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Abstract: In this work, we seek conditions for the existence or nonexistence of solutions for nonlinear
Riemann-Liouville fractional boundary value problems of order α + 2n, where α ∈ (m − 1, m] with m ≥ 3
and m, n ∈ N. The problem’s nonlinearity is continuous and also depends on a positive parameter upon
which our constraints are established. Our approach involves constructing a Green’s function by combining
the Green’s functions of a lower-order fractional boundary value problem and a right-focal boundary value
problem n times. Leveraging the properties of this Green’s function, we apply Krasnosel’skii’s Fixed Point
Theorem to establish our results. Several examples are presented to illustrate the existence and nonexistence
regions.
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1. Introduction

L Let m, n ∈ N with m ≥ 3. Set α ∈ (m − 1, m] and β ∈ [1, m − 1]. In this paper, the following
Riemann-Liouville fractional boundary value problem is studied

Dα+2n
0+ u(x) + (−1)nλg(x) f (u) = 0, 0 < x < 1, (1)

u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ
0+u(1) = 0, (2)

Dα+2γ
0+ u(0) = Dα+2γ+1

0+ u(1) = 0, γ = 0, 1, . . . , n − 1.

Of particular note are the second set of boundary conditions which are right-focal inspired. Throughout,
we require that f : [0, ∞) → [0, ∞) be a continuous function and that g : [0, 1] → [0, ∞) is also a continuous
function additionally satisfying

∫ 1
0 g(x) dx > 0. Finally, λ > 0 is a positive parameter upon which we establish

our existence and nonexistence of positive solution results for (1), (2). In this work, α is the order of the
lower-order fractional boundary value problem, β is the order of the fractional derivative boundary condition
evaluated at the right endpoint, and 2n is the increased order of the higher-order boundary value problem.

To prove that positive solutions exist, we seek fixed points of the operator

Tu(x) = (−1)nλ
∫ 1

0
G(x, s)g(s) f (u(s)) ds,

where G(x, s) is the Green’s function associated with (1), (2). Fixed points of the operator are positive solutions
to (1), (2).

The main motivation for this work is a generalization of the paper by Lyons and Neugebauer, [1]. Here,
we extend their work by increasing the order of the fractional boundary value problem from a magnitude of
α + 2 to a magnitude of α + 2n. This is done using repeated convolution of the Green’s function for a standard
right-focal, second-order ordinary boundary value problem with that of a lower-order fractional boundary
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value problem. As expected, the right-focal work found within [1] is recovered precisely when n is equals to
one.

The work of Lyons and Neugebauer was itself a generalization of that done by Graef along with various
authors in the early part of the century [2–4]. The initial motivation for their efforts was to prove the existence
of positive solutions to beam equations using fixed point theory [5]. If we pick the values in our generalization
correctly, we recover those results as a special case.

To construct the Green’s function for (1), (2), we use the technique outlined in Eloe and Neugebauer in [6].
This is facilitated by a convolution of the Green’s function G0(x, s) for a lower-order problem with the Green’s
function of a right-focal boundary value problem. We continue in an iterative process to yield the higher-order
Green’s function corresponding to (1), (2). Next, we prove that key properties of the lower-order Green’s
functions are inherited by the higher-order Green’s function. Finally, an application of Guo-Krasnosel’skii
Fixed Point Theorem is employed to show the existence of positive solutions and a contradiction argument is
provided that establishes the nonexistence results. Both types of results are based upon the sizing of λ.

Much research has been done employing fixed point theory to establish the existence of solutions and
occassionally nonexistence of solutions to Riemann-Liouville fractional boundary value problems. This study
fits into this wide array of research in that vein [1,2,7–16].

Section 2 introduces key definitions related to the RL-fractional derivative and offers directions for further
study, along with a statement of the Guo-Krasnosel’skii Fixed Point Theorem. The following sections focus on
constructing the Green’s function and analyzing its properties. In Sections 5 and 6, we determine parameter
intervals for λ that ensure the existence or nonexistence of positive solutions. Lastly, we provide examples to
demonstrate the application of our main results.

2. Definitions and theorems

To start, we present the definitions of the Riemann-Liouville fractional integral and derivative. The choice
of this type of fractional derivative amongst the many other choices is that the Green’s functions and properties
therein are well-established for our boundary value problem and it is widely used and adopted.

Definition 1. Let ν > 0. The Riemann-Liouville fractional integral of a function u of order ν, denoted Iν
0+u, is

defined as
Iν
0+u(x) =

1
Γ(ν)

∫ x

0
(x − s)ν−1u(s)ds,

provided the right-hand side exists.

Definition 2. Let n denote a positive integer and assume n − 1 < α ≤ n. The Riemann-Liouville fractional
derivative of order α of the function u : [0, 1] → R, denoted Dα

0+u, is defined as

Dα
0+u(x) =

1
Γ(n − α)

dn

dxn

∫ x

0
(x − s)n−α−1u(s)ds = Dn In−α

0+ u(x),

provided the right-hand side exists.

For material on fractional calculus and more in depth information about these definitions, we cite [17–20].
Lastly, we present Guo-Krasnosel’skii’s Fixed Point Theorem as found in [21,22].

Theorem 1 (Guo-Krasnosel’skii’s Fixed Point Theorem). Let X be a Banach space, and let P ⊂ X be a cone. Assume
that Ω1 and Ω2 are open sets with 0 ∈ Ω1 ⊆ Ω1 ⊂ Ω2. Let the operator T : P ∩ (Ω2\Ω1) → P be a completely
continuous such that either

1. for u ∈ P ∩ ∂Ω1, ∥Tu∥ ≥ ∥u∥ and for u ∈ P ∩ ∂Ω2, ∥Tu∥ ≤ ∥u∥; or
2. for u ∈ P ∩ ∂Ω1, ∥Tu∥ ≤ ∥u∥ and for u ∈ P ∩ ∂Ω2, ∥Tu∥ ≥ ∥u∥.
Then, T has a fixed point in the set P ∩ (Ω2\Ω1).
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3. Green’s function via convolution

Similar to procedure found in [16], we now build the Green’s function for (1), (2). This is accomplished
using induction and convolution.

First, the right-focal boundary value problem

−u′′ = 0, 0 < x < 1, u(0) = 0, u′(1) = 0

has Green’s function

Gr f (x, s) =

{
s, 0 ≤ s < x ≤ 1,
x, 0 ≤ x < s ≤ 1.

Let G0(x, s) be the Green’s function for

−Dα
0+u = 0, 0 < x < 1, u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ

0+u(1) = 0,

which is given by [23]:

G0(x, s) =
1

Γ(α)


xα−1(1 − s)α−1−β − (x − s)α−1, 0 ≤ s < x ≤ 1,

xα−1(1 − s)α−1−β, 0 ≤ x ≤ s < 1.

Now, define Gk(x, s) for k = 1, 2, . . . , n by

Gk(x, s) = −
∫ 1

0
Gk−1(x, r)Gr f (r, s)dr.

Then,

Gn(x, s) = −
∫ 1

0
Gn−1(x, r)Gr f (r, s)dr,

is the Green’s function for
−Dα+2n

0+ u(x) = 0, 0 < x < 1,

with boundary conditions (2), and Gn−1(x, s) is the Green’s function for

−Dα+2(n−1)
0+ u(x) = 0, 0 < x < 1,

with boundary conditions
u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ

0+u(1) = 0,

Dα+2l
0+ u(0) = Dα+2l+1

0+ u(1) = 0, l = 0, 1, . . . , n − 2.

To see this, first consider k = 1 and the linear differential equation

Dα+2
0+ u(x) + h(x) = 0, 0 < x < 1,

satisfying boundary conditions

u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ
0+u(1) = 0,

Dα
0+u(0) = 0, Dα+1

0+ u(1) = 0.

Employ a of variable change
v(x) = Dα+2−2

0+ u(x).

Then,
D2v(x) = D2Dα+2−2

0+ u(x) = Dα+2
0+ u(x) = −h(x),
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and since v(x) = Dα
0+u(x),

v(0) = Dα
0+u(0) = 0 and v′(1) = Dα+1

0+ u(1) = 0.

Thus, v satisfies the right-focal boundary value problem

v′′ + h(x) = 0, 0 < x < 1,

v(0) = 0, v′(1) = 0.

Also, u now satisfies a lower-order boundary value problem,

Dα
0+u(x) = v(x), 0 < x < 1,

u(i)(0) = 0, i = 0, 1, . . . , m − 2, Dβ
0+u(1) = 0.

Thus,

u(x) =
∫ 1

0
G0(x, s)(−v(s))ds

=
∫ 1

0
G0(x, s)

(
−

∫ 1

0
Gr f (s, r)h(r)ds

)
dr

=
∫ 1

0

(∫ 1

0
−G0(x, s)Gr f (s, r)ds

)
h(r)dr,

and

u(x) =
∫ 1

0
G1(x, s)h(s)ds,

where

G1(x, s) = −
∫ 1

0
G0(x, r)Gr f (r, s)dr.

Proceeding inductively, we assume that k = n − 1 is true and investigate the linear differential equation

Dα+2n
0+ u(x) + k(x) = 0, 0 < x < 1,

satisfying boundary conditions (2). Employ a variable change

v(x) = Dα+2(n−1)
0+ u(x).

Then, we have that
D2v(x) = Dα+2n

0+ = −k(x)

and
v(0) = Dα+2(n−1)

0+ u(0) = 0 and v′(1) = Dα+2(n−1)+1
0+ v(1) = 0.

Now, v(x) satisfies the right-focal boundary value problem

v′′ + k(x) = 0, 0 < x < 1,

v(0) = 0, v′(1) = 0

while u(x) satisfies the lower-order problem

Dα+2(n−1)
0+ u(x) = v(x), 0 < x < 1,

u(0) = 0, Dβ
0+u(1) = 0,

Dα+2γ
0+ u(0) = Dα+2γ+1

0+ u(1) = 0, γ = 0, 1, . . . , n − 2.
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Proceeding inductively,

u(x) =
∫ 1

0
Gn−1(x, s)(−v(s))ds

=
∫ 1

0

(
−

∫ 1

0
Gn−1(x, s)Gr f (s, r)ds

)
k(r)dr

=
∫ 1

0
Gn(x, s)k(s)ds.

Therefore,

u(x) =
∫ 1

0
Gn(x, s)k(s)ds,

where

Gn(x, s) = −
∫ 1

0
Gn−1(x, r)Gr f (r, s)dr.

Thus, the unique solution to

Dα+2n
0+ u(x) + k(x) = 0, 0 < x < 1,

satisfying boundary conditions (2) is given by

u(x) =
∫ 1

0
Gn(x, s)k(s)ds.

4. Properties of the green’s function

In this section, we investigate properties of Gn(x, s) that are inherited from G0(x, s) and Gr f (x, s). The first
lemma is well-established and presented without proof.

Lemma 1. For (x, s) ∈ [0, 1]× [0, 1], Gr f (x, s) ∈ C(1) and Gr f (x, s) ≥ 0.

The following lemma is proved in [1].

Lemma 2.
(1) If (x, s) ∈ [0, 1]× [0, 1), then G0(x, s) ∈ C(1).
(2) If (x, s) ∈ (0, 1)× (0, 1), then G0(x, s) > 0 and ∂

∂x G0(x, s) > 0.
(3) If (x, s) ∈ [0, 1]× [0, 1), then xα−1G0(1, s) ≤ G0(x, s) ≤ G0(1, s).

The following properties for Gn(x, s) are derived from G0(x, s) from Lemma 2.

Lemma 3.
1) If (x, s) ∈ [0, 1]× [0, 1), then Gn(x, s) ∈ C(1).
2) If (x, s) ∈ (0, 1)× (0, 1), then (−1)nGn(x, s) > 0 and (−1)n ∂

∂x Gn(x, s) > 0.
3) If (x, s) ∈ [0, 1]× [0, 1), then

(−1)nxα−1Gn(1, s) ≤ (−1)nGn(x, s) ≤ (−1)nGn(1, s).

Proof. Induction is used to prove each part.
For (1) with (x, s) ∈ [0, 1]× [0, 1), we first consider k = 1,

G1(x, s) = −
∫ 1

0
G0(x, r)Gr f (r, s)ds.

By Lemmas 1 and 2, G1(x, s) ∈ C(1). Next, assume that k = n − 1 is true. Then,

Gn(x, s) = −
∫ 1

0
Gn−1(x, r)Gr f (r, s)ds.
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By induction along with Lemma 1, Gn(x, s) ∈ C(1).
For (2) with (x, s) ∈ (0, 1)× (0, 1) and using Lemmas 1 and 2, we first consider k = 1,

(−1)1G1(x, s) = −
(
−

∫ 1

0
G0(x, r)Gr f (r, s)dr

)
> 0

and

(−1)1 ∂

∂x
G1(x, s) = −

(
−

∫ 1

0

∂

∂x
G0(x, r)Gr f (r, s)dr

)
> 0.

Now, proceeding inductively, assume that k = n − 1 is true. Then, by Lemma 1,

(−1)nGn(x, s) = (−1)n
(
−

∫ 1

0
Gn−1(x, r)Gr f (r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1Gn−1(x, r)Gr f (r, s)dr

)
> 0,

and

(−1)n ∂

∂x
Gn(x, s) = (−1)n

(
−

∫ 1

0

∂

∂x
Gn−1(x, r)Gr f (r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1 ∂

∂x
Gn−1(x, r)Gr f (r, s)dr

)
> 0.

For (3) with (x, s) ∈ [0, 1]× [0, 1) and using Lemma 2 (3), we first consider k = 1,

(−1)1xα−1G1(1, s) = −xα−1
(
−

∫ 1

0
G0(1, r)Gr f (r, s)dr

)
= −

(∫ 1

0
−xα−1G0(1, r)Gr f (r, s)dr

)
≤ −

(∫ 1

0
−G0(x, r)Gr f (r, s)dr

)
= −

(
−

∫ 1

0
G0(x, r)Gr f (r, s)dr

)
= (−1)1G1(x, s),

and

(−1)1G1(x, s) = −
(
−

∫ 1

0
G0(x, r)Gr f (r, s)dr

)
=

∫ 1

0
G0(x, r)Gr f (r, s)dr

≤
∫ 1

0
G0(1, r)Gr f (r, s)dr

= −
(
−

∫ 1

0
G0(1, r)Gr f (r, s)dr

)
= (−1)1G1(1, s).

Now, proceeding inductively, assume that k = n − 1 is true. Then,

(−1)nxα−1Gn(1, s) = (−1)nxα−1
(
−

∫ 1

0
Gn−1(1, r)Gr f (r, s)dr

)
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= (−1)2
(∫ 1

0
(−1)n−1tα−1Gn−1(1, r)Gr f (r, s)dr

)
≤ (−1)2

(∫ 1

0
(−1)n−1Gn−1(x, r)Gr f (r, s)dr

)
= (−1)n

(
−

∫ 1

0
Gn−1(x, r)Gr f (r, s)dr

)
= (−1)nGn(x, s),

and

(−1)nGn(x, s) = (−1)n
(
−

∫ 1

0
Gn−1(x, r)Gr f (r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1Gn−1(x, r)Gr f (r, s)dr

)
≤ (−1)2

(∫ 1

0
(−1)n−1Gn−1(1, r)Gr f (r, s)dr

)
= (−1)n

(
−

∫ 1

0
Gn−1(1, r)Gr f (r, s)dr

)
= (−1)nGn(1, s).

5. Existence of positive solutions

Using our constructed Green’s function and its properties, we now demonstrate the existence of positive
solutions to (1), (2) by finding bounds for λ. This is done with an application of the Guo-Krasnosel’skii Fixed
Point Theorem.

Define the constants

An =
∫ 1

0
(−1)nsα−1Gn(1, s)g(s)ds, Bn =

∫ 1

0
(−1)nGn(1, s)g(s)ds,

F0 = lim sup
u→0+

f (u)
u

, f0 = lim inf
u→0+

f (u)
u

,

F∞ = lim sup
u→∞

f (u)
u

, f∞ = lim inf
u→∞

f (u)
u

.

Let B = C[0, 1] be a Banach space with norm

∥u∥ = max
x∈[0,1]

|u(x)|.

Define the cone

P = {u ∈ B : u(0) = 0, u(x) is nondecreasing, and

xα−1u(1) ≤ u(x) ≤ u(1) on [0, 1]
}

.

Define the operator T : P → B by

Tu(x) = (−1)nλ
∫ 1

0
Gn(x, s)g(s) f (u(s))ds.

Lemma 4. T : P → P is completely continuous.
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Proof. Set u ∈ P . Thus,

Tu(0) = (−1)nλ
∫ 1

0
Gn(0, s)g(s) f (u(s))ds = 0.

Additionally, for x ∈ (0, 1) and by Lemma 3 (2),

∂

∂x
[Tu(x)] = (−1)nλ

∫ 1

0

∂

∂x
Gn(x, s)g(s) f (u(s))ds > 0.

This provides that Tu(x) is nondecreasing.
Next, for x ∈ [0, 1] and by Lemma 3,

xα−1Tu(1) = xα−1(−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

≤ (−1)nλ
∫ 1

0
Gn(x, s)g(s) f (u(s))ds

= Tu(x),

and

Tu(x) = (−1)nλ
∫ 1

0
Gn(x, s)g(s) f (u(s))ds

≤ (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

= Tu(1).

Therefore, Tu ∈ P . T is completely continuous by the Arzeli-Ascoli Theorem.

Theorem 2. If
1

An f∞
< λ <

1
BnF0

,

then (1), (2) has at least one positive solution.

Proof. Since we have that F0λBn < 1, ∃ δ > 0 implying

(F0 + δ)λBn ≤ 1.

Also since

F0 = lim sup
u→0+

f (u)
u

,

∃ H1 > 0 implying
f (u) ≤ (F0 + δ)u for u ∈ (0,H1].

Set Ω1 = {u ∈ B : ∥u∥ < H1} and let u ∈ P ∩ ∂Ω1. Thus, ∥u∥ = H1, and

|(Tu)(1)| = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

≤ (−1)nλ
∫ 1

0
Gn(1, s)g(s)(F0 + δ)u(s)ds

≤ (F0 + δ)u(1)λ
∫ 1

0
(−1)nGn(1, s)g(s)ds

≤ (F0 + δ)∥u∥λBn

≤ ∥u∥.

Since Tu ∈ P , we have that ∥Tu∥ ≤ ∥u∥ for u ∈ P ∩ ∂Ω1.
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Since f∞λ >
1
An

, ∃ θ ∈ (0, 1) and δ > 0 so that

( f∞ − δ)λ >

(
(−1)n

∫ 1

θ
sα−1Gn(1, s)g(s)ds

)−1

.

Additionally, as

f∞ = lim inf
u→∞

f (u)
u

,

∃ H3 > 0 implying
f (u) ≥ ( f∞ − δ)u for u ∈ [H3, ∞).

Set

H2 = max
{

H3

θα−1 , 2H1

}
,

and set Ω2 = {u ∈ B : ∥u∥ < H2}. Let u ∈ P ∩ ∂Ω2. Then, ∥u∥ = H2. Notice for x ∈ [θ, 1],

u(x) ≥ xα−1u(1) ≥ θα−1H2 ≥ θα−1 H3

θα−1 = H3.

Thus,

|(Tu)(1)| ≥ (−1)nλ
∫ 1

θ
Gn(1, s)g(s) f (u(s))ds

≥ λ
∫ 1

θ
(−1)nGn(1, s)g(s)( f∞ − δ)u(s)ds

≥ λ( f∞ − δ)u(1)(−1)n
∫ 1

θ
sα−1Gn(1, s)g(s)ds

≥ ∥u∥.

Hence, ∥Tu∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω2. Since H1 < H2, we find Ω1 ⊂ Ω2.
Therefore, by Theorem 1 (1), T has a fixed point u ∈ P which is a positive solution of (1), (2).

Theorem 3. If
1

An f0
< λ <

1
BnF∞

,

then (1), (2) has at least one positive solution.

Proof. Since f0λAn > 1, ∃ δ > 0 which implies that

( f0 − δ)λAn ≥ 1.

Additionally, as

f0 = lim inf
u→0+

f (u)
u

,

∃ H1 > 0 which implies that
f (u) ≥ ( f0 − δ)u, x ∈ (0,H1].

Set Ω1 = {u ∈ B : ∥u∥ < H1}, and let u ∈ P ∩ ∂Ω1. Thus, u(x) ≤ H1 for x ∈ [0, 1]. Therefore,

|(Tu)(1)| = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

≥ (−1)nλ
∫ 1

0
Gn(1, s)g(s)( f0 − δ)u(s)ds

≥ λ( f0 − δ)u(1)
∫ 1

0
(−1)nsα−1Gn(1, s)g(s)ds
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≥ λ( f0 − δ)∥u∥An

≥ ∥u∥.

Thus, ∥Tu∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω1. Also, since F∞Bnλ < 1, ∃ δ ∈ (0, 1) implying

((F∞ + δ)Bn + δ)λ ≤ 1.

Since

F∞ = lim sup
u→∞

f (u)
u

,

∃ H3 > 0 which implies that
f (u) ≤ (F∞ + δ)u, u ∈ [H3, ∞).

Set
M = max

u∈[0,H3]
f (u).

Then, ∃ c ∈ (0, 1) with

(−1)n
∫ c

0
Gn(1, s)g(s)ds ≤ δ

M
.

Let

H2 = max
{

2H1,
H3

cα−1 , 1
}

,

and set Ω2 = {u ∈ B : ∥u∥ < H2}. Let u ∈ P ∩ ∂Ω2. Then, ∥u∥ = H2 and so,

u(1) = H2 ≥ H3

cα−1 > H3.

Now, u(0) = 0. The Intermediate Value Theorem tell us that ∃ ξ ∈ (0, 1) with u(ξ) = H3. But, for
x ∈ [c, 1], we have

u(x) ≥ xα−1u(1) = xα−1H2 ≥ cα−1 H3

cα−1 = H3.

Thus, ξ ∈ (0, c]. Moreover, since u(x) is nondecreasing, we get that

0 ≤ u(x) ≤ H3, x ∈ [0, ξ)

and
u(x) ≥ H3, x ∈ (ξ, 1].

Thus,

|(Tu)(1)| = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

= λ

(
(−1)n

∫ ξ

0
Gn(1, s)g(s) f (u(s))ds + (−1)n

∫ 1

ξ
Gn(1, s)g(s) f (u(s))ds

)
≤ λ

(
M

∫ ξ

0
(−1)nGn(1, s)g(s)ds + (−1)n

∫ 1

ξ
Gn(1, s)g(s)(F∞ + δ)u(s)ds

)
≤ λ

(
M

δ

M
+ (F∞ + δ)u(1)

∫ 1

ξ
(−1)nGn(1, s)g(s)ds

)
≤ λ(δ + (F∞ + δ)∥u∥ Bn)

≤ λ(δ∥u∥+ (F∞ + δ)∥u∥ Bn)

= λ∥u∥(δ + (F∞ + δ)Bn)

≤ ∥u∥.

Thus, ∥Tu∥ ≤ ∥u∥ for u ∈ P ∩ ∂Ω2. Notice that since H1 < H2, we have that Ω1 ⊂ Ω2.
Therefore, by Theorem 1 (2), T has a fixed point u ∈ P which is a positive solution of (1), (2).
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6. Nonexistence of positive solutions

In this section, we seek constraints on λ that would guarantee that no positive solution exists to (1), (2).
To that end, we present properties that positive solutions must satisfy in the following lemma.

Lemma 5. Suppose Dα+2n
0+ u ∈ C[0, 1]. If (−1)n(−Dα+2n

0+ u(x)) ≥ 0 for all x ∈ [0, 1] and u(x) satisfies (2), then
1) u′(x) ≥ 0, 0 ≤ x ≤ 1, and
2) xα−1u(1) ≤ u(x) ≤ u(1), 0 ≤ x ≤ 1.

Proof. Let 0 ≤ x ≤ 1.
For part (1), we employ Lemma 3 (2) to get

u′(x) =
∫ 1

0

∂

∂x
Gn(x, s)(−Dα+2n

0+ u(s))ds

=
∫ 1

0
(−1)n ∂

∂x
Gn(x, s)(−1)n(−Dα+2n

0+ u(s))ds

> 0.

For part (2), we employ Lemma 3 (3) to get

xα−1u(1) = xα−1
∫ 1

0
Gn(1, s)(−Dα+2n

0+ u(s))ds

=
∫ 1

0
(−1)nxα−1Gn(1, s)(−1)n(−Dα+2n

0+ u(s))ds

≤
∫ 1

0
(−1)nGn(x, s)(−1)n(−Dα+2n

0+ u(s))ds

=
∫ 1

0
Gn(x, s)(−Dα+2n

0+ u(s))ds

= u(x),

and

u(x) =
∫ 1

0
Gn(x, s)(−Dα+2n

0+ u(s))ds

=
∫ 1

0
(−1)nGn(x, s)(−1)n(−Dα+2n

0+ u(s))ds

≤
∫ 1

0
(−1)nGn(1, s)(−1)n(−Dα+2n

0+ u(s))ds

=
∫ 1

0
Gn(1, s)(−Dα+2n

0+ u(s))ds

= u(1).

Theorem 4. If for all u ∈ (0, ∞)

λ <
u

Bn f (u)
,

then no positive solution exists to (1), (2).

Proof. For contradiction, assume that u(x) is a positive solution to (1), (2). Then, we have that
(−1)n(−Dα+2n

0+ u(x)) = λg(x) f (u(x)) ≥ 0. Therefore, by Lemma 5,

u(1) = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

< (−1)n(Bn)
−1

∫ 1

0
Gn(1, s)g(s)u(s)ds
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≤ u(1)(Bn)
−1

∫ 1

0
(−1)nGn(1, s)g(s)ds

= u(1),

which yields a contradiction.

Theorem 5. If for all u ∈ (0, ∞)

λ >
u

An f (u)
,

then no positive solution exists to (1), (2).

Proof. For contradiction, assume that u(x) is a positive solution to (1), (2). Then, we have that
(−1)n(−Dα+2n

0+ u(x)) = λg(x) f (u(x)) ≥ 0. Therefore, by Lemma 5,

u(1) = (−1)nλ
∫ 1

0
Gn(1, s)g(s) f (u(s))ds

> (−1)n(An)
−1

∫ 1

0
Gn(1, s)g(s)u(s)ds

≥ u(1)(An)
−1

∫ 1

0
(−1)nsα−1Gn(1, s)g(s)ds

= u(1),

which yields a contradiction.

7. An example

Finally, we approximate bounds on the parameter λ for both the existence and nonexistence of positive
solutions for a given example. We use Theorems 2, 4, and 5. Examples that use Theorems 3, 4, and 5 are
demonstrated similarly.

Set n = 2, m = 3, α = 2.5, β = 1.5, and g(x) = x. Notice that g(x) ≥ 0 is continuous for 0 ≤ x ≤ 1 and∫ 1
0 g(x)dx > 0. We find that

G0(1, s) =
1

Γ(2.5)

{
11.5(1 − s)0 − (1 − s)1.5, 0 ≤ s < x ≤ 1,

11.5(1 − s)0, 0 ≤ x ≤ s < 1

=
1 − (1 − s)1.5

Γ(2.5)

and calculate

A2 =
∫ 1

0
(−1)2s1.5G2(1, s)(s)ds

=
∫ 1

0

[
−

∫ 1

0
G1(1, r1)Gr f (r1, s)dr1

]
s2.5ds

=
∫ 1

0

[
−

∫ 1

0

(∫ 1

0
−G0(1, r2)Gr f (r2, r1)dr2

)
Gr f (r1, s)dr1

]
s2.5ds

≈ 0.03071,

and

B2 =
∫ 1

0
(−1)2G2(1, s)(s)ds

=
∫ 1

0

[
−

∫ 1

0
G1(1, r1)Gr f (r1, s)dr1

]
sds

=
∫ 1

0

[
−

∫ 1

0

(∫ 1

0
−G0(1, r2)Gr f (r2, r1)dr2

)
Gr f (r1, s)dr1

]
sds
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≈ 0.04749.

By approximating A2 and B2 first, applying existence and nonexistence theorems is much simpler as they
only have need for the liminfs and limsups of choice of f (u).

Example 1. Here we provide an example using Theorem 2, 4, and 5. Set f (u) = u ln(u + 1) + 2u. Notice for
u ≥ 0, f (u) ≥ 0 is continuous. Thus, our problem is

D6.5
0+ u(x) + λx(u ln(u + 1) + 2u) = 0, 0 < x < 1, (3)

u(0) = u′(0) = 0, D1.5
0+ (1) = 0, (4)

D2.5
0+ u(0) = D3.5

0+ (1) = 0, D4.5
0+ (0) = D5.5

0+ (1) = 0.

We compute the liminfs and limsups for f (u)/u = ln(u + 1) + 2.

f∞ = lim inf
u→∞

(ln(u + 1) + 2) = ∞, F0 = lim sup
u→0+

(ln(u + 1) + 2) = 2,

f0 = lim inf
u→0+

(ln(u + 1) + 2) = 2, F∞ = lim sup
u→∞

(ln(u + 1) + 2) = ∞.

Then, we find
1

A2 f∞
≈ 1

0.03031 · ∞
= 0,

and
1

B2F0
≈ 1

0.04749 · 2
≈ 10.52853.

Next, for u ∈ (0, ∞), we investigate

u
B2 f (u)

=
1

B2(ln(u + 1) + 2)
.

We approximate

inf
u∈(0,∞)

1
B2(ln(u + 1) + 2)

=
1
B2

inf
u∈(0,∞)

1
ln(u + 1) + 2

≈ 1
0.04749

(0) = 0.

Finally, for u ∈ (0, ∞), we investigate

u
A2 f (u)

=
1

A2(ln(u + 1) + 2)
.

We approximate

sup
u∈(0,∞)

1
A2(ln(u + 1) + 2)

=
1
A2

sup
u∈(0,∞)

1
ln(u + 1) + 2

≈ 1
0.030307

(
1
2

)
≈ 16.49784.

Thus, by Theorem 2, if 0 < λ < 16.49, then (3), (4) has at least one positive solution. By Theorem 5, if
λ > 16.49, then (3), (4) does not have a positive solution. We note that in this example Theorem 4 did not yield
a meaningful result which was expected as Theorem 2 provides a positive solution for any choice of positive
λ.

Remark 1. Lastly, we note that to find a meaning λ range for both nonexistence results and either existence
result simultaneously with g(x) = x, we could choose a rational function f (u) with a quadratic numerator
and linear denominator. Thus, f (u)/u is a rational function with a linear numerator and denominator leading
to finite values for each liminf and limsup.
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8. Conclusions

We studied Riemann-Liouville fractional differential equations with order α+ 2n with n ∈ N that includes
a parameter λ. The two-point boundary conditions are influenced by standard right-focal conditions. We
established the Green’s function for the boundary value problem by utilizing a convolution of a lower-order
problem and standard right-focal problem by making a change of variables. Then, we inductively defined the
Green’s function for the higher order problem.

Next, we inductively proved many properties inherited by the Green’s function from the lower-order
problems. These properties permitted an application of the Guo-Krasnosel’skii Fixed Point Theorem to
establish the existence of positive solutions based upon the size of λ. We also established the nonexistence
of positive solutions based upon choice of λ via contradiction. Finally, we discussed a specific example and
proved existence and nonexistence based on the choice of λ.

Future research may be to use the approach in this work to establish existence and nonexistence of positive
solutions for other types of boundary conditions. Another avenue could be considering a singularity at f (0).
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