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1. Preliminaries

I n this section, we begin by introducing some definitions and notations necessary for our subsequent

development. Let us consider the unidimensional Gaussian measure γ(x) = e−x2
√

π
, with x ∈ R and as

usual ∥ f ∥p,γ denotes the norm
(∫

R | f (x)|pγ(dx)
)1/p of an element f ∈ Lp(γ), for 1 ≤ p < ∞. By Ap, Cp,x,

etc. we mean constants, not necessarily always the same, depending exclusively on the parameters shown as
subscripts.

The normalized Hermite polynomials of order k ∈ N∪ {0} is defined by

hk(x) = 1

(2kk!)
1/2 (−1)kex2 dk

dxk (e
−x2

). (1)

Given a function f ∈ L1(γ) its k-Fourier-Hermite coefficient and the Fourier Hermite expansion are
defined respectively by

c f
k =

∫
R

f (x)hk(x)γ(dx) and
∞

∑
k=0

c f
k hk(x).

It is well known that Hermite polynomials satisfy the following identity known as Mehler,s formula, (see
[1]),

∞

∑
k=0

hk(x)hk(y)rn =
e−

r2(x2+y2)−2rxy
1−r2

√
1 − r2

, 0 ≤ r < 1.

Moreover, the following estimate is true for each x ∈ R, (see [1, (8.22.8)] and [2]),

|hk(x)| ≤ ex2
√

k!
2k/2Γ( k

2 + 1)
(2)

and with respect to the norm Lp(γ), 1 < p < ∞, asymptotic estimates are obtained (see [3, Theorem 2.1])

∥hn∥p,γ =


c1(p)
n1/4

(
1 + O

(
1
n

))
if 0 < p < 2,

c2(p)
n1/4 (p − 1)n/2

(
1 + O

(
1
n

))
if 2 < p < ∞,

(3)
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where

c1(p) =
(

2
π

)1/4
µp

(
2

2 − p

)1/2p
,

c2(p) =
(

2
π

)1/4 ( p − 1
2(p − 2)

)1/2p
,

µp =

(∫ 1

0
| sin(πx)|pdx

)1/p

,

and recall that with this normalization, from (1), then ∥hn∥2,γ = 1. Also, the normalized Hermite polynomials
constitute an orthonormal system in L2(γ).

For n ∈ N ∪ {0} the partials sums of the Fourier Hermite expansions Sn f (x) and the arithmetic mean
Cn f (x) are defined as,

Sn f (x) =
n

∑
k=0

c f
k hk(x),

Cn f (x) =
1

n + 1

n

∑
k=0

Sk f (x) =
n

∑
k=0

(
1 − k

n + 1

)
c f

k hk(x),

and it has been proved in [4,5] that limn→∞ ∥Sn f − f ∥p,γ = 0 if and only if p = 2.
Following [6] and [2] let us consider the Abel means associated with the Fourier Hermite expansions

defined by

Ar f (x) =
∞

∑
k=0

rkc f
k hk(x), 0 ≤ r < 1,

thus, Mehler,s formula allows us to obtain the following integral representation

Ar f (x) =
∫
R

e−
r2(x2+y2)−2rxy

1−r2

√
1 − r2

f (y)γ(dy) =
∫
R

e−
|y−rx|2

1−r2√
π(1 − r2)

f (y)dy.

Ar f (x) exists for every f ∈ L1(γ) whether or not it has Hermite expansion. Note that by means of
the change of parameter r = e−t then Ar = T−log(r), where {Tt}∞

t=0 is the Ornstein-Uhlenbeck semigroup.
Furthermore, {Ar}1

r=0, is a family of strongly continuous linear operators and the maximal function A∗ f (x) =
sup0≤r<1 |Ar f (x)| ∈ Lp(γ), that is to say,

∥A∗ f ∥p,γ ≤ Cp∥ f ∥p,γ, 1 < p ≤ ∞. (4)

Also, limr→1− ∥Ar f − f ∥p,γ = 0, as well as, limr→1− Ar f (x) = f (x) almost everywhere, for 1 ≤ p ≤ ∞
(see [2, Theorem 2]) .

On the other hand, if f ∈ L2(γ) then
∞
∑

k=0
rkc f

k hk(x) converges absolutely to Ar( f )(x) almost everywhere,

but for every 1 ≤ p < 2, there exist a function f ∈ Lp(γ) and r < 1, such that,
∞
∑

k=0
rkc f

k hk(x) diverges for every

x. (see [2, Lemma 2]).
Now following [7] given a function f ∈ L1(γ), m ≥ 0, we consider the integrals operators

Qr,m f (x) =
∫
R

|y − rx|m

(1 − r2)(m+1)/2
e−

|y−rx|2
1−r2 f (y)dy, (5)

Q∗
m f (x) = sup

0≤r<1
|Qr,m f (x)|,

and for 0 ≤ r < 1, 1 < p < ∞, it was obtained that these operators are Lp(γ) continuous, (see [7, Theorem 3]),
therefore

∥Qr,m f ∥p,γ ≤ Cp∥ f ∥p,γ, and ∥Q∗
m f ∥p,γ ≤ Cp∥ f ∥p,γ. (6)
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Also, let us consider the operators defined as

Lm f (x) =
∫
|x−y|>1∧ 1

|x|

∫ 1

0
φ(r)

|y − rx|m

(1 − r2)(m+3)/2
e−

|y−rx|2
1−r2 dr f (y)dy, (7)

where φ is a bounded function on [0, 1]. Therefore,

∥Lm f ∥p,γ ≤ Cp∥ f ∥p,γ, 1 < p < ∞, (8)

(see [7, Theorem 6]).
Finally, for f ∈ Lp(γ) let k be a Calderón-Zygmund kernel. We consider the integral operator K defined

as
K f (x) =

∫
|x−y|<1∧ 1

|x|

k(x − y) f (y)dy, (9)

and we have that K is an Lp(γ)-continuous operator (see [7, Theorem 5]),

∥K f ∥p,γ ≤ Cp∥ f ∥p,γ, 1 < p < ∞. (10)

In particular, these operators Qr,m, Lm and K, as well as their Lp(γ)-continuity will be key in the
development of our argument.

2. The results

2.1. Littlewood Paley function

Inspired by the classic case, (see [6, chapter XIV]), we define a Littlewood Paley g function as

g f (x) =
(∫ 1

0
(1 − r)|∂r Ar f (x)|2dr

)1/2

,

and we obtain the Lp(γ) continuity of the g function, for 1 < p < ∞. For this purpose, we need the following
technical result (see [8, Lemma 3, chapter V] for a similar version). Formally,

Lemma 1. Let us denote u(s) = |y−
√

1−sx|2
s where s ∈ (0, 1). Then, for all m ∈ R, if |x − y| < 1 ∧ 1

|x| , there exist a
constant C > 0, such that, ∫ 1

0

um(s)
s3/2 e−u(s) ds√

1 − s
≤ C

|x − y| . (11)

Similarly, ∫ 1

0

u1/2(s)
s

e−u(s) ds√
1 − s

≤ C
|x − y| . (12)

Proof. If |x − y| < 1 ∧ 1
|x| , then |x − y||x| < 1 and therefore,

|y −
√

1 − sx|2 = |(y − x) + (1 −
√

1 − s)x|2 ≥ ||y − x| − (1 −
√

1 − s)|x||2

≥ |y − x|2 − 2|x − y||x|(1 −
√

1 − s)

= |y − x|2 − 2|x − y||x| s
(1 +

√
1 − s)

≥ |y − x|2 − 2s.

Then, we consider δ ∈ (0, 1) and since um(s)e−(1−δ)u(s) is uniformly bounded in (0, 1), for all m, we just
need to estimate the integral ∫ 1

0

e−δu(s)

s3/2
ds√
1 − s

.
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Now, let us denote by a = a(x, y) = |x|2 + |y|2 and b = b(x, y) = 2xy, so u(s) ≥ |x−y|2
s − 2 = a−b

s − 2 and

e−δu(s) ≤ e−2δe−δ
(a−b)

s . Considering the changes of variables, first, w = a−b
s and then, θ = w − (a − b) we can

express,

∫ 1

0

e−δu(s)

s3/2
ds√
1 − s

≤ e−2δ

√
a − b

∫ ∞

a−b

e−δwdw√
w − (a − b)

≤ e−2δe−δ(a−b)
√

a − b

∫ ∞

0
e−δθθ−1/2dθ

≤ e−2δΓ(1/2)√
δ
√

a − b
.

Then, (11) follows from recalling that a − b = |x − y|2. Finally, by an absolutely similar argument we
obtain (12).

Theorem 1. If 1 < p < ∞ and f ∈ Lp(γ), then there exist a constant Cp > 0 such that

∥g f ∥p,γ ≤ Cp∥ f ∥p,γ.

Proof. We first prove the theorem in case p = 2. Let f ∈ L2(γ), thus if f has Fourier Hermite expansion
∞
∑

k=0
c f

k hk(x), then Ar f (x) and ∂r Ar f (x) have expansions

∞

∑
k=0

rkc f
k hk(x) and

∞

∑
k=1

krk−1c f
k hk(x),

respectively. So, by orthonormality of Hermite polynomials

∫
R
|∂r Ar f (x)|2γ(dx) =

∞

∑
k=1

k2r2k−2(c f
k )

2,

and therefore, Tonelli,s theorem allows us to obtain that

∥g f ∥2
2,γ =

∫
R

∫ 1

0
(1 − r)|∂r Ar f (x)|2drγ(dx)

=
∞

∑
k=1

k2(c f
k )

2
(∫ 1

0
(1 − r)r2k−2dr

)

=
∞

∑
k=1

k2(c f
k )

2

2k(2k − 1)
.

Consequently, ∥g f ∥2,γ ≤ 1√
2
∥ f ∥2,γ.

Now, let us considering 1 < p ≤ 2 and f ∈ Lp(γ). Suppose that the inequality is true for some p and
verify it for 1 < k < p. First, we observe that if f ∈ Lp(γ) then f ∈ Lk(γ). For each 0 < r < 1, let us denote by
u(r, x) = Ar f (x) and h(r, x) = uk/p(r, x), thus

∥h(r, .)∥p
p,γ = ∥u(r, .)∥k

k,γ ≤ Ck∥ f ∥k
k,γ. (13)

Therefore,

g2 f (x) =
∫ 1

0
(1 − r)|∂ru(r, x)|2dr

=
∫ 1

0
(1 − r)|

( p
k

)
h(p/k)−1(r, x)∂rh(r, x)|2dr
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≤
( p

k

)2
(A∗ f )(x)2(p−k)/p

(∫ 1

0
(1 − r)|∂rh(r, x)|2dr

)
,

since
h2(p−k)/k(r, x) = u2(p−k)/p(r, x) ≤ (A∗ f (x))2(p−k)/p,

which implies that,

g f (x) ≤
( p

k

)
(A∗ f (x))(p−k)/pgh(x).

Then, ∫
R

gk f (x)γ(dx) ≤
( p

k

)k ∫
R
(A∗ f (x))k(p−k)/pgkh(x)γ(dx),

and Hölder inequality, with exponents p/(p − k) and p/k, allows us to obtain

∥g f ∥k
k,γ ≤

( p
k

)k
∥A∗ f ∥k(p−k)/p

k,γ ∥gh∥k
p,γ.

But by hypothesis and from (13) we get that ∥gh∥k
p,γ ≤ Cp,k∥ f ∥k2/p

p,γ . Thus, (4) allows us to conclude that,

∥g f ∥k,γ ≤ Ck∥ f ∥k,γ, if 1 < k < p,

and therefore, ∥g f ∥p,γ ≤ Cp∥ f ∥p,γ for all 1 < p ≤ 2.

Now, we consider p ≥ 4 and let q be such that 1
q + 2

p = 1. So, q = p/(p − 2) and 1 ≤ q ≤ 2. Let ϕ be a
testing function. We assume ϕ ≥ 0, with support on |x| ≤ 1, such that, ∥ϕ∥2,γ = 1. Then,

∥g f ∥2
p,γ = ∥g2 f ∥p/2,γ = sup

{∥ϕ∥q,γ≤1}

∫
R

g2 f (x)ϕ(x)γ(dx).

But, ∫
R

g2 f (x)ϕ(x)γ(dx) =
∫
R

∫ 1

0
(1 − r)(∂r Ar f )2(x)drϕ(x)γ(dx)

=
∫
R

∫ 1

0
(1 − r)

∫
R

∂r

 e−
|y−rx|2

1−r2√
π(1 − r2)

 f (y)dy


2

drϕ(x)γ(dx),

and since

∂r

 e−
|y−rx|2

1−r2

√
1 − r2

 =
e−

|y−rx|2
1−r2

√
1 − r2

(
2x|y − rx|

1 − r2 − 2r|y − rx|2
(1 − r2)2 +

r
1 − r2

)
,

noting that ∫
R

e−
|y−rx|2

1−r2√
π(1 − r2)

dy = 1,

then by Jensen,s integral inequality we obtain that

∫
R

∫ 1

0
(1 − r)(∂r Ar f )2(x)drϕ(x)γ(dx) ≤

∫
R

∫ 1

0
(1 − r)

∫
R

e−
|y−rx|2

1−r2√
π(1 − r2)

(
2x|y − rx|

1 − r2 − 2r|y − rx|2
(1 − r2)2 +

r
1 − r2

)2

f 2(y)dydrϕ(x)γ(dx) = I.
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Now,(
2x|y − rx|

1 − r2 − 2r|y − rx|2
(1 − r2)2 +

r
1 − r2

)2

=
4x2|y − rx|2
(1 − r2)2 − 8xr|y − rx|3

(1 − r2)3 +
4r2|y − rx|4
(1 − r2)4 +

4xr|y − rx|
(1 − r2)2 − 4r2|y − rx|2

(1 − r2)3 +
r2

(1 − r2)2 ,

and since 1 − r ≤ 1 − r2 if r ∈ [0, 1), then we obtain explicity

I ≤ 1√
π

∫
R

∫ 1

0

∫
R

e−
|y−rx|2

1−r2

(
4x2|y − rx|2
(1 − r2)3/2 +

8xr|y − rx|3
(1 − r2)5/2 +

4r2|y − rx|4
(1 − r2)7/2

+
4xr|y − rx|
(1 − r2)3/2 +

4r2|y − rx|2
(1 − r2)5/2 +

r2

(1 − r2)3/2

)
f 2(y)dydrϕ(x)γ(dx)

=
6

∑
j=1

1√
π

∫
R

∫ 1

0

∫
R

e−
|y−rx|2

1−r2 ∆j(r, x, y) f 2(y)dydrϕ(x)γ(dx),

where ∆j(r, x, y) represents each fraction of the sum. Now, if we denote by

Wj =
1√
π

∫
R

∫ 1

0

∫
R

e−
|y−rx|2

1−r2 ∆j(r, x, y) f 2(y)dydrϕ(x)γ(dx),

then we have to estimate each integral Wj, for each j = 1, .., 6.
To estimate W1 note that from Eq. (5), we can express

∫
R

e−
|y−rx|2

1−r2 |y − rx|2
(1 − r2)3/2 f 2(y)dy = Qr,2( f 2)(x).

Thus, applying Hölder,s inequality and (6) we get

W1 ≤ 4√
π

∫
R

x2Q∗
2( f 2)(x)ϕ(x)γ(dx) ≤ 4√

π
∥Q∗

2( f 2)∥p/2,γ

(∫
R
|x|2q|ϕ(x)|qγ(dx)

)1/q

≤ Cp∥ f 2∥p/2,γ

(∫
|x|≤1

|ϕ(x)|qγ(dx)
)1/q

≤ Cp∥ f ∥2
p,γ.

Now we estimate W2. First, we express

R =

{
y : |x − y| ≤ 1 ∧ 1

|x|

}
∪
{

y : |x − y| > 1 ∧ 1
|x|

}
= R1 ∪ R2,

then using (7) and Tonelli,s theorem we write

W2 ≤
∫
R

∫
R1

∫ 1

0

8|x||y − rx|3√
π(1 − r2)3 e−

|y−rx|2
1−r2 f 2(y)dydrϕ(x)γ(dx) +

∫
R
|x|L3( f 2)(x)ϕ(x)γ(dx)

= T1 + T2,

where φ(r) = 8r(1 − r2)1/2. Again, by means of Hölder,s inequality and (8) we obtain

T2 =
1√
π

∫
R
|x|L3( f 2)(x)ϕ(x)γ(dx) ≤ 1√

π
∥L3( f 2)∥p/2,γ

(∫
R
|x|q|ϕ(x)|qγ(dx)

)1/q

≤ Cp∥ f 2∥p/2,γ

(∫
|x|≤1

|ϕ(x)|qγ(dx)
)1/q

≤ Cp∥ f ∥2
p,γ.
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On the other hand, if y ∈ R1, then under the change of variable s = 1− r2, we have that (11) of the Lemma
1, allows us to conclude that

∫ 1

0

|y − rx|3
(1 − r2)3 e−

|y−rx|2
1−r2 dr =

∫ 1

0

|y −
√

1 − sx|3
s3 e−

|y−
√

1−sx|2
s

ds√
1 − s

=
∫ 1

0

u3/2(s)
s3/2 e−u(s) ds√

1 − s

≤ C
|x − y| .

By using (9), Hölder,s inequality and (10), where k(x − y) = |x − y|−1 we obtain that

T1 ≤ C
∫
R
|x|K( f 2)(x)ϕ(x)γ(dx) ≤ ∥K( f 2)∥p/2,γ

(∫
R
|x|q|ϕ(x)|qγ(dx)

)1/q

≤ Cp∥ f ∥2
p,γ

and in conclusion, W2 ≤ Cp∥ f ∥2
p,γ.

The estimation of W3 follows a similar argument to the previous case. Thus, again considering R =

R1 ∪ R2, we express

W3 ≤
∫
R

∫
R1

∫ 1

0

4r2|y − rx|4√
π(1 − r2)7/2 e−

|y−rx|2
1−r2 f 2(y)dydrϕ(x)γ(dx) +

∫
R

L4( f 2)(x)ϕ(x)γ(dx)

= T1 + T2,

where φ(r) = 4r2 is a bounded function. Again, if y ∈ R1 we apply the lemma 1 by observing that

∫ 1

0

|y − rx|4
(1 − r2)7/2 e−

|y−rx|2
1−r2 dr =

∫ 1

0

|y −
√

1 − sx|4
s7/2 e−

|y−
√

1−sx|2
s

ds√
1 − s

=
∫ 1

0

u2(s)
s3/2 e−u(s) ds√

1 − s

≤ C
|x − y| .

This way, Hölder,s inequality allows us to obtain

T1 ≤ C
∫
R

K( f 2)(x)ϕ(x)γ(dx) ≤ C∥K( f 2)∥p/2,γ∥ϕ∥q,γ ≤ Cp∥ f ∥2
p,γ,

and
T2 =

∫
R

L4( f 2)(x)ϕ(x)γ(dx) ≤ C∥L4( f 2)∥p/2,γ∥ϕ∥q,γ ≤ Cp∥ f ∥2
p,γ,

therefore, W3 ≤ Cp∥ f ∥2
p,γ.

Again, the estimation of W4 follows a similar argument developed for W2 and W3. But in this case, if
y ∈ R2, we consider the operator

L1( f 2)(x) =
∫

R2

∫ 1

0
φ(r)

|y − rx|
(1 − r2)2 e−

|y−rx|2
1−r2 dr f 2(y)dy,

where φ(r) = 4r(1 − r2)1/2. If y ∈ R1, then by using (12) of the lemma 1, we note that

∫ 1

0

|y − rx|
(1 − r2)3/2 e−

|y−rx|2
1−r2 dr =

∫ 1

0

|y −
√

1 − sx|
s3/2 e−

|y−
√

1−sx|2
s

ds√
1 − s

=
∫ 1

0

u1/2(s)
s

e−u(s) ds√
1 − s

≤ C
|x − y| ,
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and the rest of the argument follows similarly to the previous cases, obtaining that W4 ≤ Cp∥ f ∥2
p,γ.

Now, the estimate of W5 is as follows. Once more, we express R = R1 ∪ R2. If y ∈ R2 then we consider

L2( f 2)(x) =
∫

R2

∫ 1

0
φ(r)

|y − rx|2
(1 − r2)5/2 e−

|y−rx|2
1−r2 dr f 2(y)dy,

where φ(r) = 4r2. But if y ∈ R1, then from (11) we get

∫ 1

0

|y − rx|2
(1 − r2)5/2 e−

|y−rx|2
1−r2 dr =

∫ 1

0

|y −
√

1 − sx|2
s5/2 e−

|y−
√

1−sx|2
s

ds√
1 − s

=
∫ 1

0

u(s)
s3/2 e−u(s) ds√

1 − s

≤ C
|x − y| ,

and similarly we conclude that W5 ≤ Cp∥ f ∥2
p,γ.

Finally, we need to estimate W6. To do this, if y ∈ R2 let us consider the operator

L0( f 2)(x) =
∫

R2

∫ 1

0
φ(r)

e−
|y−rx|2

1−r2

(1 − r2)3/2 dr f 2(y)dy,

where φ(r) = r2 and if y ∈ R1 let us consider, from (11) the estimation

∫ 1

0

e−
|y−rx|2

1−r2

(1 − r2)3/2 dr =
∫ 1

0

|y −
√

1 − sx|0
s3/2 e−

|y−
√

1−sx|2
s

ds√
1 − s

=
∫ 1

0

u0(s)
s3/2 e−u(s) ds√

1 − s

≤ C
|x − y| ,

and thus, W6 ≤ Cp∥ f ∥2
p,γ.

In summary, we have obtained that

∥g f ∥2
p,γ ≤ I ≤

6

∑
j=1

Wj ≤ Cp∥ f ∥2
p,γ,

and therefore
∥g f ∥p,γ ≤ Cp∥ f ∥p,γ, for p ≥ 4.

For a general function in Lp(γ), we need only approximate in norm by a sequence of indefinitely
differentiable functions with compact support.

Finally, if 2 < p < 4 the results follows by Marcinkiewicz interpolation theorem and this completes the
proof of this theorem.

2.2. Auxiliary functions related to g

Following [6] we introduce various auxiliary functions related to g-function, defined in the previous
section. Thus, the auxiliary functions we introduce are

σ1 f (x) =

(
∞

∑
k=0

|Sk f (x)− Ck f (x)|2
)1/2

,

σ2 f (x) =

(
∞

∑
k=1

|Sk f (x)− Ck f (x)|2
k

)1/2

,
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σ f (x) =

(
∞

∑
k=0

|∆k f (x)|2
)1/2

,

where ∆k f (x) = S2k f (x)− S2k−1 f (x) and k = 0, 1, 2, . . . .
Then comparisons are made between these functions and the Littlewood Paley operator. Thus, we first

have the following result

Theorem 2. Suppose that f ∈ L2(γ), then σ2 f < ∞ almost everywhere in R.

Proof. We have that Sk f (x)− Ck f (x) =
k
∑

j=0

j
k+1 c f

j hj(x). Then by orthonormality of Hermite polynomials,

∫
R
|Sk f (x)− Ck f (x)|2γ(dx) =

k

∑
j=0

j2(c f
j )

2

(k + 1)2 ,

and taking the sum with respect to k,

∫
R

∞

∑
k=1

|Sk f (x)− Ck f (x)|2
k

γ(dx) =
∞

∑
k=1

k

∑
j=0

j2(c f
j )

2

k(k + 1)2 .

But,
∞

∑
k=1

k

∑
j=0

j2(c f
j )

2

k(k + 1)2 ≤
∞

∑
j=1

j2(c f
j )

2

(
∞

∑
k=j

1
k3

)
≤ 1

2

∞

∑
j=1

(c f
j )

2,

therefore, ∫
R

∞

∑
k=1

|Sk f (x)− Ck f (x)|2
k

γ(dx) ≤ 1
2

∞

∑
j=1

(c f
j )

2 < ∞,

which implies that σ2 f < ∞ almost everywhere.

Corollary 1. Suppose f ∈ L2(γ), such that, c f
j = O(j3/2), ∀j. Then, σ1 f < ∞ almost everywhere in R.

Proof. Similar to the previous result, we obtain that

∫
R

∞

∑
k=0

|Sk f (x)− Ck f (x)|2γ(dx) =
∞

∑
k=0

k

∑
j=0

j2(c f
j )

2

(k + 1)2

≤
∞

∑
j=0

j2(c f
j )

2

(
∞

∑
k=j

1
k2

)

≤ 1
2

∞

∑
j=1

j(c f
j )

2 ≤ 1
2

∞

∑
j=1

1
j2

< ∞,

since c f
j = O(j3/2).

Now we establish the following result similar to the classical case (see [6])

Theorem 3. For each x ∈ R, there exist a constant C > 0, such that,

g f (x) ≤ Cσ2 f (x).
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Proof. We have (k + 1)(Sk f (x)− Ck f (x)) =
k
∑

j=1
jc f

j hj(x) and since

∞

∑
k=1

kc f
k rk−1hk(x) = (1 − r)

∞

∑
k=1

k

∑
j=1

jc f
j hj(x)rk−1,

then,

∂r Ar f (x) = (1 − r)
∞

∑
k=1

(k + 1)(Sk f (x)− Ck f (x))rk−1.

If rn = 1 − 1
n we can express

g2 f (x) =
∞

∑
n=1

∫ rn+1

rn
(1 − r)|∂r Ar f (x)|2dr

≤
∞

∑
n=1

∫ rn+1

rn
(1 − r)

(
(1 − rn)

∞

∑
k=1

(k + 1)|Sk f (x)− Ck f (x)|rk−1
n+1

)2

dr

≤
∞

∑
n=1

(1 − rn)2

n3

(
∞

∑
k=1

(k + 1)|Sk f (x)− Ck f (x)|rk−1
n+1

)2

≤
∞

∑
n=1

1
n5

(
∞

∑
k=1

(k + 1)|Sk f (x)− Ck f (x)|rk−1
n+1

)2

.

Now, as for each n ∈ N we have that(
∞

∑
k=1

(k + 1)|Sk f (x)− Ck f (x)|rk−1
n+1

)2

≤ 2

(
n

∑
k=1

(k + 1)|Sk f (x)− Ck f (x)|rk−1
n+1

)2

+ 2

(
∞

∑
k=n+1

(k + 1)|Sk f (x)− Ck f (x)|rk−1
n+1

)2

,

then
g2 f (x) ≤ P(x) + Q(x),

where,

P(x) = 2
∞

∑
n=1

1
n5

(
n

∑
k=1

(k + 1)|Sk f (x)− Ck f (x)|rk−1
n+1

)2

,

and

Q(x) = 2
∞

∑
n=1

1
n5

(
∞

∑
k=n+1

(k + 1)|Sk f (x)− Ck f (x)|rk−1
n+1

)2

.

Now by using Cauchy-Schwarz inequality

P(x) ≤ 2
∞

∑
n=1

1
n5

(
n

∑
k=1

|Sk f (x)− Ck f (x)|2
)(

n

∑
k=1

(k + 1)2

)

≤ 2C
∞

∑
n=1

1
n2

(
n

∑
k=1

|Sk f (x)− Ck f (x)|2
)

= 2C
∞

∑
k=1

|Sk f (x)− Ck f (x)|2
(

∞

∑
n=k

1
n2

)

≤ 2C
∞

∑
k=1

|Sk f (x)− Ck f (x)|2
k

.
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On the other hand, again by means of the Cauchy Schwarz inequality we obtain

Q(x) ≤ 2
∞

∑
n=1

1
n5

(
∞

∑
k=n+1

|Sk f (x)− Ck f (x)|2
k2

)(
∞

∑
k=n+1

k2(k + 1)2r2k−2
n+1

)
.

But,
∞

∑
k=n+1

k2(k + 1)2r2k−2
n+1 ≤

∞

∑
k=0

k2(k + 1)2r2k−2
n+1 ≤ C

(1 − rn+1)5 ,

since 0 < rn+1 < 1. Therefore,

Q(x) ≤ 2C
∞

∑
n=1

1
n5

(
∞

∑
k=n+1

|Sk f (x)− Ck f (x)|2
k2

)
1

(1 − r2
n+1)

5

= 2C
∞

∑
n=1

(
n + 1

n

)5
(

∞

∑
k=n+1

|Sk f (x)− Ck f (x)|2
k2

)

≤ 26C
∞

∑
n=1

∞

∑
k=n+1

|Sk f (x)− Ck f (x)|2
k2

= A
∞

∑
k=1

k

∑
n=1

|Sk f (x)− Ck f (x)|2
k2

= A
∞

∑
k=1

|Sk f (x)− Ck f (x)|2
k

,

and the result follows.

Now, we present a version of Tauber’s theorem. To do so, the following results about the asymptotic
behavior of the Fourier-Hermite coefficients is necessary.

Lemma 2. Suppose f ∈ L1(γ). If c f
k = O(eαk) with α < −1/2, ∀k ∈ N, then

lim
k→∞

k|c f
k ||hk(x)| = 0,

for each x ∈ R.

Proof. From (2) and the identity
√

2πΓ(2k) = 22k−1Γ(k)Γ(k + 1
2 ) we obtain

k|hk(x)| ≤ ex2

2
√

2π

Γ(k + 1)(k!)1/223k/2

Γ(2k)
.

But Γ(k + 1) = k! and Γ(2k) = (2k − 1)! thus,

k|hk(x)| ≤ ex2

2
√

2π

(k!)3/223k/2

(2k − 1)!
.

Then, by means of Stirling’s formula, k! ∼=
√

2πkkke−k and denoting Ax = ex2

2e 4√2π
we have that,

lim
k→∞

k|hk(x)||c f
k | ≤ ex2

2
√

2π
lim
k→∞

|c f
k |

(
√

2πkkke−k)3/223k/2√
2π(2k − 1)(2k − 1)2k−1e−(2k−1)

= Ax lim
k→∞

|c f
k |k

5/2ek/2
(

k
2k − 1

)1/2 ( 2k
2k − 1

)2k−1
(2k)−k/2

≤ Ax lim
k→∞

k5/2e(α+(1/2))k
(

k
2k − 1

)1/2 ( 2k
2k − 1

)2k−1
(2k)−k/2

= 0,
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since by hypothesis, we have |c f
k | ≤ Meαk for some constant M > 0 and also, α < −1/2.

Then, under the hypotheses of previous Lemma we affirm that

lim
k→∞

1
n

n

∑
k=1

k|c f
k ||hk(x)| = 0, for each x ∈ R and n ∈ N. (14)

In fact, it is enough to observe that (14) are arithmetic means C̃n f (x) of the partials sums S̃k f (x) defined
as S̃k f (x) = k|c f

k ||hk(x)|, k = 1, · · · , n.
In an analogous way, we obtain the following asymptotic behavior with respect to the Lp(γ)-norm of the

Fourier Hermite coefficients.

Lemma 3. Suppose that f ∈ Lp(γ) and let
∞
∑

n=1
c f

nhn be the Fourier-Hermite expansion of f .

i) If 1 < p < 2 and c f
k = O(kα) with α < −3/4, ∀k ∈ N, then

lim
k→∞

k|c f
k |∥hk∥p,γ = 0.

ii) If 2 < p < ∞ and c f
k = O((p − 1)βkα) with α < −3/4 and β < −1/2, ∀k ∈ N, then

lim
k→∞

k|c f
k |∥hk∥p,γ = 0.

Proof. i) We consider 1 < p < 2. Then, using (3) we immediately obtain that ∥hk∥p,γ ≤ Mpk−1/4 for some
constant Mp > 0 that depends only on p. Therefore,

lim
k→∞

k|c f
k |∥hk∥p,γ ≤ Mp lim

k→∞
kα+(3/4) = 0.

ii) Similarly, if 2 < p < ∞ from (3) we get again that

lim
k→∞

k|c f
k |∥hk∥p,γ ≤ Mp lim

k→∞
kα+(3/4)(p − 1)β+(1/2) = 0,

and the result of the lemma follows.

In this way, we are ready to establish the following theorems.

Theorem 4 (Tauber). Suppose that f ∈ L1(γ). If f has the Hermite expansion,
∞
∑

n=1
c f

nhn, such that, c f
0 = 0 and

c f
k = O(eαk) with α < −1/2, then

limk→∞Sk f (x) = f (x),

for each x ∈ R.

Proof. First, we recall that limr→1− Ar f (x) = f (x), if and only if, limk→∞ Ark f (x) = f (x), ∀(rk)
∞
k=1, such that,

limk→∞ rk = 1−. Fix x ∈ R, let ϵ > 0 and we set r = 1 − 1
k . Then, there exists N1 ∈ N such that,

|Ark f (x)− f (x)| < ϵ/3, ∀k ≥ N1.

Now, from Lemma 2 there exists N2 ∈ N, such that,

k|c f
k ||hk(x)| < ϵ/3, ∀k ≥ N2

and finally, from (14) there exists N3 ∈ N, such that,

1
n

n

∑
k=1

k|c f
k ||hk(x)| < ϵ/3 ∀k ≥ N3 and each n ∈ N.
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Considering N0 = max(N1, N2, N3) and k ≥ N0 we obtain,

|Sk f (x)− f (x)| ≤ |Sk f (x)− Ark f (x)|+ |Ark f (x)− f (x)|

≤
k

∑
j=0

(1 − rj)|c f
j ||hj(x)|+

∞

∑
j=k+1

rj|c f
j ||hj(x)|+ |Ark f (x)− f (x)|

≤ (1 − r)
k

∑
j=0

j|c f
j ||hj(x)|+

∞

∑
j=k+1

rj
j|c f

j ||hj(x)|
j

+ |Ark f (x)− f (x)|

≤ 1
k

k

∑
j=0

j|c f
j ||hj(x)|+ ϵ

3k

∞

∑
j=0

rj + |Ark f (x)− f (x)|

< ϵ,

and the result follows.

Similarly, we obtain the following theorem.

Theorem 5. Let f ∈ Lp(γ) where 1 < p < ∞. Suppose that f has the Hermite expansion,
∞
∑

n=1
c f

nhn, such that, c f
0 = 0.

Then,
i) If 1 < p < 2 and c f

k = O(kα) with α < −3/4, then we have that limk→∞∥Sk f − f ∥p,γ = 0.

ii) If 2 < p < ∞ and c f
k = O

(
(p − 1)βkkα

)
where α < −3/4 and β < −1/2, then limk→∞∥Sk f − f ∥p,γ = 0.

iii) If p = 2 and c f
k = o(1/k), then limk→∞∥Sk f − f ∥p,γ = 0.

Proof. i) The proof of this item follows a similar argument to that developed in the previous theorem. Thus,
given ϵ > 0 there exists N1 ∈ N such that, ∥Ark f − f ∥ < ϵ/3, ∀k ≥ N1. On the other hand, Lemma 3 allows us
to conclude that there is N2 ∈ N, such that,

k|c f
k |∥hk∥p,γ < ϵ/3, ∀k ≥ N2,

and therefore, for some N3 ∈ N we get

1
n

n

∑
k=1

k|c f
k |∥hk∥p,γ < ϵ/3 ∀k ≥ N3.

Then, defining N0 = max(N1, N2, N3) we have

∥Sk f − f ∥p,γ ≤ 1
k

k

∑
j=0

j|c f
j |∥hj∥p,γ +

ϵ

3k

∞

∑
j=0

rj + ∥Ark f − f ∥p,γ

< ϵ.

In a similar way, item ii) is demonstrated. The case p = 2 is deduced from the fact that ∥hk∥2,γ = 1, so it

is enough to consider Fourier-Hermite coefficients c f
k , such that, limk→∞ k|c f

k | = 0, as in the classical case.

Therefore, we observe that for certain functions f , such that, they satisfy the hypotheses of the Theorem

4, the behaviour of the kth partial sum of
∞
∑

n=1
c f

nhn(x) is similar to the behavior of Ar( f )(x) =
∞
∑

n=1
rnc f

nhn(x),

for r = rk = 1 − 1
k . In this way we obtain the following result.

Theorem 6. Under the hypotheses of Theorem 4 we obtain,

σ f (x) ≤ Cxg f (x),

for each x ∈ R.
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Proof. First note that from Theorem 4, considering r = rk = 1 − 1
2k and by means of Cauchy-Schwarz

inequality we get

σ2 f (x) =
∞

∑
k=0

|S2k f (x)− S2k−1 f (x)|2 ≈ Cx

∞

∑
k=0

|Ark f (x)− Ark−1 f (x)|2

≤ Cx

∞

∑
k=0

(∫ rk

rk−1

|∂s As f (x)|ds
)2

≤ Cx

∞

∑
k=0

(rk − rk−1)
∫ rk

rk−1

|∂s As f (x)|2ds

= Cx

∞

∑
k=0

∫ rk

rk−1

(1 − rk)|∂s As f (x)|2ds

≤ Cx

∫ ∞

0
(1 − s)|∂s As f (x)|2ds = g2 f (x),

and the result of the Theorem follows.

2.3. Theorems about Lp norms, 1 < p < ∞

Then we start this section giving the following Lemmas (see [6, Lemma 2.10, Lemma 2.22] for similar
versions) and we present it with details for the sake of completeness.

Lemma 4. Suppose that G is a linear subespace of functions ϕ ∈ Lp(γ), 1 < p < ∞, and ψ = Tϕ an additive operation
defined for ϕ ∈ G, such that,

i) If ϕ is real-valued so is ψ.
ii) ∥ψ∥p,γ ≤ M∥ϕ∥p,γ with M independent of ϕ.
Let ϕ1, ϕ2, ... be a set of functions in G and ψj = Tϕj. Then,

∥Ψ∥p,γ ≤ M∥Φ∥p,γ,

where Φ =

(
∑
j
|ϕj|2

)1/2

and Ψ =

(
∑
j
|ψj|2

)1/2

.

Proof. Let α1, α2, .., αn be a fixed set of direction angles in Rn, so (cos(α1), ..., cos(αn)) ∈ Σ, where Σ is the
n-dimensional unit sphere. If we denote ϕ = ∑

j
ϕj cos(αj) and ψ = ∑

j
ψj cos(αj), then ψ = Tϕ and by ii) we

obtain ∫
R

∣∣∣∣∣∑j
ψj cos(αj)

∣∣∣∣∣
p

γ(dx) ≤ Mp
∫
R

∣∣∣∣∣∑j
ϕj cos(αj)

∣∣∣∣∣
p

γ(dx). (15)

Now, we observe that∣∣∣∣∣∑j
ψj cos(αj)

∣∣∣∣∣ = |Ψ(x)|| cos(δ)| and

∣∣∣∣∣∑j
ϕj cos(αj)

∣∣∣∣∣ = |Φ(x)|| cos(β)|,

where δ, β denoting the angles between the vectors (ψj)j and (cos(αj))j and (ϕj)j and (cos(αj))j respectively.
Therefore, integrate (15) over Σ, Fubini,s Theorem allows us to write

∫
R
|Ψ(x)|p

(∫
Σ
| cos(δ)|pdσ

)
γ(dx) ≤ Mp

∫
R
|Φ(x)|p

(∫
Σ
| cos(β)|pdσ

)
γ(dx).

But, we observe that ∫
Σ
| cos(δ)|pdσ =

∫
Σ
| cos(β)|pdσ,
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and these integrals are independent of x. Then, we deduce that

∥Ψ∥p,γ ≤ M∥Φ∥p,γ,

and the result follows.

Lemma 5. Let 1 < p < ∞, 0 ≤ rj < 1 for j = 1, 2...M and let Ij denote any subinterval of (rj, 1). Then under the
hypotheses of Theorem 5,

∫
R

(
M

∑
j=1

|Sj(Arj f )(x)|2
)p/2

γ(dx) ≤ Ap

∫
R

(
M

∑
j=1

1
|Ij|

∫
Ij

|Ar f (x)|2dr

)p/2

γ(dx).

Proof. From Theorem 5 with rj = 1 − 1
j and (4), we have that

∥Sj(Arj f )∥p,γ ≤ Ap∥Arj f ∥p,γ ≤ Ap∥ f ∥p,γ,

∀j = 1, ..., M. Now, considering ϕj = Arj f and ψj = Sj(Arj f ) by Lemma 4 we can obtain that

∫
R

(
M

∑
j=1

|Sj(Arj) f (x)|2
)p/2

γ(dx) ≤ Ap

∫
R

(
M

∑
j=1

| f (x)|2
)p/2

γ(dx).

Now, we suppose that Ij no contains the point r = 1 and we consider ρj ∈ (rj, 1), j = 1, .., M. Thus,
rj = Rjρj, with 0 < Rj < 1 and therefore, Arj f (x) = ARjρj f (x) = ARj(Aρj f )(x). Again,

∥Sj(Arj f )∥p,γ = ∥Sj(ARj(Aρj f ))∥p,γ ≤ Ap∥Aρj f ∥p,γ,

and from Lemma 4, we deduce that

∫
R

(
M

∑
j=1

|Sj(Arj) f (x)|2
)p/2

γ(dx) ≤ Ap

∫
R

(
M

∑
j=1

|Aρj f (x)|2
)p/2

γ(dx), (16)

where ρj > rj for each j = 1, .., M.

Now, we split each interval Ij into m equal parts, so Ij =
⋃m

i=1 I(i)j and denote by ρ
(i)
j the left-hand ends of

I(i)j . Observing that

|Sj(Arj) f (x)|2 =
m

∑
i=1

m−1|Sj(Arj) f (x)|2,

and if we simultaneously replace the term |Aρj f (x)|2 by
m
∑

i=1
m−1|A

ρ
(i)
j

f (x)|2 in (16) we have that

∫
R

(
M

∑
j=1

m

∑
i=1

m−1|Sj(Arj) f (x)|2
)p/2

γ(dx) ≤ Ap

∫
R

(
M

∑
j=1

m

∑
i=1

m−1|A
ρ
(i)
j

f (x)|2
)p/2

γ(dx),

and therefore,

∫
R

(
M

∑
j=1

|Sj(Arj f )(x)|2
)p/2

γ(dx) ≤ Ap

∫
R

 M

∑
j=1

m

∑
i=1

1

|I(i)j |
|A

ρ
(i)
j

f (x)|2
|I(i)j |

m

p/2

γ(dx).

Then, making m → ∞ we conclude the result of the Lemma.
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Now we are ready to prove the next theorem.

Theorem 7. Under the hypotheses of Theorem 5, then there exist a constant Ap > 0 such that

∥σ2 f ∥p,γ ≤ Ap∥g f ∥p,γ.

Proof. Let us start this proof denoting by

SN( f , ρ)(x) =
N

∑
j=0

ρjc f
j hj(x), S′

N( f , ρ)(x) =
N

∑
j=0

jρj−1c f
j hj(x),

ωN( f )(x) =
N

∑
j=0

jc f
j hj(x), and ωN( f , ρ)(x) =

N

∑
j=0

jρjc f
j hj(x),

where 0 ≤ ρ < 1, for each x ∈ R. Then, recalling Abel’s formula

N

∑
k=0

ukvk =
N−1

∑
k=0

Uk(vk − vk+1) + UNvn,

where UK = u0 + ... + uk, if we consider vk = ρ−k−1 and UK = ω( f , ρ)(x) we obtain that

N

∑
k=0

(ωk( f , ρ)(x)− ωk−1( f , ρ)(x))ρ−k−1 =
N−1

∑
k=0

ωk( f , ρ)(x)(ρ−k−1 − ρ−k−2) + ωN( f , ρ)(x)ρ−N−1. (17)

Now,
N

∑
k=0

(ωk( f , ρ)(x)− ωk−1( f , ρ)(x))ρ−k−1 = ρ−1ωN f (x), (18)

and on the other hand,

N−1

∑
k=0

ωk( f , ρ)(x)(ρ−k−1 − ρ−k−2) + ωN( f , ρ)(x)ρ−N−1

=
N−1

∑
k=0

ωk( f , ρ)(x)ρ−k−2(ρ − 1) + ωN( f , ρ)(x)ρ−N−1. (19)

Then, replacing (18) and (19) in (17), we get

ωN f (x) = ρ−NωN( f , ρ)(x)− (1 − ρ)
N−1

∑
k=0

ωk( f , ρ)(x)ρ−k−1,

and therefore,

|ωN f (x)|2 ≤ 2

ρ−2N |ωN( f , ρ)(x)|2 +
(
(1 − ρ)

N−1

∑
k=0

|ωk( f , ρ)(x)|ρ−k−1

)2
 .

Now, Jessen’s inequality allows us to express(
(1 − ρ)

N−1

∑
k=0

|ωk( f , ρ)(x)|ρ−k−1

)2

≤ (1 − ρ)(ρ−N − 1)
N−1

∑
k=0

ρ−k−1|ωk( f , ρ)(x)|2,

and we obtain that

|ωN f (x)|2 ≤ 2

[
ρ−2N |ωN( f , ρ)(x)|2 + (1 − ρ)

ρN

N−1

∑
k=0

ρ−k−1|ωk( f , ρ)(x)|2
]

.
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Let ρ = ρN = 1 − 1
N+1 and IN = (ρN , ρN+1). Then from the definition of the function σ2,

∥σ2∥
p
p,γ =

∫
R

(
∞

∑
N=1

|ωN f (x)|2
N(N + 1)2

)p/2

γ(dx)

≤2p/2
∫
R

(
∞

∑
N=1

[
(ρN)

−2N |ωN( f , ρN)(x)|2
N(N + 1)2 +

(1 − ρN)

(ρN)N

N−1

∑
k=0

(ρN)
−k−1 |ωk( f , ρN)(x)|2

N(N + 1)2

])p/2

γ(dx)

≤2p/2
∫
R

(
∞

∑
N=1

[
|ωN( f , ρN)(x)|2

(ρN)2N N3 +
(1 − ρN)

(ρN)N

N−1

∑
k=0

(ρN)
−k−1 |ωk( f , ρN)(x)|2

N3

])p/2

γ(dx)

≤Ap

∫
R

(
∞

∑
N=1

[
|ωN( f , ρN)(x)|2

N3 +
1

N3(N + 1)

N−1

∑
k=0

|ωk( f , ρN)(x)|2
])p/2

γ(dx),

since 1 − ρN = 1
N+1 , (ρN)

−2N < e2 and we denote Ap = 2p/2ep.
But by definition, ωk( f , ρ)(x) = ρS′

k( f , ρ)(x), k = 0, .., N, ∀ρ ∈ [0, 1) and thus,

∥σ2∥
p
pγ ≤ Ap

∫
R

(
∞

∑
N=1

[
|S′

N( f , ρN)(x)|2

N3 +
1

N3(N + 1)

N−1

∑
k=0

|S′
k( f , ρN)(x)|2

])p/2

γ(dx).

In this way, applying the Lemma 5 we obtain that

∥σ2∥p,γ ≤Ap

∫
R

(
∞

∑
N=1

1
N3|IN |

∫
IN

|∂ρ Aρ f (x)|2dρ

+
1

N4

[
N−1

∑
k=0

1
|IN |

∫
IN

|∂ρ Aρ f (x)|2dρ

])p/2

γ(dx),

since S′
N( f , ρ)(x) are the partial sums of the Fourier Hermite expansion of ∂ρ Aρ f (x). Therefore, observing that

|IN | = 1
(N+1)(N+2) we obtain,

∥σ2∥
p
pγ ≤ Ap

∫
R

(
∞

∑
N=1

2(N + 1)(N + 2)
N3

∫
IN

|∂ρ Aρ f (x)|2dρ

)p/2

γ(dx).

But, 1 = (N + 1)(1 − ρ) ≤ (N + 2)(1 − ρ) then

∥σ2∥
p
p,γ ≤ Ap

∫
R

(
∞

∑
N=1

(
N + 2

N

)3 ∫
IN

(1 − ρ)|∂ρ Aρ f (x)|2dρ

)p/2

γ(dx)

≤ 3p/2 Ap

∫
R

(
∞

∑
N=1

∫
IN

(1 − ρ)|∂ρ Aρ f (x)|2dρ

)p/2

γ(dx)

≤ Ap

∫
R

(∫ 1

0
(1 − ρ)|∂ρ Aρ f (x)|2dρ

)p/2

γ(dx)

= Ap∥ g f ∥p
p,γ,

and we conclude the result.

Finally, it is appropriate to comment on the need for the hypothesis, c f
0 = 0, established in some previous

results. Indeed, in [5] H. Pollard demonstrated, considering the function f (x) = ecx2
, for 1 ≤ p ≤ 2 and

1/2 < c < 1/p, that limn→∞ ∥Sn f − f ∥p,γ ̸= 0. But we observe that for this function the condition c f
0 = 0 is

not fulfilled. Thus, by requiring the condition c f
0 = 0 we avoid this type of cases in our results.
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