∑
j=1

∫
Ij

F(t, u(t))dt

=
1
p
∥u∥p −

k

∑
j=1

∫
Ij

F(t, λjuj(t))dt

≤ 1
p
∥u∥p −

k

∑
j=1

∫
Ij

l0
∣∣λjuj(t)

∣∣µ dt

=
1
p
∥u∥p − l0

k

∑
j=1

∣∣λj
∣∣µ ∫

Ij

∣∣uj(t)
∣∣µ dt

=
1
p
∥u∥p − l0 ∥u∥µ

Lµ ≤ 1
p
∥u∥p − l0Cµ

k ∥u∥µ .

Since 1 < µ < p, we deduce that there exists a constant 0 < ρk <
R

η∞
such that J(u) < 0 for all u ∈ Ek ∩ Sρk .

We conclude as in the proof of Theorem 3 that system (F ) has infinitely many pairs of nontrivial homoclinic
solutions (un,−un) such that limn→∞ ∥un∥L∞ = 0.
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