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1. Introduction

L et C be the complex plane. The open unit disk is the set, D = {z ∈ C : |z| < 1}. Let w ∈ C and ℑ(w)

be the imaginary part of w. We denote the upper half-plane of C by U = {w ∈ C | ℑ(w) > 0}. Also,
the area Lebesgue measure on U is denoted by dµα(w) . The function, ψ(z) = i(1+z)

1−z that maps D conformally
onto U is known as the Cayley Transform and it is invertible. See [1] for more details.

Let H(Ω) be the Frétchet space of analytic functions f : Ω → C endowed with topology of uniform
convergence on compact subsets of Ω. For α > −1, the weighted Bergman space of U, L2

a(U, µα) is defined as

L2
a(U, µα) =

{
f ∈ H(U) : || f ||L2

a(U,µα)
=

(∫
U
| f (w)|2dµα(w)

) 1
2
< ∞

}
,

and whenever α = 0 the growth condition is given by

| f (w)| ≤
K∥ f ∥L2

a(U,µ0)

ℑ(w)
for some constant K, ∀ f ∈ L2

a(U, µ0). (1)

For a more comprehensive detail on the theory of Bergman spaces, we refer to [1–5].
For α > −1, the weighted Dirichlet space of the upper half-plane, Dα(U), is defined by

Dα(U) =
{

f ∈ H(U) : ∥ f ∥Dα,1(U) =

(∫
U
| f ′(w)|2dµα(w)

) 1
2
< ∞

}
,

where ∥ · ∥Dα,1(U) is a seminorm on Dα(U) and the norm is given by ∥ f ∥2
Dα(U) = | f (i)|2 + ∥ f ∥2

Dα,1(U)
, ∀ f ∈

Dα(U). Whenever α = 0 the growth condition of functions in D0(U) is given by

| f (w)| ≤ ∥ f ∥D0(U)

√
1 + log

(
|w + i|2
4ℑ(w)

)
∀ f ∈ D0(U). (2)

A function f ∈ Dα(U) if and only if f ′ ∈ L2
a(U, µα). For α > −1, a closed subspace of Dα(U) that consists

of functions that vanish at i is defined as D i
α(U) = { f ∈ Dα(U) : f (i) = 0}. The subspace D i

α(U) is a Banach
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space with respect to ∥ · ∥Dα(U). It suffices to check if D i
α(U) is closed in ∥ · ∥Dα(U). Indeed, if we let fn to be

a convergent sequence in D i
α(U) and f ∈ Dα(U) such that fn → f as n → ∞ in the Dirichlet norm, that is,

limn→∞ ∥ fn − f ∥Dα(U) = 0 then this is equivalent to

|( fn − f )(i)| → 0 &
∫
U
|( fn − f )′(w)|2 dµα(w) → 0 as n → ∞.

Since ∀n, fn(i) = 0 then limn→∞ fn(i) = f (i) = 0. Together with the assumption that f ∈ Dα(U), it
follows that f ∈ D i

α(U), as desired. The subspace, D i
α(U) was also discussed in [4] and also considered in

[5] where Schroderus used a version of the Paley-Wiener theorem for the weighted Dirichlet space as well as
some spectral results to establish the relation D i

α(U) = L2
a(U, µτ) with τ = α − 2. See [4–9] for more details on

Dirichlet spaces.
Let X be an arbitrary Banach Space over C and T be a closed linear operator on X. The point spectrum

of T, σp(T) = {λ ∈ C : λ f = T f , for some 0 ̸= f ∈ dom(T)}. The spectrum of T, σ(T) = {λ ∈ C :
(λI − T) is not invertible}. The resolvent set of T, ρ(T) = C \ σ(T). Moreover, r(T) = sup{|λ| : λ ∈ σ(T)}
defines the spectral radius of T. For λ ∈ ρ(T), the operator R(λ, T) = (λI − T)−1 is called the resolvent of T at
λ or simply the resolvent operator. Details on the spectra of linear operators are found in [10–12].

A semigroup, (Tt)t≥0 , is said to be strongly continuous on X if limt→0+ ∥Tt f − f ∥X = 0, ∀ f ∈ X. For
each f ∈ dom(Γ), the infinitesimal generator Γ of (Tt)t≥0 is defined by

Γ f = lim
t→0+

Tt f − f
t

=
∂

∂t
(Tt f − f )

∣∣∣∣∣
t=0

,

and the domain of Γ is given by

dom(Γ) =

{
f ∈ X | lim

t→0+

Tt f − f
t

exists
}

.

Defined as above, the infinitesimal generator Γ of a strongly continuous semigroup on X, considered
together with its domain dom(Γ), is a closed and densely defined operator that determines the semigroup
uniquely, see for instance [11] or [12, Theorem 1.4]. If (Tt)t≥0 and (Tt)t≤0 are both semigroups of bounded
linear operators on X, then (Tt)t∈R is a group on X. For details on the theory for semigroups, see [11,12].

Let φ be a self map on Ω, then the composition operator, Cφ, induced by φ and is acting on H(Ω) is
defined by Cφ f = f ◦ φ, ∀ f ∈ H(Ω).

The composition semigroup, (Cφt)t≥0, induced by a semigroup of self analytic maps, (φt)t≥0, and is acting
on H(Ω) is defined by Cφt f = f ◦ φt, ∀ f ∈ H(Ω).

The theory of composition semigroups on analytic spaces of the D is given more comprehensively in
[13,14]. The study of composition semigroups on the analytic spaces of the upper half-plane was initiated by
[15] on the Hardy space, and was extended in [16] to the Hardy and weighted Bergman spaces. On Dα(U), the
composition semigroups have been partially considered by [9,17,18]. Despite this, the composition semigroup
induced by the translation group on Dα(U) has not been studied. In this work we investigate the properties of
the composition semigroup induced by the translation group on Dα(U), where α = 0.

2. Composition semigroup

The continuous groups of automorphisms of the upper half-plane are classified into three distinct groups
[16], that is, the translation group, the scaling group and the rotation groups depending on the location of
their fixed points. In this paper we consider the group of composition operators on D0(U) associated with the
translation group of the form φt(w) = w + t for w ∈ U where φt is a family of self analytic maps. Henceforth,
we let Cφt = Ct and define the composition semigroup that is induced by φt(w) on D0(U) as

Ct f (w) = f (w + t).

We note that under composition, the operators (Ct)t∈R form a group on D0(U).
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Theorem 1. The operator Ct fails to be an isometry on D0(U).

Proof. By norm definition,

∥Ct f ∥2
D0(U) = | f (i + t)|2 +

∫
U
|( f (w + t))′|2dµ0(w)

= | f (i + t)|2 +
∫
U
| f ′(w + t)|2 dµ0(w). (3)

By change of variables, let z = w + t then w = z − t which implies dµ0(w) = dµ0(z). Substituting into Eq.
(3),

∥Ct f ∥2
D0(U) = | f (i + t)|2 +

∫
U
| f ′(z)|2 dµ(z) ̸= ∥ f ∥2

D0(U).

Remark 1. As a consequence of Theorem 1, we proceed with the approach employed in [9]. On D i
0(U),

Ct f (i) = f (i + t) ̸= 0 meaning that Ct does not map D i
0(U) to itself as is expected for such semigroups.

Therefore, we redefine Ct by applying a correction factor, that is,

Ĉt f (w) = f (w + t)− f (i + t).

At i, Ĉt f (i) = f (i + t)− f (i + t) = 0 and therefore Ĉt : D i
0(U) → D i

0(U).

We note that (Ĉt)t∈R forms a group under composition on D i
0(U).

Proposition 1. The operator Ĉt is a norm isometry on D i
0(U).

Proof. By the definition of the norm on D i
0(U),

∥Ĉt f ∥2
D i

0(U)
=

∫
U
|(Ĉt f )′(w)|2 dµ0(w).

=
∫
U
|( f (w + t)− f (i + t))′|2dµ0(w).

=
∫
U
| f ′(w + t)|2dµ0(w). (4)

Again we change the variables, if z = w + t then w = z − t which implies dµ0(w) = dµ0(z) and thus
substituting in Eq. (4) gives,

∥Ĉt f ∥2
D i

0(U)
=
∫
U
| f ′(z)|2dµ0(z) = ∥ f ∥2

D i
0(U)

.

Proposition 2. The operator Ĉt is strongly continuous on D i
0(U).

Proof. To prove that Ĉt is strongly continuous it suffices to show that ∀ f ∈ D i
0(U)we have limt→0+ ∥Ĉt f −

f ∥D i
0(U)

= 0.

Now, suppose tn → 0 in R and f ∈ D i
0(U) = L2

a(U, µ−2). Let fn = Ĉtn f , then fn(w) → f (w) uniformly
on compact subsets of U for each n with ∥ fn∥L2

a(U,µ−2)
= ∥ f ∥L2

a(U,µ−2)
. If gn = 2

(
| f |2 + | fn|2

)
− | f − fn|2, then

gn ≥ 0 and gn(w) → 4| f (w)|2, as n → ∞ on L2
a(U, µ−2).
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By Fatou’s lemma we have∫
U

4| f |2 dµ−2(w) =
∫
U

lim inf
n

gn dµ−2(w)

≤ lim inf
n

∫
U

gn dµ−2(w)

= lim inf
n

∫
U

2
(
| f |2 + | fn|2

)
− | f − fn|2 dµ−2(w)

=
∫
U

2| f |2 dµ−2(w) +
∫
U

2| f |2 dµ−2(w)

− lim sup
n

∫
U
| f − fn|2 dµ−2(w)

= 4
∫
U
| f |2 dµ−2(w)− lim sup

n

∫
U
| f − fn|2 dµ−2(w).

As a result, 0 ≤ − lim supn
∫
U | f − fn|2dµ−2(w) ≤ 0, which implies that lim supn

∫
U | f − fn|2dµ−2(w) = 0.

Therefore, limn ∥Ĉtn f − f ∥2
L2

a(U,µ−2)
= 0. Consequently, ∥Ĉt f − f ∥D i

0(U)
→ 0 as t → 0+ and therefore Ĉt is

strongly continuous on D i
0(U) as desired.

Proposition 3. The infinitesimal generator, Γ : dom(Γ) → D i
0(U), of Ĉt is given by

Γ f (w) = f ′(w)− f ′(i),

with its domain given as dom(Γ) = { f ∈ D i
0(U) : f ′ ∈ D i

0(U)}.

Proof. Let w ∈ U and f ∈ dom(Γ) in D i
0(U) then by definition of the infinitesimal generator Γ,

Γ f (w) =
∂

∂t

(
f (w + t)− f (i + t)

)∣∣∣∣∣
t=0

= f ′(w + t)− f ′(i + t)
∣∣∣
t=0

= f ′(w)− f ′(i). (5)

This proves that dom(Γ) ⊆ { f ∈ D i
0(U) : f ′ ∈ D i

0(U)}. To show the converse, let f ∈ D i
0(U) such that

f ′ ∈ D i
0(U). By the Fundamental Theorem of Calculus,

Ĉt f (w)− f (w) =
∫ t

0

∂

∂s
(Ĉs f (w))ds

=
∫ t

0

∂

∂s
( f (w + s)− f (i + s))ds

=
∫ t

0
f ′(w + s)− f ′(i + s)ds

=
∫ t

0
ĈsF(w)ds, for F(w) = f ′(w)− f ′(i) ∈ D i

0(U).

Thus,

lim
t→0+

Ĉt f (w)− f (w)

t
= lim

t→0+

1
t

∫ t

0
ĈsF(w)ds,

where F(w) = f ′(w)− f ′(i) ∈ D i
0(U). Strong continuity of (Ĉs)s∈R implies that 1

t
∫ t

0 ∥ĈsF − F∥ds → 0 as t → 0.
Therefore, dom(Γ) = { f ∈ D i

0(U) | f ′ ∈ D i
0(U)}, which concludes our proof.

Lemma 1. For z ∈ U, a function f (z) = eiz(z + i)−c ∈ D0(U) if 1
2 < c < ∞.
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Proof. Let f (z) = eiz(z + i)−c then

f ′(z) = eiz(z + i)−c
(
− c

z + i
+ i
)

.

For z = x + iy we have

| f ′(z)|2 =
e−2y [x2 + (c + y + 1)2]

[x2 + (y + 1)2]
c+1

and

∥ f ∥2
D0,1(U) =

∫ ∞

0

∫ ∞

−∞

e−2y [x2 + (c + y + 1)2]
[x2 + (y + 1)2]

c+1 dxdy,

which is finite if 1
2 < c < ∞.

Theorem 2. Let Γ be the infinitesimal generator of Ĉt given in Eq. (5), then the σp(Γ) = ∅ and σ(Γ) = {is : s ≥ 0}.

Proof. Let Γ be the infinitesimal generator of Ĉt, and λ ∈ C such that λ ∈ σp(Γ). Also, let f be the
corresponding eigen function, then for some 0 ̸= f ∈ D i

α(U) we have

λ ∈ σp(Γ) ⇔ λ f = Γ f

⇔ λ f (w) = f ′(w)− f ′(i). (6)

We solve Eq. (6). Let f ′(i) = A then f ′(w)− λ f (w) = A. The integrating factor, I.F = e
∫
−λdw = e−λw,

which implies

e−λw f (w) = A
∫

e−λwdw ⇔ f (w) =
A
−λ

+ Beλw

where B is a constant of integration. By simple calculation we have that eλw /∈ D i
0(U) therefore f (w) /∈ D i

0(U).
This implies ∄ such λ ∈ C hence σp(Γ) = ∅.

Next we calculate the spectrum, σ(Γ).
The spectral mapping theorem for semigroups asserts that, etσ(Γ) ⊆ σ(Ĉt). Since Proposition 1 holds we

have σ(Ĉt) ⊆ ∂D. This gives the relation, etσ(Γ) ⊆ σ(Ĉt) ⊆ ∂D. Let λ ∈ σ(Γ), then |eλt| = 1. This shows that
etℜ(λ) = 1 which means tℜ(λ) = 0 implying ℜ(λ) = 0 and so λ ∈ iR which shows σ(Γ) ⊆ iR.

Let λ = is for s ≥ 0 and since (λI − Γ) f = h for h ∈ D i
0(U) we have

λ f (w) = h(w) + f ′(w)− f ′(i)

⇔ λ f (w)− f ′(w) = h(w)− f ′(i)

⇔ f ′(w)− λ f (w) = f ′(i)− h(w). (7)

If we let f ′(i) = A and solve Eq. (7) by the integrating factor method we have,

(e−λw f (w))′ = e−λw (A − h(w)) . (8)

If h(w) = eλw(w + λ)−c − eλi(i + λ)−c for 1
2 < c < ∞ then from Eq. (8) we have,

f (w) = eλw
∫
(A + eλi(i + λ)−c)e−λw − (w + λ)−c)dw.
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Let A + eλi(i + λ)−c = B then

f (w) = eλw
∫
(Be−λw − (w + λ)−c)dw

=

{
−B
λ − eλw (w+λ)1−c

1−c + Keλw, if c ̸= 1,
−B
λ − eλw ln(w + λ) + Keλw, if c = 1,

(9)

where K is a constant of integration. But ∄ such a K in either case of Eq. (9) such that f (w) ∈ D i
0(U). Therefore

h /∈ ran(λI − Γ) and {is : s ≥ 0} ⊆ σ(Γ).
For ℑ(λ) < 0, let f ∈ H(U) be defined as

f (w) = eλw
∫ ∞

w
e−λz(A − h(z))dz. (10)

Integrating Eq. (10) along the path z = w + λ
|λ| t for 0 ≤ t ≤ ∞ implies

f (w) =
λ

|λ|

∫ ∞

0
e−|λ|t

(
A − h

(
w +

λ

|λ| t
))

dt, (11)

which is absolutely convergent by the growth condition, Eq. (2), on D i
0(U). Eq. (11) is analytic, that is,

f ′(w) =
λ

|λ|

∫ ∞

0
e−|λ|th′

(
w +

λ

|λ| t
)

dt,

with

| f ′(w)| =

∣∣∣∣∣ λ

|λ|

∫ ∞

0
e−|λ|th′

(
w +

λ

|λ| t
)

dt

∣∣∣∣∣
≤

∫ ∞

0
e−|λ|t

∣∣∣∣∣h′
(

w +
λ

|λ| t
)∣∣∣∣∣ dt

≤
K∥h′∥L2

a(U,µ0)

ℑ
(

w + λ
|λ| t
) ∫ ∞

0
e−|λ|tdt

=
K∥h′∥L2

a(U,µ0)

|λ|ℑ
(

w + λ
|λ| t
) < ∞,

and note that f (w) as defined in Eq. (10) satisfies Eq. (8).
The upper norm bound of f on D i

0(U) is given by applying the integral version of Minkowski’s inequality
[19], that is,

∥ f ∥2
D i

α(U)
≤

∫ ∞

0
e−|λ|t

∫
U

∣∣∣∣∣h′
(

w +
λ

|λ| t
)∣∣∣∣∣

2

dµ(w) dt

≤
∫ ∞

0
e−|λ|t∥h∥2

D i
α(U)

dt

=
1
|λ| ∥h∥2

D i
α(U)

. (12)

Therefore, for ℑ(λ) < 0, the R(λ, Γ) exists with ∥R(λ, Γ)∥ ≤ 1
|λ| and thus the set {is : s < 0} ⊆ ρ(Γ). As a

result we conclude that σ(Γ) = {is : s ≥ 0}, as claimed.
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Proposition 4. If λ ∈ ρ(Γ) and h ∈ D i
0(U) then

R(λ, Γ)h(w) = eλw
∫ ∞

w
e−λz (A − h(z)) dz,

and R(λ, Γ) : D i
0(U) → D i

0(U).

Proof. Let h ∈ D i
0(U). If f = R(λ, Γ)h, then f satisfies equation (8). Whenever ℑ(λ) ≥ 0 and 0 ≤ t ≤ ∞, we

integrate Eq. (8) along the path z = w + t if ℜ(λ) > 0 while if ℜ(λ) < 0 we integrate Eq. (8) along the path
z = w − t. In both cases we have

R(λ, Γ)h(w) = eλw
∫ ∞

w
e−λz (A − h(z)) dz.

Moreover, it’s clear that for any h ∈ D i
0(U), h(i) = 0 and therefore obviously R(λ, Γ)h(i) = 0 implying

that R(λ, Γ) : D i
0(U) → D i

0(U), as desired.

Proposition 5. For λ ∈ ρ(Γ),

1. If ℜ(λ) ̸= 0 and ℑ(λ) ≥ 0, then σ(R(λ, Γ)) is the arc from 1
λ to 0 that contains the upper half of the circle∣∣∣z − 1

2ℜ(λ)

∣∣∣ = 1
|2ℜ(λ)| .

2. If ℑ(λ) < 0, then σ(R(λ, Γ)) is the arc from 1
λ to 0 contained in the upper half of the circle

∣∣∣z − 1
2ℜ(λ)

∣∣∣ = 1
|2ℜ(λ)| .

3. If ℜ(λ) = 0 then σ(R(λ, Γ)) is the line on the imaginary axis from 0 to 1
λ .

Proof. The spectral mapping theorem for resolvents asserts that

σ(R(λ, Γ)) =

{
1

λ − is
: s ≥ 0

}
∪ {0}, (13)

σp(R(λ, Γ)) =

{
1

λ − ∅

}
∪ {0} = {0}, (14)

and the spectral radius is given by

r(R(λ, Γ)) = sup {|ν| : ν ∈ σ(R(λ, Γ))} . (15)

Now,
1. Whenever ℑ(λ) ≥ 0, the spectrum σ(R(λ, Γ)) is given as,

1
λ

ℜ(λ) > 0.

1
λ

ℜ(λ) < 0.

Also, by the Hille-Yosida Theorem and the spectral radius characterization we have

r(R(λ, Γ)) =
1

|ℜ(λ)| ≤ ∥R(λ, Γ)∥ ≤ 1
ℜ(λ) .

2. If ℑ(λ) < 0 and ℜ(λ) ̸= 0, the spectrum σ(R(λ, Γ)) is given as,
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1
λ

ℜ(λ) > 0.

1
λ

ℜ(λ) < 0.

By the Hille-Yosida Theorem and the spectral radius characterization we have

r(R(λ, Γ)) =
1
|λ| ≤ ∥R(λ, Γ)∥ ≤ 1

ℜ(λ) .

3. If ℜ(λ) = 0, then r(R(λ, Γ)) = 1
|λ| and the spectrum σ(R(λ, Γ)) is given as

1
λ
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