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1. Preliminaries

m n this section, we begin by introducing some definitions and notations necessary for our subsequent

development. Let us consider the unidimensional Gaussian measure 7y(x) = \f , with x € R and as
usual [|f||p,, denotes the norm ( [ |f(x)\p'y(dx))l/p of an element f € LP(y), for1 < p < co. By Ay, Cpx,
etc. we mean constants, not necessarily always the same, depending exclusively on the parameters shown as
subscripts.

The normalized Hermite polynomials of order k € N U {0} is defined by

k12 dk 2
hi(x) = W(—l) e’ W(efx )- 1)

Given a function f € L'(v) its k-Fourier-Hermite coefficient and the Fourier Hermite expansion are
defined respectively by

f—/f Yy (x)y(dx) and Zcfhk

It is well known that Hermite polynomials satisfy the following identity known as Mehler’s formula, (see
(1D,
_ r2(x2+y2)727xy
i e 112
Yo () (y)r = ———,0<r <1
- 1—12

Moreover, the following estimate is true for each x € R, (see [1, (8.22.8)] and [2]),

2 k!
|he(x)| < e* 2,{/21,(\/11) 2

and with respect to the norm L?(-y), 1 < p < oo, asymptotic estimates are obtained (see [3, Theorem 2.1])

a(p) (1+o( )) if0<p<2,

el = 2(p) (p — 1)1/ (1 10 (%)) if2 < p<oo,

®)
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where
a(p) = (72_[)1/4ﬂp <22 )UZP
wn=(2)" (75)
o= ([ tsinopar)

and recall that with this normalization, from (1), then ||/, |2, = 1. Also, the normalized Hermite polynomials
constitute an orthonormal system in L?(y).

For n € NU {0} the partials sums of the Fourier Hermite expansions S, f(x) and the arithmetic mean
Cuf(x) are defined as,

) =Y ()
k=0

Cuf0) = g X5 = 1 (1 ) el

k=0

and it has been proved in [4,5] that lim, s || Suf — fl|p,, = 0if and only if p = 2.
Following [6] and [2] let us consider the Abel means associated with the Fourier Hermite expansions
defined by

=) rkc{hk(x), 0<r<1,
k=0

thus, Mehler’s formula allows us to obtain the following integral representation

72 (x2 +y ) 2rxy y Vx\z
/ v(dy) = / fW)dy.

A,f(x) exists for every f € L!(y) whether or not it has Hermite expansion. Note that by means of
the change of parameter r = ¢~/ then A, = T 1og(r), Where {Ti}72, is the Ornstein-Uhlenbeck semigroup.
Furthermore, {AV}}:O' is a family of strongly continuous linear operators and the maximal function A* f (x) =
SUPg<,.1 |Arf(x)| € LP(7), that is to say,

1A fllpy < Cpllfllpyy 1< p < co. )

Also, lim,_,1- [[A;f — fllpy = 0, as well as, lim,_,;- A, f(x) = f(x) almost everywhere, for 1 < p < oo
(see [2, Theorem 2]) .

On the other hand, if f € L2(v) then kgo rkc;: h(x) converges absolutely to A,(f)(x) almost everywhere,

[ee]
but for every 1 < p < 2, there exist a function f € LP(v) and r < 1, such that, kZO rkc{: hy(x) diverges for every
x. (see [2, Lemma 2]).

Now following [7] given a function f € L!(+y), m > 0, we consider the integrals operators

y—rxm _end

Qrmf(x) = /R Wé’ =2 fy)dy, ©)

Quf(x) = sup [Qrmf(x)l,

0<r<1

and for0 <r < 1,1 < p < oo, it was obtained that these operators are L?(y) continuous, (see [7, Theorem 3]),
therefore

1Qrmf

Py = Cp”f py, and ||meHp“r < Cp”f”;w (6)
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Also, let us consider the operators defined as

— rx|™ ly—rx|?
i = [ e e T 2

where ¢ is a bounded function on [0, 1]. Therefore,

ILmfllpy < Cpllfllpq, 1 <p <o, (8)

(see [7, Theorem 6]).
Finally, for f € LP(7) let k be a Calderén-Zygmund kernel. We consider the integral operator K defined
as

Kf(x) = [ K(x—y)f ()dy, ©)
|x—y|<1A L T
and we have that K is an L?(y)-continuous operator (see [7, Theorem 5]),
IKfllpy < Cpllfllpy, 1 <p < oo (10)

In particular, these operators Q, Ly and K, as well as their LP(7)-continuity will be key in the
development of our argument.

2. The results

2.1. Littlewood Paley function

Inspired by the classic case, (see [6, chapter XIV]), we define a Littlewood Paley g function as

g = ([a- r>|arArf<x>|2dr)1/2,

and we obtain the L?(-y) continuity of the ¢ function, for 1 < p < co. For this purpose, we need the following
technical result (see [8, Lemma 3, chapter V] for a similar version). Formally,

ly—v1—sx|?
S

Lemma 1. Let us denote u(s) = there exist a

constant C > 0, such that,

wheres € (0,1). Then, forallm € R, if |[x —y| < 1A

IX\’

! um(s) —u(s) ds C
< . 11
/0 372 ¢ s = |x—y| an
Similarly,
/1 1/[1/2(5)67”(5) dS < C (12)
o s Vi—s = lx—y|

Proof. If [x —y| < 1A ‘17‘, then |x — y||x| < 1 and therefore,

y—Vi-sx>=[(y—0)+1-vVi-s)x> > [ly—x -1~ V1I-s)x|]
> |y =« = 2fx —yllx|(1- V1 -5s)
= |y —x* —2lx —yllx|

s
(1+vV1-5)

v

ly — x> —

Then, we consider § € (0,1) and since 1" (s)e~(1-9)%() is uniformly bounded in (0, 1), for all 1, we just
need to estimate the integral

1 p—0uls) dg
~/0 53/2 /1 _ S'
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Now, let us denote bya=a(x,y) = |x|*+ |y|?> and b = b(x,y) = 2xy, so u(s) > ‘x;y‘z —2=12"0_2and

e0uls) < g0 = Con51der1ng the changes of variables, first, w = %-? and then, § = w — (a — b) we can
express,
1 p—ouls)  Jg -26 "0 e dw
- <
/0 32 1—s = Va—bJab Jw—(a—b
e e 0l ) 869-1/2
< 0 2de
- va— /
e 2r(1 /2)
< 19
Voa—b
Then, (11) follows from recalling that a — b = |x — y|?. Finally, by an absolutely similar argument we

obtain (12). O
Theorem 1. If 1 < p < coand f € LP(7), then there exist a constant C > 0 such that

||8f||rw < Cp||f“p/r~

Proof. We first prove the theorem in case p = 2. Let f € L?(y), thus if f has Fourier Hermite expansion
Y c{:hk(x), then A, f(x) and 0, A, f(x) have expansions
k=0

) rkcihk(x) and ) _ krk_lcf:hk(x),
k=0

k=1

respectively. So, by orthonormality of Hermite polynomials

[, 10 f () Py () = Zk““

and therefore, Tonelli’'s theorem allows us to obtain that
2 ! 2
Isf18, = [ [ =raranfo)Pary(x)

kikZ(c{)Z </01(1 - r)erzdr)

& k()
- k:Zle(Zk—l)'

Consequently, |18 ]2y < L511fll21-

Now, let us considering 1 < p < 2 and f € LP(7). Suppose that the inequality is true for some p and
verify it for 1 < k < p. First, we observe that if f € LP(v) then f € L¥(+). For each 0 < r < 1, let us denote by
u(r,x) = A,f(x) and h(r,x) = u¥/?(r,x), thus

1 (r, gy = e, DK, < CellFIIE- (13)

Therefore,
2=
/1

=, (1—7r)] (%) hP/O=1(r, x)a,h(r, x)|2dr

(1 —r)|0,u(r,x)|[dr
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S(%) (A*f) (x)2 P/ (/Ol(l—r)|arh(r,x)|2dr),
since hz(p*k)/k(r,x) (p k)/p(r x) (A f( )) P,

which implies that,

gf(x) < (B) (A f(x)) =9 Pgh(x).

==

Then,
K Pk / * () KPR/ p ok
[t < (B) [ A f(e) 09/ rgnyy(ax),
and Holder inequality, with exponents p/(p — k) and p/k, allows us to obtain
ko ax gk(p—k)/
I8fIlE, < (B) 1A fIEe =7 gnils,,
But by hypothesis and from (13) we get that ||gh H’; < Cpxllf ||p 4'7 Thus, (4) allows us to conclude that,

18fllky < Cillfllky, f1<k<p,

and therefore, ||gf ||,y < Cpl|fllpy foralll < p < 2.

Now, we consider p > 4 and let g be such that % + % =1.5,g=p/(p—2)and1 < q < 2. Let¢bea
testing function. We assume ¢ > 0, with support on |x| < 1, such that, ||¢||2,, = 1. Then,

8713, = 1822 = sup [ @F(x)g(x)(d).

{Igllgr <1} 'R
But,
2 ! o) 2
[ @F@enn) = [ [P (d)
1 Jyfmz‘z ’
e —r
= /R/O (1—r1) /Rar m f(y)dy | drg(x)y(dx),
and since
_ly=raf? _ly=rx?
K =2 e 12 (2x|y —rx| _2r]y—rx|2+ r
"fvi—2| vi—~2\ 1-12 (1-r2)2 " 112
noting that

_ly=rx?

1-r2
fe Jr=m ="

then by Jensernrs integral inequality we obtain that

ly—rx|?

/R/Ol(l_r)(arArf) (x)dr(x)y(dx) <// (1—r /\/1—’21/2<Zx1y_—r;x|_2ﬁy__r,2,§2|2+1_rr2>2
F(y)dydrg(x)y(dx) = I.
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Now,
2xly —rx|  2rly —rx]? o\’
1—1r2 (1-r2)2  1-—712
_4x?y —rx]?  8xrly — rx® 4r?ly — x|t darly — rx| 3 4r2|y — rx|? r2
(1—172)2 (1—7r2)3 (1—7r2)4 (1—712)2 (1—72)3 (1—7r2)%

and since 1 —r < 1—r?ifr € [0,1), then we obtain explicity

W ”‘ 42y —rx|?  Sxrly —rx|>  4r?|y —rx|*
< Jrl L (G + i+ (e
dxrly —rx|  4r%|y —rx|? 72

+ (1 —apn T A aEr T as 1,2)3/2)fz(y)dydW(x)V(dx)

f/ [ [ 8 mn P 6)rg )

where A;(r, x,y) represents each fraction of the sum. Now, if we denote by

W= [ e 00, %0) P i) (),

then we have to estimate each integral W;, foreachj=1,..6.
To estimate W; note that from Eq. (5), we can express

Lo ‘ri’);'/zf% )y = Qra(2)(x).
Thus, applying Holder's inequality and (6) we get
1/q
W< [ QAR £ Iz ([ P00

1/q
ol s ([, ) r(a) )
GolfIE,

IN

IN

Now we estimate W,. First, we express

R—{y:|x—y|gl/\|3(|}U{y:|x—y|>1/\|1x|}—RluRz,

then using (7) and Tonelli’s theorem we write

b rx|? =
wo o< [ [ [ SR EL S g oran + [ IR (5000

= T1+ Ty,

where ¢(r) = 8r(1 — 12)1/2. Again, by means of Holder’s inequality and (8) we obtain

Tz ([, o) ()

1/q
ol ( [, o)
CollF I

1/q

IN

= = [, WL () (K)o (x)r )

IN

IN
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On the other hand, if y € Ry, then under the change of variables =1 — %, we have that (11) of the Lemma
1, allows us to conclude that

/1 ly — rx|® _l=r? _ /1 ly — \/1—sx|3 _vT? s
0 0

2
a—ppt T —
o u3/2(5) —u(s) ds

N /0 377 ¢ V1—s
C

lx -yl

<

By using (9), Holder’s inequality and (10), where k(x — y) = |x — y|~! we obtain that

1/q
K ( [ o) )
< Glfi3,

IN

T < C [ [xIK() (x)g(x)v(dx)

A

and in conclusion, W < Cp||f[15 ,
The estimation of W3 follows a similar argument to the previous case. Thus, again considering R =

R1 U Ry, we express

2yt enl
W < [ [ R g + [ L) @)
= Ti+Ty

where ¢(r) = 4r? is a bounded function. Again, if y € R; we apply the lemma 1 by observing that

/ ly —rx|t = B /1 ly — V1 _Sx|4e’ l-vi—sx®  ds
o ( 0

2
1- 2yt v §7/2 1—

©n

<

This way, Holder’s inequality allows us to obtain

[#llay < Coll £

Py’

T < C [ KU @$)7(d) < CIKG) s

and

2
ar < Cpllf

Py’

= /RL4(f2)(X)¢(x)7(dX) < ClILs(A) pr2a e

therefore, W3 < Cp||f ||%7
Again, the estimation of Wy follows a similar argument developed for W, and W;. But in this case, if

y € Ry, we consider the operator

_ \rl’\
=[] e T i
Ry

where @(r) = 4r(1 — 1?)1/2.1f y € Ry, then by using (12) of the lemma 1, we note that

R R e

o (1—r2)pn2° ! 0 §3/2 V1—s
1 ,,1/2

= /u (S)e_”(s) ds < < /

o s VIi—s = |x—yl
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and the rest of the argument follows similarly to the previous cases, obtaining that Wy < Cp|| f HIZM
Now, the estimate of Ws is as follows. Once more, we express R = R; U Ry. If y € R, then we consider

2

—rx 2 ly—rx|
/R / 72 F|)/26 s drfz(y)dy/
2

where ¢(r) = 4r2. But if y € Ry, then from (11) we get

12 gy

/ ly—rx> e /1 ly — \/mﬂ2 _ly=vizs?  ds
0o ( 0

1—r2)5/2 S ‘ 1—s
— /1 M(S) e—u(s) ds
0 s3/2 V1—s
S L/
|x =yl

and similarly we conclude that W5 < Cp || f ||%7,y
Finally, we need to estimate Wg. To do this, if y € R, let us consider the operator

_ly=ra?
1-12
0=/ / At )y,
where ¢(r) = r? and if y € Ry let us consider, from (11) the estimation
_ly=raf?
/1 e 17 g - /1 ly —v1— sx|O _=vis? ds
o (1—r2327 T Jo 2 \ 1—s
_ /1 u? (S) e_u(s) ds
0 s3/2 V1-s
< € /
x|

and thus, Wy < Cp||f|\%,7
In summary, we have obtained that

6
2 2
I8fllpy < T < gwj < Cpll £l
]:

and therefore
gfllpy < Cpllfllpy, for p>4

For a general function in LP(v), we need only approximate in norm by a sequence of indefinitely
differentiable functions with compact support.

Finally, if 2 < p < 4 the results follows by Marcinkiewicz interpolation theorem and this completes the
proof of this theorem. [

2.2. Auxiliary functions related to g

Following [6] we introduce various auxiliary functions related to g-function, defined in the previous
section. Thus, the auxiliary functions we introduce are

1/2
o1 f(x (2 |Skf(x) Ckf(x)|2) ,

1/2
oo (x <2|skf ckf<>|),
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o 1/2
x) = (Z IAkf(x)|2> ,
k=0

where Arf(x) = Sy f(x) — Spr-1f(x) and k =0,1,2,....
Then comparisons are made between these functions and the Littlewood Paley operator. Thus, we first
have the following result

Theorem 2. Suppose that f € L%(vy), then oo f < co almost everywhere in R.

koo
Proof. We have that Sy f(x) — Cyf(x) = 1 k]?c]f hi(x). Then by orthonormality of Hermite polynomials,

j=0
ko72( Cf 2
)2
[, 186 () = Cef (o)) gMH
and taking the sum with respect to k,
|Skf (x) Ckf x)[? o & )
v(dx) = =1
/8> @)= LY. 1y
But, .
(=) Z(C‘)Z 0 00 (=)
j 20.f\2 1 L fy2
< ](C)( )S ()%,
therefore,

S C 18
/ 2 ‘ kf kf )l 'Y(dx) < 72 E (c{)z < 00,
which implies that 0’2f < oo almost everywhere. O

Corollary 1. Suppose f € L?(v), such that, c{ = O(j%/?), Vj. Then, o f < oo almost everywhere in R.

Proof. Similar to the previous result, we obtain that

I
™~

[ X I5ufx) — Cuf Pt
k=0

IA
™o
o

o

INA
N =
e
~.
—
(@)
=
N—
N
INA
N = =

smcecf— o(*/?). O

Now we establish the following result similar to the classical case (see [6])

Theorem 3. For each x € R, there exist a constant C > 0, such that,

8f(x) < Cof(x).
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Proof. We have (k+1)(Sf(x) — Ccf(x)) = i jc{h]-(x) and since
j=1

f 2 &
chk h(x) = (1—7r) ZZ]c]h]
k=1 k=1j=1
then,
WAf(x) = (1—7) Y (k+1)(Skf(x) — Crf(x))r*!
k=1

Ifr,=1- % we can express

(1 — 1|0, A, f (x)|2dr

e

§flx) =

3
Il
—

2
(1—7) <1—rn gk—Fl |Skf(x) — Crf(x )|"n+1> dr

3
Il
—_

IA
gk
T
3

2
<E(k +1)|5kf(x) = Cif(x >|rn+1>

k=1

3
I
—_

IA

e
-

S

@l =
=
e

<

2
(Z(k+ 1)[Sef (x) — Cef(x )Ian) :

k=1

gk
Sm‘ —_

3
Il
—_

Now, as for each n € N we have that
2
(Z (k+1)|Skf(x) — Crf(x )|Tn+1>

2 2
S2<E(k+1)|5kf( x) = Cif(x |7n+1> +2< Y. (k+1)I8kf(x) — Cif(x )IrnH) ,

k=1 k=n+1
then
$f(x) < P(x) + Q(x),
where,
o) 1 n 2
P(x)=2) 5 (Z (k+1)[Skf(x) — Cef(x )|”n+1> ’
n=1 k=1
and

2
_22 ( Y (k+1)|Sef(x) — Cef(x )|7n+1> .

n=1"1 k=n+1

Now by using Cauchy-Schwarz inequality
(] 1 n n 5
P() < 23 (z 54 (x) — Cf () ) <z<k+1> )
n=1 =
& 1 n
< 20), 5 Z\Skf ~ Cif ()
n=1 k=1

— chiskf( — Crf(x (it)
zci 1Skf (x) — Cef (x) 2 _

IN

k
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On the other hand, again by means of the Cauchy Schwarz inequality we obtain

o <2y 1( 5 1) ;zckf<x>|2> ( 5 R 1 12>.

k=n+1

But,

Zk2k+1)22k 2<Zk2k+1)2iﬁ12§ C =
k=n+1 k=0 (1—rnt1)

since 0 < ;41 < 1. Therefore,

Q) < zcinl( y, 150 ;zckf<x>|2> -
n=1 k=n+1 n+1
~ Yy (”:1)5< y ISf) ;zckf(x)F)
n=1 k=n+1

= [Skf(x) = Gef ()2
k2

IA
5
agk

]

_ 4 i i [Skf (%) ;zCkf(x”Z

k=1n=1
X 1S f(x) — Crf(x)]?
_ Af f-GrF,

and the result follows. O

Now, we present a version of Tauber’s theorem. To do so, the following results about the asymptotic
behavior of the Fourier-Hermite coefficients is necessary.

Lemma 2. Suppose f € L'(). Ifc;: = O(e**) withw < —1/2, Vk € N, then
; f _
tim K 1 (x)] =,
for each x € R.
Proof. From (2) and the identity /27T (2k) = 22*~1T (k)T (k + %) we obtain

e T(k+1)(k!)1/22%/2
2v2m I'(2k) '

ButI'(k+ 1) = k! and I'(2k) = (2k — 1)! thus,

k|l (x)| <

exz (k,)3/223k/2

k() < 2= o
Then, by means of Stirling’s formula, k! = V27tkkke=* and denoting Ay = % we have that,
Jim Kl ()] < ze";n Jim ) 2n(§ﬁﬁ;§<_f)i;§k23§/j—<2k—1>
= Ajim /212 <2kk1>1/2 <2k2k1)2k1 (2%) /2
< A, klgl;kS/ZE(aJr(l/Z))k <2kk 1)1/2 (2ka 1>2k1 204

= O’
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since by hypothesis, we have |c{:| < Me* for some constant M > 0 and also, & < —1/2. [

Then, under the hypotheses of previous Lemma we affirm that

Jim -~ 2 klc] |l (x)| = 0, for each x € Rand 1 € N. (14)

In fact, it is enough to observe that (14) are arithmetic means C, f(x) of the partials sums Sy f(x) defined

as S¢f (x) = Klef | (x)], k=1,
In an analogous way, we obtain the following asymptotic behavior with respect to the L?(vy)-norm of the
Fourier Hermite coefficients.

Lemma 3. Suppose that f € LP(vy) and let 2 cnh be the Fourier-Hermite expansion of f.

n=1

)If1 < p < 2and ¢ = O(k*) with w < —3/4, Vk € N, then

lim k| |||k —0.
i klcf el

ii) If2 < p < coand c;, = O((p — 1)Pk*) witha < —3/4and p < —1/2,Vk € N, then

lim k|c/|[|Fg][ 5., = O.
kgl;}o |Ck||| kllpy

Proof. i) We consider 1 < p < 2. Then, using (3) we immediately obtain that ||/ | ,, < Mpyk~1/4 for some
constant M, > 0 that depends only on p. Therefore,

lim K|/ ||| 5y < M, lim k¥+3/4) = 0.
lim Kie{ [l < My lim
ii) Similarly, if 2 < p < co from (3) we get again that
: f . 3/4 1/2) _
Tim klef gl < My Jim kG4 (p — 1)5+072) o,
and the result of the lemma follows. [

In this way, we are ready to establish the following theorems.

Theorem 4 (Tauber). Suppose that f € L(y). If f has the Hermite expansion, Y. c{ihn, such that, cg = 0and
n=1

c{: = O(e") with a < —1/2, then
limg_ooSkf(x) = f(x),

foreach x € R.

Proof. First, we recall that lim,_,,- A,f(x) = f(x), if and only if, limy_,, Ar, f(x) = f(x), V(rx);-,, such that,
limp o7y =17.Fixx € R, lete > 0and wesetr =1 — % Then, there exists N; € N such that,

|Ar f(x) — f(x)] <e€/3, Vk > Nj.
Now, from Lemma 2 there exists N, € N, such that,
klc | e (x)| < €/3, Yk > Ny

and finally, from (14) there exists N3 € N, such that,

= Ek|c [|hi(x)| < €/3 Vk > N3 and each n € N.
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Considering Ny = max(Nj, Ny, N3) and k > Nj we obtain,

ISkf(x) = f(0)] < [Sef(x) = An f()] + A f(x) = f(x)]

k . 0 o
< Y-l + ¥ Alellho]+ A f(x) - f(x)]
j=0 j=k+1
k o ] f h;
< A-n Y+ ¥ AN ) - o0
j=0 j=k+1
< IS i@l + £ 50 A f ) — F)
k= 3k =
< €,

and the result follows. [

Similarly, we obtain the following theorem.

Theorem 5. Let f € LF(vy) where 1 < p < oo. Suppose that f has the Hermite expansion, Y ci,chn, such that, c{; =0.

n=1
Then,
i)If1 <p <2andc, = O(k") witha < —3/4, then we have that limy_,c||Skf — fllpy = 0.

i) If2 < p < coand c{ =0 ((p - 1)/3kk”‘) where o < —3/4and B < —1/2, then limy_,0||Skf — f
iil) If p = 2 and c{ = 0(1/k), then limy_,0||Skf — f

Y - 0,

Y = 0.

Proof. i) The proof of this item follows a similar argument to that developed in the previous theorem. Thus,
given € > 0 there exists Ny € N such that, [|A, f — f|| < /3, Vk > Nj. On the other hand, Lemma 3 allows us
to conclude that there is Np € N, such that,

AL

Py <e€/3, Vk> Ny,

and therefore, for some N3 € N we get

1 & f
= Z klcy | 1hllpy < €/3 Vk > N3.
3

Then, defining Ny = max(Nj, N, N3) we have

1 k ] e & .
IScf = fllpa < 7 Ll Bl + 52 1o + 1A f = Fllps
j=0 j=0
< €.

In a similar way, item ii) is demonstrated. The case p = 2 is deduced from the fact that |||/, = 1, so it

is enough to consider Fourier-Hermite coefficients c{ , such that, limy_, 4 k|c£| = 0, as in the classical case. O

Therefore, we observe that for certain functions f, such that, they satisfy the hypotheses of the Theorem

4, the behaviour of the kth partial sum of }_ céhn(x) is similar to the behavior of A,(f)(x) = ¥ r"cﬁhn(x),
n=1 n=1
forr=r=1- % In this way we obtain the following result.

Theorem 6. Under the hypotheses of Theorem 4 we obtain,

Uf(x) < ngf(x)/

for each x € R.
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Proof. First note that from Theorem 4, considering r = r, = 1 — %k and by means of Cauchy-Schwarz
inequality we get

[e0) [e9)

sz(x) = l;) 1S f(x) — Szkflf(x>|2 ~ Cx};) |Ap f(x) — Arkqf(x)‘z
) Ty 2
< Cy 0sAs d
< o b ([ pasei)
< G Y trrne) [ AP
k=0 k-1

= o) [f a-npasP
k=0

Tk—1

IN

Ce [ (1= 9)fasAsf ()]s = g2 (x),
and the result of the Theorem follows. O

2.3. Theorems about L” norms, 1 < p < o

Then we start this section giving the following Lemmas (see [6, Lemma 2.10, Lemma 2.22] for similar
versions) and we present it with details for the sake of completeness.

Lemma 4. Suppose that G is a linear subespace of functions ¢ € LP(7y), 1 < p < oo, and = T¢p an additive operation
defined for ¢ € G, such that,

i) If ¢ is real-valued so is 1p.

ii) [l p,y < M| Pl|p,y with M independent of ¢.

Let ¢1, ¢, ... be a set of functions in G and ¢; = T¢;. Then,

¥

1/2 1/2
where ® = <2 |q>j|2> and ¥ = (Z |‘Pj|2> :
] ]

Proof. Let a1, a,.., a0, be a fixed set of direction angles in R", so (cos(a1), ...,cos(a,)) € X, where X is the
n-dimensional unit sphere. If we denote ¢ = Y ¢;cos(«;) and ¢ = }_;cos(«;), then ¥ = T¢ and by ii) we
j j

J,

py < M|@

pyr

obtain
p

i P
7)< M7 [

(dx). (15)

Zl/)j cos(oc]-)
]

Zgb]- cos(zx]-)
]

Now, we observe that

= [¥(x)|[ cos(4)| and = |®(x)][ cos(B)],

lej COS(OC]')
]

Z([)j cos(oc]-)
]

where J, B denoting the angles between the vectors (¢;); and (cos(«;)); and (¢;); and (cos(«;)); respectively.
Therefore, integrate (15) over %, Fubini’s Theorem allows us to write

Lre@rr ([ cosrar) vidx) < a7 [ o ( [ lcos(prar) v

But, we observe that

/};|cos((5)\”d(7:'/Z|cos(‘8)\pd(7,
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and these integrals are independent of x. Then, we deduce that
¥llpy < M@l
and the result follows. O

Lemma 5. Let 1 < p < 00,0 <r; < 1forj=1,2..M and let I; denote any subinterval of (r;,1). Then under the
hypotheses of Theorem 5,

p/2

M p/2
A(JX%S]'(AVJ)(X”Z) Y(dx) < A /( |I‘/|Arf |2dr> v(dx).

Proof. From Theorem 5 withr; =1 — % and (4), we have that

15iCA N lpy < ApllArifllpa < Apllfllpas
Vj =1,.., M. Now, considering ¢; = A, f and ¢; = S;(Ar, f) by Lemma 4 we can obtain that
p/2

M p/2
i (2|sj<Arj>f<x>|2> 1) <4, [ (Df ) 7(d).
R \/5

Now, we suppose that I; no contains the point r = 1 and we consider pj € (rj, 1),j = 1,., M. Thus,
rj = Rjpj, with 0 < R; < 1 and therefore, A, f(x) = Aijjf(x) = ARj(Apjf)(x). Again,

HS]'<AV]'f)HP,7 = ||Sj(AR]-(Apjf))Hp,7 < APHAij”P/'Y’
and from Lemma 4, we deduce that

p/2

M p/2
A(;sjmrj)f(x)F) v < Ay [ (DAPJ ) ), (16)
i=

where p; > rjforeachj=1,., M.

Now, we split each interval I; into m equal parts, so I; = UiZ; | ]< Y and denote by p](.i) the left-hand ends of

I ].(i) . Observing that

15,(Ar)f () = im-1|sj<Arj>f<x>|2,

m
and if we simultaneously replace the term |A, f(x) by ¥ m! |Ap(,-) f(x)|? in (16) we have that
i=1 j

/(22’” 54 '2>p ()< 4y [ (ZZmllA )p/zvmx),

j=1i=1 j=1i=1

and therefore,

M p/2
/R<]§|S]'(Arjf)(x)|2> Y(dx) < A / (Z

Then, making m — oo we conclude the result of the Lemma. [

Jof(x i L ') )
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Now we are ready to prove the next theorem.

Theorem 7. Under the hypotheses of Theorem 5, then there exist a constant A, > 0 such that

||‘72f||p,7 < Ap”gf”;m-

Proof. Let us start this proof denoting by
N

Sn(f.0)(x) = Y pIcli(x), S (f.p)(x prf telh(x),

j=0 =

o f
=) jeihi(x), and wn (f, p)( Z]p’c hi(x),
i=0

where 0 < p < 1, for each x € R. Then, recalling Abel’s formula
N N-1
Y wvp =Y Ui(vk — vkp1) + Unon,
k= k=0

where Ug = ug + ... + uy, if we consider vy = p~*~1 and Ug = w(f, p)(x) we obtain that

N
kZ(wk(f,p)( x) — w1 (f,p)(x)pF T = Z wi(f,0)(x) (0 = o7 2) + wn (f,p) (x)p N
=0

Now,
N
kZ(wk(f/p)(X) — w1 (f,0) ()" = plwnf(x),
=0

and on the other hand,

N-1
k;)wk(f,p)(x)(p"‘ U 57k=2) o (f, ) (x)p N1
N-1
= L £ @™ o= 1) +wn(f ) (e

Then, replacing (18) and (19) in (17), we get
N = k-1
wnf(x) =p Nwn(fp)(x) = (1—p) } wel(f,p)(x)p ",
k=0
and therefore,

N-1 2
wnf()l? <2 [p2N|wN<f,p><x>|2+ ((1—p> )y |a;k<f,p><x>|p“) ] :

k=0

Now, Jessen’s inequality allows us to express

N—1 2 N—1
((1 —p) ,;0 Wk(frp)(x>|Pkl> <(1-p) N=1) Y o N (f.p) ()%

and we obtain that

N 2, =) & 4y 2
p~MMwn(f,p)(x)] +7PN Y o T Haw(f, ) (x)]

k=0

wnf(x)? <2

17)

(18)

(19)
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Letp=pn=1— ﬁ and Iy = (on, PN+1)- Then from the definition of the function o3,

p/2

loallhy = [, (Z ""NH ) 7 (dx)

00 _ p/2
= (Z l( pry- v lnllopn) <)§>|2 L Ao ¥ ) ke |wk<f,pN><x2>|2D ()

N=1 (on)N k=0 N(N+1)
00 2 _ N-1 27\ P/2
< [ ( by [wﬁi)g%ﬂ . (1(pN§§> ¥ )+ () (x) D )

<A / ( [lww foon) ()2 L1 Nil Iwk(f,pN)(x)F])p/zy(dx)l
N=1 N? N3 (N +1) =

sincel — py = ﬁ, (on) 2N < ¢? and we denote Ap = 2P/2¢p
But by definition, wi(f, p)(x) = pS;.(f,p)(x), k=0,..,N, Vp € [0,1) and thus,

) / 2 N—1 p/2
leall < 4, |, (Z ['SN(f o e & s,z<f,pN><x>|2D ().

N=1

In this way, applying the Lemma 5 we obtain that

|2l p,y <Ap /( Ng“ |/ 0pApf (x )| dp

1 N-1 1 ) p/2
L 17 1200 () dpD 7(dx),

N
since Sy (f, pl )(x) are the partial sums of the Fourier Hermite expansion of d,A, f (x). Therefore, observing that
|In| = Wi Ny Ve obtain,

n [ee] p/z
||az|57<Ap./R(ZZ(NTV)(N“) [ uof ) dp) y(d),

N=1

But,1=(N+1)(1-p) < (N+2)(1—p) then

S /2
4y /R< » (NN”)3 /[ a —p>|apApf<x>|2dp>p (dx)

N=1

p/2
32, [ (2 /(= plapef (x >|2dp> 7(dx)

ao [ ([ - prmeaproran) v

= APH gf”pm

IN

o2l

IN

IN

and we conclude the result. [

Finally, it is appropriate to comment on the need for the hypothesis, c{; = 0, established in some previous

results. Indeed, in [5] H. Pollard demonstrated, considering the function f(x) = ec"Z, forl1 < p < 2and
1/2 < ¢ < 1/p, that lim, e ||Suf — fllp # 0. But we observe that for this function the condition c{; =0is
not fulfilled. Thus, by requiring the condition cé = 0 we avoid this type of cases in our results.
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