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Abstract: We develop and analyze an adaptive spacetime finite element method for nonlinear parabolic
equations of p–Laplace type. The model problem is governed by a strongly nonlinear diffusion operator that
may be degenerate or singular depending on the exponent p, which typically leads to limited regularity of
weak solutions. To address these challenges, we formulate the problem in a unified spacetime variational
framework and discretize it using conforming finite element spaces defined on adaptive spacetime meshes.
We prove the well-posedness of both the continuous problem and the spacetime discrete formulation, and
establish a discrete energy stability estimate that is uniform with respect to the mesh size. Based on residuals
in the spacetime domain, we construct a posteriori error estimators and prove their reliability and local
efficiency. These results form the foundation for an adaptive spacetime refinement strategy, for which we
prove global convergence and quasi-optimal convergence rates without assuming additional regularity of the
exact solution. Numerical experiments confirm the theoretical findings and demonstrate that the adaptive
spacetime finite element method significantly outperforms uniform refinement and classical time-stepping
finite element approaches, particularly for problems exhibiting localized spatial and temporal singularities.
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1. Introduction

N onlinear parabolic equations of p–Laplace type arise naturally in a wide range of scientific and
engineering applications, including non–Newtonian fluid flows, nonlinear heat conduction, porous

media diffusion, material science, and biological transport processes. A prototypical model is given by

∂tu−∇ ·
(
|∇u|p−2∇u

)
= f , (1)

which generalizes the classical heat equation corresponding to the linear case p = 2.
The mathematical analysis of such equations has a long and well–established history. Early foundational

contributions were made by Ladyzhenskaya and Uraltseva in their seminal works on degenerate and singular
elliptic and parabolic equations in the 1960s [1]. A systematic treatment of degenerate parabolic equations,
including regularity properties and intrinsic scaling techniques, was later developed by DiBenedetto [2].
Depending on the exponent p, the diffusion operator exhibits either degenerate behavior for 1 < p < 2 or
singular behavior for p > 2, which typically leads to limited regularity of weak solutions and the formation of
steep gradients or free–boundary–type phenomena.

From the perspective of nonlinear functional analysis, the theory of weak solutions to nonlinear evolution
equations is deeply rooted in the framework of monotone operators and Sobolev spaces. Fundamental results
on existence, uniqueness, and stability of solutions were established by Lions [3], Showalter [4], and Zeidler [5].
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These works provide the analytical foundation for parabolic problems involving the p–Laplace operator,
ensuring well–posedness under minimal regularity assumptions on the data.

On the numerical side, the finite element method has become one of the most powerful tools for the
approximation of partial differential equations. The concept of a posteriori error estimation and adaptive
mesh refinement was pioneered by Babuška and Rheinboldt [6,7], and later systematically developed by
Verfürth [8,9] for linear elliptic and parabolic problems. Adaptive finite element methods (AFEM) are
particularly attractive for problems with localized phenomena, as they allow the computational effort to be
concentrated in regions where the solution exhibits large gradients or reduced regularity.

For nonlinear problems, substantial progress has been made in recent years for the elliptic p–Laplace
equation. Convergence and optimality results for adaptive schemes have been obtained, for instance,
in [10–12]. In contrast, the parabolic p–Laplace problem has been studied predominantly within time–stepping
frameworks, where the spatial discretization and the temporal integration are treated separately. While such
approaches are effective for sufficiently smooth solutions, they are often less suitable for capturing strong
space–time interactions or highly nonuniform temporal behavior.

Fully spacetime finite element methods offer an appealing alternative by treating space and time within a
unified variational framework. For linear parabolic and hyperbolic problems, spacetime discretizations have
been shown to provide enhanced stability, flexibility, and parallelization capabilities; see, for example, the
works of Steinbach, Moore, and Langer [13–15]. However, systematic investigations of adaptive spacetime
finite element methods for nonlinear parabolic equations of p–Laplace type, including rigorous a posteriori
error control and convergence analysis, are still largely unexplored.

The purpose of this paper is to address this gap. We develop and analyze an adaptive spacetime finite
element method for nonlinear parabolic equations of p–Laplace type. Our approach combines a unified
spacetime variational formulation with residual–based a posteriori error estimators, allowing for simultaneous
mesh refinement in space and time. We establish well–posedness of the discrete problem, discrete energy
stability, reliability and efficiency of the error estimator, and convergence of the adaptive scheme under
minimal regularity assumptions. Numerical experiments are presented to illustrate the theoretical results and
to demonstrate the advantages of spacetime adaptivity over uniform and time–stepping approaches.

1.1. Background and motivation

Nonlinear parabolic equations of p-Laplace type arise naturally in a wide range of scientific and
engineering applications, where diffusion or transport processes depend nonlinearly on the gradient of the
unknown solution. A prototypical model is the parabolic p-Laplace Eq. (1) which can be viewed as a nonlinear
generalization of the classical heat equation corresponding to the linear case p = 2.

An important application of such equations appears in the modeling of non-Newtonian fluid flows, where
the viscosity of the fluid depends on the rate of deformation. In these models, the velocity field satisfies a
parabolic equation involving a p-Laplace type operator, with the parameter p characterizing shear-thinning
behavior (1 < p < 2) or shear-thickening behavior (p > 2). These models play a fundamental role in the
description of polymeric fluids, suspensions, and various biological fluids.

Another significant class of applications concerns nonlinear diffusion processes, including flow in porous
media, population dynamics, and image processing. In such problems, the diffusion coefficient reflects
heterogeneous or concentration-dependent transport mechanisms, which naturally lead to p-Laplace type
operators. Similarly, nonlinear heat conduction in materials with temperature-dependent thermal conductivity
can be described by parabolic equations with nonlinear diffusion terms.

In continuum mechanics and material science, equations of p-Laplace type are employed to model
viscoplasticity, damage evolution, and strain localization phenomena. Moreover, in biological applications,
such equations arise in models of cell migration, chemotaxis, and tissue growth, where diffusion processes are
inherently nonlinear and anisotropic.

Despite their broad applicability, the numerical approximation of nonlinear parabolic equations of
p-Laplace type remains challenging. Classical finite element methods typically rely on a separation of space
and time discretizations, for instance by combining spatial finite elements with time-stepping schemes. While
effective for smooth solutions, such approaches often struggle to accurately capture phenomena with strong
space–time coupling, moving fronts, or localized features.
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Furthermore, the use of uniform meshes in both space and time is generally inefficient for problems
exhibiting degenerate or singular solutions, which are characteristic of p-Laplace equations. In such cases,
computational resources are wasted in regions where the solution is smooth, while critical regions with steep
gradients or rapid temporal variations remain under-resolved.

These limitations motivate the development of spacetime finite element methods, in which space and
time are treated within a unified variational framework. By discretizing the entire spacetime domain
simultaneously, spacetime methods are able to capture complex space–time interactions more effectively and
allow for flexible local refinement. When combined with adaptive strategies, enabling refinement in both space
and time based on rigorous error indicators, this approach provides a powerful and efficient framework for
the numerical approximation of nonlinear parabolic problems with evolving solution features.

1.2. Mathematical challenges

The analysis and numerical approximation of parabolic equations of p-Laplace type involve several
intrinsic mathematical difficulties. The primary challenge arises from the strong nonlinearity of the diffusion
operator

∇ ·
(
|∇u|p−2∇u

)
, (2)

which is neither linear nor uniformly elliptic except in the case p = 2. Although the operator is monotone and
coercive, its behavior depends strongly on the value of p.

For 1 < p < 2, the operator becomes degenerate, leading to reduced diffusion in regions where |∇u| is
small. This degeneracy may result in limited regularity of the solution and the formation of sharp gradients
or free boundaries. In contrast, for p > 2, the operator is singular, exhibiting enhanced diffusion for large
gradients, which complicates both stability analysis and numerical error control.

In addition to spatial difficulties, solutions of nonlinear parabolic equations often exhibit non-uniform
temporal behavior, such as rapid initial transients followed by slow evolution. Accurately capturing these
phenomena requires discretization techniques that adapt simultaneously in space and time. Fixed time-step
methods may therefore be inefficient or insufficiently accurate.

From an analytical point of view, these challenges manifest themselves in the limited regularity of
weak solutions, the absence of superposition principles, and the difficulty of deriving optimal a priori error
estimates. Consequently, any reliable numerical method must be carefully designed to respect the nonlinear
structure of the problem while guaranteeing stability and convergence under minimal regularity assumptions.

1.3. Related work

Finite element approximations of p-Laplace type problems have been widely studied in the literature.
For the elliptic p-Laplace equation, convergence and stability results are well established, typically based on
monotone operator theory and nonlinear approximation techniques.

In the parabolic case, most existing works focus on time-discrete or semi-discrete methods, combining
implicit time-stepping schemes with spatial finite elements. While these approaches provide solid theoretical
foundations, they inherently separate space and time and therefore do not fully exploit spacetime adaptivity.

Spacetime finite element methods have been developed mainly for linear parabolic and hyperbolic
problems. Notable contributions by Steinbach, Andreev, and Langer have demonstrated the advantages of
spacetime formulations in terms of stability, flexibility, and parallel efficiency. However, the majority of these
results are restricted to linear or mildly nonlinear equations.

Adaptive finite element methods based on a posteriori error estimation have also been extensively
investigated, especially for elliptic problems and linear parabolic equations. Nevertheless, rigorous results
for adaptive spacetime finite element methods applied to nonlinear parabolic equations of p-Laplace type
remain very limited.

1.4. Contributions of the paper

This paper aims to bridge the aforementioned gap by developing and analyzing an adaptive space-time
finite element method for p-Laplace type nonlinear parabolic equations.

The structure of this paper is as follows:
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2. Preliminaries

In this section, we recall some basic concepts and results related to Sobolev spaces and the p-Laplacian
operator.

2.1. Basic function spaces

Lp(Ω) and Lp′(Ω). For a measurable domain Ω ⊂ Rn and 1 ≤ p < ∞, the Lebesgue space Lp(Ω) is
defined by

Lp(Ω) =

{
u : Ω→ R

∣∣∣∣ ∫Ω
|u(x)|p dx < ∞

}
, (3)

with the norm

∥u∥Lp(Ω) =

(∫
Ω
|u(x)|p dx

)1/p
. (4)

In the case p = ∞:

L∞(Ω) =

{
u : Ω→ R

∣∣ ess sup
x∈Ω

|u(x)| < ∞

}
.

For 1 < p < ∞, the conjugate exponent p′ is defined by

p′ =
p

p− 1
,

1
p
+

1
p′

= 1.

By the duality theorem, we have (
Lp(Ω)

)′ ≃ Lp′(Ω),

with the bilinear form
⟨u, v⟩ =

∫
Ω

u(x)v(x) dx.

2.2. Reflexive Banach space

Let X be a Banach space with dual space X∗. The natural embedding

ι : X → X∗∗, (ι(x))( f ) := f (x), ∀ f ∈ X∗, (5)

is injective. If ι is also onto, that is,
X ∼= X∗∗, (6)

then X is called a reflexive Banach space.

2.3. Carathéodory function

Let X be a Banach space and [0, T] a time interval. A function

F : [0, T]× X → X∗,

is called a Carathéodory function if:
(1) For each x ∈ X, the mapping t 7→ F(t, x) is measurable.
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(2) For almost every t ∈ [0, T], the mapping x 7→ F(t, x) is continuous.
In other words, a Carathéodory function combines:
(1) Continuity with respect to the spatial variable x.
(2) Measurability with respect to the time variable t.

Theorem 1 (Cauchy–Schwarz inequality). Let H be an inner product space with inner product ⟨·, ·⟩. For any u, v ∈
H, we have

|⟨u, v⟩| ≤ ∥u∥ ∥v∥, (7)

where ∥u∥ =
√
⟨u, u⟩.

Theorem 2 (Young’s inequality). Let a, b ≥ 0 and p, q > 1 with 1
p + 1

q = 1. Then

ab ≤ ap

p
+

bq

q
. (8)

Theorem 3 (Hölder’s inequality). Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1. For any f ∈ Lp(Ω) and g ∈ Lq(Ω), we have

∫
Ω
| f (x)g(x)| dx ≤ ∥ f ∥Lp(Ω) ∥g∥Lq(Ω). (9)

2.4. Common additional conditions

In existence theorems (e.g., the Carathéodory theorem), one often assumes a growth condition:

∥F(t, x)∥X∗ ≤ a(t) + b∥x∥p−1
X , a ∈ Lp′(0, T), b ≥ 0, (10)

where 1 < p < ∞ and p′ is the conjugate exponent (1/p + 1/p′ = 1). This ensures that F(t, x) does not grow
too fast and allows the use of weak compactness in reflexive Banach spaces.

2.5. Role in PDE analysis

Carathéodory functions often appear in evolution equations:

u′(t) + A(u(t)) = F(t, u(t)), u(0) = u0, (11)

where A : X → X∗ is monotone, coercive, and hemicontinuous.
- They allow the application of the Galerkin method and weak convergence to prove existence of solutions.
- Well-suited to reflexive Banach spaces, since every bounded sequence has a weakly convergent

subsequence.

2.6. Important properties

(1) Weak compactness: Every bounded sequence (xn) ⊂ X has a weakly convergent subsequence xnk ⇀ x
in X.

(2) Dual space: If X is reflexive, then its dual X∗ is also reflexive.
(3) Subspaces: Every closed subspace of a reflexive Banach space is reflexive.

2.7. Examples

• Lp(Ω) is reflexive for 1 < p < ∞.
•W1,p(Ω) is reflexive for 1 < p < ∞.
• Non-reflexive examples: L1(Ω), L∞(Ω).

2.8. Sobolev spaces

W1,p(Ω). For 1 < p < ∞, the first-order Sobolev space W1,p(Ω) is defined by

W1,p(Ω) = {u ∈ Lp(Ω) : ∂xi u ∈ Lp(Ω), i = 1, . . . , n} ,
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with the norm

∥u∥W1,p(Ω) =
(
∥u∥p

Lp(Ω)
+ ∥∇u∥p

Lp(Ω)

)1/p
.

The subspace W1,p
0 (Ω) is defined as the closure of C∞

0 (Ω) with respect to the above norm.
W−1,p(Ω). We define

W−1,p(Ω) :=
(
W1,p′

0 (Ω)
)′,

that is, the dual space of W1,p′
0 (Ω). An element F ∈W−1,p(Ω) is a continuous linear mapping

F : W1,p′
0 (Ω)→ R.

Examples.

• If f ∈ Lp(Ω), then f can be regarded as an element of W−1,p(Ω) via

⟨ f , v⟩ =
∫

Ω
f (x)v(x) dx, ∀v ∈W1,p′

0 (Ω).

• If F = −div(g) with g ∈ (Lp(Ω))n, then F ∈W−1,p(Ω) by

⟨F, v⟩ =
∫

Ω
g(x) · ∇v(x) dx.

Let Ω ⊂ Rn be a bounded smooth domain. For 1 < p < ∞, the Sobolev space W1,p(Ω) is equivalently
defined as

W1,p(Ω) = {u ∈ Lp(Ω) | ∇u ∈ (Lp(Ω))n},

with the norm

∥u∥1,p =
(
∥u∥p

Lp(Ω)
+ ∥∇u∥p

Lp(Ω)

)1/p
.

The subspace W1,p
0 (Ω) is the closure of C∞

0 (Ω) under this norm.

2.9. The p-Laplacian operator

For u ∈W1,p
0 (Ω), the p-Laplacian operator is defined by

A(u) = −div
(
|∇u|p−2∇u

)
.

This operator corresponds to the Gâteaux derivative of the energy functional

J(u) =
1
p

∫
Ω
|∇u|p dx.

3. Problem setting

3.1. Model problem

Let Ω ⊂ Rd, d ≥ 1, be a bounded domain with Lipschitz boundary ∂Ω, and let T > 0 be a fixed final time.
We consider the nonlinear parabolic problem of p-Laplace type given by

∂tu−∇ ·
(
|∇u|p−2∇u

)
= f in Ω× (0, T),

u = 0 on ∂Ω× (0, T),

u(·, 0) = u0 in Ω,

(12)

where 1 < p < ∞, f denotes a given source term, and u0 is the prescribed initial condition.
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Problem (12) represents a nonlinear diffusion process in which the diffusion coefficient depends on the
gradient of the solution. The homogeneous Dirichlet boundary condition models, for instance, impermeable
boundaries or fixed temperature conditions, while the initial condition specifies the state of the system at time
t = 0.

Throughout this paper, we assume that the data satisfy suitable regularity conditions to ensure the
existence of a weak solution, which will be specified in the following subsection.

3.2. Functional framework

To formulate the problem rigorously, we introduce the standard Sobolev spaces

W1,p
0 (Ω) = {v ∈W1,p(Ω) : v = 0 on ∂Ω},

and denote by W−1,p′(Ω) the dual space of W1,p
0 (Ω), where p′ = p

p−1 is the conjugate exponent of p.
We seek a solution

u ∈ Lp(0, T; W1,p
0 (Ω)

)
, ∂tu ∈ Lp′(0, T; W−1,p′(Ω)

)
. (13)

Definition 1. A function u is called a weak solution of problem (12) if u satisfies the above regularity
conditions, u(·, 0) = u0 in L2(Ω), and

∫ T

0
⟨∂tu, v⟩ dt +

∫ T

0

∫
Ω
|∇u|p−2∇u · ∇v dx dt =

∫ T

0
⟨ f , v⟩ dt, (14)

for all test functions v ∈ Lp(0, T; W1,p
0 (Ω)

)
.

Here, ⟨·, ·⟩ denotes the duality pairing between W−1,p′(Ω) and W1,p
0 (Ω).

3.3. Properties of the p-Laplace operator

The analysis of problem (12) relies on fundamental properties of the nonlinear operator

A(∇u) := |∇u|p−2∇u.

Monotonicity.

For all ξ, η ∈ Rd, the operator A satisfies(
A(ξ)− A(η)

)
· (ξ − η) ≥ Cp|ξ − η|p, (15)

where Cp > 0 depends only on p.

Coercivity.

There exists a constant cp > 0 such that

A(ξ) · ξ ≥ cp|ξ|p for all ξ ∈ Rd. (16)

Hemicontinuity.

For all ξ, η, ζ ∈ Rd, the mapping
t 7→ A(ξ + tη) · ζ,

is continuous for t ∈ R.
These properties imply that the operator associated with the p-Laplace term is monotone, coercive, and

hemicontinuous from W1,p
0 (Ω) into its dual. Consequently, the existence and uniqueness of weak solutions to

problem (12) follow from the classical Minty–Browder theorem for monotone operators.
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4. Existence and uniqueness of weak solution

In this section, we establish the well-posedness of the nonlinear parabolic problem of p-Laplace type
introduced in the previous section. More precisely, we prove the existence and uniqueness of a weak
solution under minimal regularity assumptions on the data. The analysis relies on the theory of monotone
operators in reflexive Banach spaces and follows the classical framework developed by Lions and Showalter for
nonlinear evolution equations. These results provide the fundamental analytical foundation for the subsequent
development and analysis of the spacetime finite element discretization and the adaptive algorithms proposed
in this work.

4.1. The theorem of existence and uniqueness of weak solutions

Theorem 4. Let Ω ⊂ Rd be a bounded Lipschitz domain, let 1 < p < ∞, and let T > 0. Assume that

f ∈ Lp′(0, T; W−1,p′(Ω)
)
, u0 ∈ L2(Ω),

where p′ = p
p−1 . Then the parabolic p-Laplace problem

∂tu−∇ ·
(
|∇u|p−2∇u

)
= f in Ω× (0, T), (17)

with homogeneous Dirichlet boundary conditions and initial data u0 admits a unique weak solution

u ∈ Lp(0, T; W1,p
0 (Ω)

)
, ∂tu ∈ Lp′(0, T; W−1,p′(Ω)

)
.

Moreover, the solution depends continuously on the data f and u0.

Proof. The proof is divided into several steps. Let

V := W1,p
0 (Ω), V∗ := W−1,p′(Ω), H := L2(Ω),

where the embeddings V ↪→ H ↪→ V∗ are dense and continuous. Define the nonlinear operator A : V → V∗

by

⟨A(u), v⟩ :=
∫

Ω
|∇u|p−2∇u · ∇v dx, ∀u, v ∈ V. (18)

Then the weak formulation of the parabolic p-Laplace problem can be written as

∂tu + A(u) = f in V∗, a.e. in (0, T), u(0) = u0. (19)

For arbitrary u, v ∈ V, we compute

⟨A(u)− A(v), u− v⟩ =
∫

Ω

(
|∇u|p−2∇u− |∇v|p−2∇v

)
· (∇u−∇v) dx. (20)

By the classical inequality for the p-Laplace operator, there exists a constant Cp > 0 depending only on p
such that (

|ξ|p−2ξ − |η|p−2η
)
· (ξ − η) ≥ Cp|ξ − η|p ∀ξ, η ∈ Rd. (21)

Applying this pointwise and integrating over Ω yields

⟨A(u)− A(v), u− v⟩ ≥ Cp∥∇u−∇v∥p
Lp(Ω)

≥ 0. (22)

Hence, A is monotone.
For any u ∈ V, we have

⟨A(u), u⟩ =
∫

Ω
|∇u|p dx = ∥u∥p

W1,p
0 (Ω)

. (23)

Therefore,
⟨A(u), u⟩
∥u∥V

= ∥u∥p−1
V → ∞ as ∥u∥V → ∞, (24)
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which shows that A is coercive.
Let u, v, w ∈ V. Consider the mapping

t 7→ ⟨A(u + tv), w⟩ =
∫

Ω
|∇(u + tv)|p−2∇(u + tv) · ∇w dx. (25)

Since the function ξ 7→ |ξ|p−2ξ is continuous on Rd, the integrand depends continuously on t. By
dominated convergence, the mapping is continuous for all t ∈ R. Hence, A is hemicontinuous. From the
operator A : V → V∗ is monotone, coercive, and hemicontinuous. Together with the assumptions

f ∈ Lp′(0, T; V∗), u0 ∈ H, (26)

we may apply the classical Lions–Showalter theorem for evolution equations governed by monotone
operators. Consequently, there exists a function

u ∈ Lp(0, T; V), ∂tu ∈ Lp′(0, T; V∗), (27)

satisfying (19) in V∗ and the initial condition u(0) = u0 in H.
Assume that u1 and u2 are two weak solutions corresponding to the same data. Then

∂t(u1 − u2) + A(u1)− A(u2) = 0 in V∗. (28)

Testing this equation with u1 − u2 ∈ V yields

1
2

d
dt
∥u1 − u2∥2

L2(Ω) + ⟨A(u1)− A(u2), u1 − u2⟩ = 0. (29)

By monotonicity of A, the second term is nonnegative, and hence

d
dt
∥u1 − u2∥2

L2(Ω) ≤ 0. (30)

Since u1(0) = u2(0) = u0, we conclude that

u1(t) = u2(t) for all t ∈ [0, T]. (31)

Standard energy estimates yield

∥u∥Lp(0,T;V) + ∥∂tu∥Lp′ (0,T;V∗) ≤ C
(
∥ f ∥Lp′ (0,T;V∗) + ∥u0∥L2(Ω)

)
, (32)

for some constant C > 0 independent of u. This proves continuous dependence on the data and completes
the proof.

4.2. Illustrative example for the existence and uniqueness theorem

We illustrate the theorem of existence and uniqueness of weak solutions by considering a simple
one–dimensional example.

Example 1. Let Ω = (0, 1), T > 0, and p = 3. Consider the nonlinear parabolic problem
∂tu(x, t)− ∂x

(
|∂xu(x, t)|p−2∂xu(x, t)

)
= sin(πx), (x, t) ∈ Ω× (0, T),

u(0, t) = u(1, t) = 0, t ∈ (0, T),

u(x, 0) = 0, x ∈ Ω.

(33)
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1) Functional setting.

The natural solution space for problem (33) is

u ∈ Lp(0, T; W1,p
0 (Ω)), ∂tu ∈ Lp′(0, T; W−1,p′(Ω)),

where p′ = p/(p− 1) = 3/2.

2) Weak formulation.

For any test function v ∈W1,p
0 (Ω), multiplying (33) by v and integrating over Ω yield

⟨∂tu(t), v⟩+
∫

Ω
|∂xu(x, t)|p−2∂xu(x, t) ∂xv(x) dx =

∫
Ω

sin(πx) v(x) dx, (34)

for almost every t ∈ (0, T).

3) Verification of assumptions.

Since sin(πx) ∈ L2(Ω) ⊂W−1,p′(Ω) and u0 = 0 ∈ L2(Ω), the data satisfy

f ∈ Lp′(0, T; W−1,p′(Ω)), u0 ∈ L2(Ω).

4) Properties of the operator.

Define the nonlinear operator
A(u) := −∂x

(
|∂xu|p−2∂xu

)
.

For all u, v ∈W1,p
0 (Ω), it holds that

⟨A(u)− A(v), u− v⟩ ≥ c∥∂xu− ∂xv∥p
Lp(Ω)

, (35)

with some constant c > 0. Hence A is monotone, coercive, and hemicontinuous.

5) Existence and uniqueness.

By the theory of monotone operators for evolution equations, there exists a unique weak solution

u ∈ Lp(0, T; W1,p
0 (Ω)), ∂tu ∈ Lp′(0, T; W−1,p′(Ω)).

6) Energy estimate.

Choosing v = u(t) in (34) gives

1
2

d
dt
∥u(t)∥2

L2(Ω) + ∥∂xu(t)∥p
Lp(Ω)

=
∫

Ω
sin(πx) u(t) dx. (36)

Using Young’s inequality, one obtains the energy bound

sup
t∈(0,T)

∥u(t)∥2
L2(Ω) +

∫ T

0
∥∂xu(t)∥p

Lp(Ω)
dt ≤ C,

where C > 0 depends only on f , T, and Ω.

Remark 1. This example illustrates concretely how the assumptions of the existence and uniqueness theorem
are verified and highlights the stability properties of weak solutions to nonlinear parabolic p–Laplace
equations.
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4.3. Corollaries of the existence and uniqueness theorem

We collect several important consequences of the existence and uniqueness of weak solutions to the
parabolic p–Laplace problem. These results play a fundamental role in the subsequent stability analysis, a
posteriori error estimation, and convergence of adaptive spacetime finite element methods.

Corollary 1. Let u be the unique weak solution of the parabolic p–Laplace problem with f ∈ Lp′(0, T; W−1,p′(Ω)).
Then there exists a constant C > 0, depending only on p, T, and Ω, such that

sup
t∈(0,T)

∥u(t)∥2
L2(Ω) +

∫ T

0
∥∇u(t)∥p

Lp(Ω)
dt ≤ C∥ f ∥p′

Lp′ (0,T;W−1,p′ (Ω))
.

Corollary 2. Let u1, u2 be the weak solutions corresponding to right-hand sides f1, f2 ∈ Lp′(0, T; W−1,p′(Ω)). Then

∥u1 − u2∥Lp(0,T;W1,p
0 (Ω))

≤ C∥ f1 − f2∥Lp′ (0,T;W−1,p′ (Ω))
,

where C > 0 depends only on p, T, and Ω.

Corollary 3. For all v, w ∈W1,p
0 (Ω), the nonlinear diffusion operator satisfies∫

Ω

(
|∇v|p−2∇v− |∇w|p−2∇w

)
· (∇v−∇w) dx ≥ cp∥∇v−∇w∥p

Lp(Ω)
,

with a constant cp > 0 depending only on p.

Corollary 4. The weak solution u satisfies

u ∈ C([0, T]; L2(Ω)), ∂tu ∈ Lp′(0, T; W−1,p′(Ω)).

Corollary 5. Let {uh}h>0 be a family of stable finite element approximations. Then there exists a subsequence (not
relabeled) such that

uh ⇀ u weakly in Lp(0, T; W1,p
0 (Ω)),

where u is the unique weak solution of the continuous problem.

Corollary 6. Due to the uniqueness of the weak solution, the whole sequence {uh} converges to u, i.e.,

uh → u in Lp(0, T; W1,p
0 (Ω)).

5. Adaptive spacetime finite element discretization

In this section, we present the adaptive spacetime finite element discretization for the nonlinear parabolic
problem of p-Laplace type. The method is based on a unified variational formulation posed on the combined
space–time domain, which enables local mesh refinement simultaneously in space and time. This framework
is particularly well suited for problems with strong space–time coupling and solutions exhibiting localized
features or temporal singularities.

5.1. Spacetime mesh and finite element spaces

Let the spacetime cylinder be defined as

Q := Ω× (0, T) ⊂ Rd+1.

We consider a conforming partition Th of Q into shape-regular spacetime elements K. The elements of Th
are assumed to be either

• simplicial elements in Rd+1, or
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• prismatic elements of the form K = Kx × It, where Kx ⊂ Ω is a spatial simplex and It ⊂ (0, T) is a time
interval.

The mesh Th is not required to be uniform and may be locally refined in both space and time according to
adaptive criteria.

For a given polynomial degree r ≥ 1, we define the spacetime finite element space

Vh :=
{

vh ∈ Lp(0, T; W1,p
0 (Ω)

)
: vh|K ∈ Pr(K) ∀K ∈ Th

}
,

where Pr(K) denotes the space of polynomials of total degree at most r on the spacetime element K.
By construction, the space Vh satisfies the conforming embedding

Vh ⊂ Lp(0, T; W1,p
0 (Ω)

)
,

and the homogeneous Dirichlet boundary condition is enforced strongly in space.

Remark 2. The use of spacetime meshes allows for a flexible refinement strategy that naturally adapts
to regions where the solution exhibits steep gradients, moving fronts, or rapid temporal variations.
This represents a major advantage over classical time-stepping approaches based on uniform temporal
discretization.

5.2. Discrete problem

The spacetime finite element approximation of the weak formulation is defined as follows:

Discrete variational formulation.

Find uh ∈ Vh such that
a(uh, vh) = F(vh) ∀vh ∈ Vh, (37)

where the nonlinear form a(·, ·) : Vh ×Vh → R is given by

a(uh, vh) :=
∫ T

0
⟨∂tuh, vh⟩ dt +

∫ T

0

∫
Ω
|∇uh|p−2∇uh · ∇vh dx dt, (38)

and the linear functional F : Vh → R is defined by

F(vh) :=
∫ T

0
⟨ f , vh⟩ dt. (39)

Thanks to the conforming nature of the discretization and the monotonicity, coercivity, and
hemicontinuity of the p-Laplace operator, the discrete problem (37) admits a unique solution uh ∈ Vh.
Moreover, the discrete solution satisfies a stability estimate analogous to the continuous energy estimate.

5.3. Nonlinear solver

The discrete problem (37) is nonlinear due to the presence of the p-Laplace operator. To compute the
discrete solution efficiently, iterative linearization techniques are employed.

Picard iteration.

Given an initial guess u(0)
h ∈ Vh, the Picard iteration is defined as follows: for k ≥ 0, find u(k+1)

h ∈ Vh such
that ∫ T

0

〈
∂tu

(k+1)
h , vh

〉
dt +

∫ T

0

∫
Ω
|∇u(k)

h |
p−2∇u(k+1)

h · ∇vh dx dt = F(vh), (40)

for all vh ∈ Vh.
The Picard iteration is globally convergent under mild assumptions, but may converge slowly for strongly

nonlinear problems.
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Newton method.

To achieve faster convergence, a Newton-type method can be employed. Let u(k)
h denote the current

iterate. The Newton update u(k+1)
h is obtained by solving

a′(u(k)
h )(u(k+1)

h − u(k)
h , vh) = F(vh)− a(u(k)

h , vh), ∀vh ∈ Vh, (41)

where a′(u(k)
h ) denotes the Fréchet derivative of the nonlinear form a(·, ·).

Stopping criterion.

The nonlinear iteration is terminated when the relative residual satisfies

∥F− a(u(k)
h , ·)∥V∗h

∥F∥V∗h

≤ εnl, (42)

where εnl > 0 is a prescribed tolerance.
This completes the description of the adaptive spacetime finite element discretization.

Theorem 5. Let Ω ⊂ Rd be a bounded Lipschitz domain and let 1 < p < ∞. Assume that the spacetime mesh Th is
shape-regular and that the finite element space

Vh ⊂ Lp(0, T; W1,p
0 (Ω))

is defined as in §5.1. Then, for any f ∈ Lp′(0, T; W−1,p′(Ω)), the spacetime finite element problem

a(uh, vh) = F(vh) ∀vh ∈ Vh, (43)

admits a unique solution uh ∈ Vh.

Proof. The proof is based on the theory of monotone operators in finite-dimensional Banach spaces. We define
the nonlinear operator

Ah : Vh → V∗h ,

by

⟨Ah(uh), vh⟩ := a(uh, vh) =
∫ T

0
⟨∂tuh, vh⟩ dt +

∫ T

0

∫
Ω
|∇uh|p−2∇uh · ∇vh dx dt, (44)

for all uh, vh ∈ Vh. The discrete problem can thus be written equivalently as

Ah(uh) = F in V∗h . (45)

For arbitrary uh, wh, vh ∈ Vh, the mapping

λ 7→ ⟨Ah(uh + λwh), vh⟩,

is continuous on R. This follows from the continuity of the mapping ξ 7→ |ξ|p−2ξ and standard dominated
convergence arguments. Hence, Ah is hemicontinuous.

For any uh, vh ∈ Vh, we have

⟨Ah(uh)− Ah(vh), uh − vh⟩ =
∫ T

0
⟨∂t(uh − vh), uh − vh⟩ dt

+
∫ T

0

∫
Ω

(
|∇uh|p−2∇uh − |∇vh|p−2∇vh

)
· (∇uh −∇vh) dx dt. (46)
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The first term vanishes due to integration by parts in time. For the second term, the strict monotonicity of
the p-Laplace operator yields

∫ T

0

∫
Ω

(
|∇uh|p−2∇uh − |∇vh|p−2∇vh

)
· (∇uh −∇vh) dx dt ≥ 0, (47)

with equality if and only if uh = vh. Therefore, Ah is strictly monotone.
Using the identity ∫ T

0
⟨∂tuh, uh⟩ dt =

1
2
∥uh(T)∥2

L2(Ω) −
1
2
∥uh(0)∥2

L2(Ω), (48)

together with the coercivity of the p-Laplace operator, we obtain

⟨Ah(uh), uh⟩ ≥ c∥uh∥
p

Lp(0,T;W1,p
0 (Ω))

− C, (49)

for positive constants c, C independent of h. Hence, Ah is coercive on Vh.
Since Vh is finite-dimensional, reflexive, and Ah is hemicontinuous, coercive, and strictly monotone, the

Browder–Minty theorem implies that the equation

Ah(uh) = F, (50)

admits a unique solution uh ∈ Vh.
This completes the proof.

Theorem 6. Let uh ∈ Vh be the unique solution of the spacetime finite element problem. Then there exists a constant
C > 0, independent of the mesh size h, such that

sup
t∈(0,T)

∥uh(t)∥2
L2(Ω) +

∫ T

0
∥∇uh∥

p
Lp(Ω)

dt ≤ C
(
∥u0∥2

L2(Ω) + ∥ f ∥p′

Lp′ (0,T;W−1,p′ (Ω))

)
. (51)

Proof. The proof follows the classical energy method adapted to the spacetime discrete setting. We choose
vh = uh as a test function in the discrete variational formulation

a(uh, vh) = F(vh) ∀vh ∈ Vh. (52)

This yields ∫ T

0
⟨∂tuh, uh⟩ dt +

∫ T

0

∫
Ω
|∇uh|p dx dt =

∫ T

0
⟨ f , uh⟩ dt. (53)

Using integration by parts in time, we obtain

∫ T

0
⟨∂tuh, uh⟩ dt =

1
2
∥uh(T)∥2

L2(Ω) −
1
2
∥uh(0)∥2

L2(Ω). (54)

By Hölder’s inequality and Young’s inequality, we have

∫ T

0
⟨ f , uh⟩ dt ≤ ∥ f ∥Lp′ (0,T;W−1,p′ (Ω))

∥uh∥Lp(0,T;W1,p
0 (Ω))

≤ 1
2

∫ T

0
∥∇uh∥

p
Lp(Ω)

dt + C∥ f ∥p′

Lp′ (0,T;W−1,p′ (Ω))
, (55)

for some constant C > 0.
Combining the above estimates yields

1
2
∥uh(T)∥2

L2(Ω) −
1
2
∥uh(0)∥2

L2(Ω) +
1
2

∫ T

0
∥∇uh∥

p
Lp(Ω)

dt ≤ C∥ f ∥p′

Lp′ (0,T;W−1,p′ (Ω))
. (56)
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Using the discrete initial condition uh(0) = u0, we obtain

∥uh(T)∥2
L2(Ω) +

∫ T

0
∥∇uh∥

p
Lp(Ω)

dt ≤ C
(
∥u0∥2

L2(Ω) + ∥ f ∥p′

Lp′ (0,T;W−1,p′ (Ω))

)
. (57)

Taking the supremum over t ∈ (0, T) completes the proof.

Theorem 7. Let u be the unique weak solution of the parabolic p-Laplace problem and let uh ∈ Vh be the solution of the
spacetime finite element problem on a family of shape-regular spacetime meshes {Th}h>0. Then, as h → 0, the sequence
{uh} converges to u in the sense that

uh → u strongly in Lp(0, T; W1,p
0 (Ω)). (58)

Proof. The proof is based on compactness arguments and the monotonicity of the p-Laplace operator.
From the discrete energy stability result (Theorem 5), the sequence {uh} satisfies

sup
t∈(0,T)

∥uh(t)∥2
L2(Ω) +

∫ T

0
∥∇uh∥

p
Lp(Ω)

dt ≤ C, (59)

where the constant C > 0 is independent of h. Hence, {uh} is uniformly bounded in Lp(0, T; W1,p
0 (Ω)).

By reflexivity of Lp(0, T; W1,p
0 (Ω)), there exists a subsequence (not relabeled) and a function ũ such that

uh ⇀ ũ weakly in Lp(0, T; W1,p
0 (Ω)). (60)

Moreover, using the boundedness of ∂tuh in Lp′(0, T; W−1,p′(Ω)), the Aubin–Lions lemma implies

uh → ũ strongly in L2(0, T; L2(Ω)). (61)

Passing to the limit in the discrete variational formulation yields that ũ satisfies the weak formulation of
the continuous parabolic p-Laplace problem. By the uniqueness of the weak solution (Theorem 4), we conclude
that ũ = u.

Lp(0, T; W1,p
0 (Ω)). Using the monotonicity of the p-Laplace operator, we consider

∫ T

0

∫
Ω

(
|∇uh|p−2∇uh − |∇u|p−2∇u

)
· (∇uh −∇u) dx dt. (62)

Passing to the limit and applying Minty’s trick yields

∇uh → ∇u strongly in Lp(0, T; Lp(Ω)d). (63)

Therefore,
uh → u strongly in Lp(0, T; W1,p

0 (Ω)). (64)

This completes the proof.

6. A posteriori error estimation

In this section, we derive a residual-based a posteriori error estimator for the spacetime finite element
approximation of the nonlinear parabolic p-Laplace problem. The estimator is shown to be both reliable and
locally efficient, providing the basis for the adaptive refinement strategy.

Let u denote the weak solution of the continuous problem and uh ∈ Vh the spacetime finite element
solution.

6.1. Residual-based error estimator

Let K ∈ Th be a spacetime element with characteristic size hK.
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Element residual.

The element residual is defined by

RK := f − ∂tuh +∇ ·
(
|∇uh|p−2∇uh

)
in K. (65)

Jump residual.

Let E be an interior face shared by two elements K+ and K−. The jump residual across E is defined as

JE :=
[
|∇uh|p−2∇uh · nE

]
, (66)

where nE denotes the unit normal vector on E and [·] the jump operator.

Temporal residual.

To control temporal discretization effects, we introduce

Rt,K := ∂tuh −Πh(∂tuh), (67)

where Πh is a suitable local projection operator in time.

Local and global error indicators

The local error indicator on K is defined by

η
p
K := hp

K∥RK∥
p′

Lp′ (K)
+ hK∥JE∥

p′

Lp′ (∂K)
+ hp

K∥Rt,K∥
p′

Lp′ (K)
. (68)

The global error estimator is given by

ηh :=

(
∑

K∈Th

η
p
K

)1/p

. (69)

6.2. Reliability and efficiency

Data oscillation.

For each spacetime element K ∈ Th, let ΠK f denote the local L2–projection of f onto the space of piecewise
polynomials of fixed degree on K. The local data oscillation is defined by

oscK( f ) := hK ∥ f −ΠK f ∥Lp′ (K), p′ =
p

p− 1
.

The global data oscillation is given by

osc( f ) :=

(
∑

K∈Th

oscK( f )p

)1/p

.

Theorem 8 (A Posteriori error reliability). Let u be the weak solution of the parabolic p-Laplace problem and uh ∈ Vh
the corresponding spacetime finite element solution. Then there exists a constant C > 0, independent of the spacetime
mesh Th, such that

∥u− uh∥X ≤ C ηh, (70)

where
X := Lp(0, T; W1,p

0 (Ω)), (71)

and ηh denotes the residual-based spacetime error estimator.
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Proof. We denote the discretization error by
e := u− uh. (72)

The weak formulation of the continuous problem reads: find u ∈ X such that

∫ T

0
⟨∂tu, v⟩ dt +

∫ T

0

∫
Ω
|∇u|p−2∇u · ∇v dx dt =

∫ T

0
⟨ f , v⟩ dt ∀v ∈ X. (73)

The spacetime discrete problem reads: find uh ∈ Vh ⊂ X such that

∫ T

0
⟨∂tuh, vh⟩ dt +

∫ T

0

∫
Ω
|∇uh|p−2∇uh · ∇vh dx dt =

∫ T

0
⟨ f , vh⟩ dt ∀vh ∈ Vh. (74)

Subtracting the discrete formulation from the continuous one yields, for all v ∈ X,

∫ T

0
⟨∂te, v⟩ dt +

∫ T

0

∫
Ω

(
|∇u|p−2∇u− |∇uh|p−2∇uh

)
· ∇v dx dt

=
∫ T

0
⟨ f − ∂tuh, v⟩ dt−

∫ T

0

∫
Ω
|∇uh|p−2∇uh · ∇v dx dt. (75)

The right-hand side defines the global residual functionalR(v).
Choosing v = e yields

∫ T

0
⟨∂te, e⟩ dt +

∫ T

0

∫
Ω

(
|∇u|p−2∇u− |∇uh|p−2∇uh

)
· ∇e dx dt = R(e). (76)

Using the identity ∫ T

0
⟨∂te, e⟩ dt =

1
2
∥e(T)∥2

L2(Ω) −
1
2
∥e(0)∥2

L2(Ω) ≥ 0, (77)

we may discard this term.
By the strong monotonicity of the mapping

ξ 7→ |ξ|p−2ξ, (78)

there exists c > 0 such that (
|∇u|p−2∇u− |∇uh|p−2∇uh

)
· (∇u−∇uh) ≥ c |∇e|p. (79)

Therefore, ∫ T

0

∫
Ω
|∇e|p dx dt ≤ CR(e). (80)

The residual functional can be decomposed elementwise as

R(e) = ∑
K∈Th

(∫
K

RK e dx dt +
∫

∂K
JK e ds dt

)
, (81)

where RK and JK denote the volume and jump residuals, respectively.
Applying Hölder’s inequality and local trace inequalities, we obtain

R(e) ≤ C ∑
K∈Th

ηK ∥e∥X(K), (82)

where X(K) denotes the local energy norm.
Summing over all elements and applying Young’s inequality yields

∥e∥p
X ≤ C ηh ∥e∥X . (83)
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Dividing both sides by ∥e∥X concludes that

∥u− uh∥X ≤ C ηh. (84)

The constant C > 0 is independent of the spacetime mesh Th.

Remark 3. The reliability estimate holds without any additional regularity assumptions on the exact solution
and remains valid for both degenerate (p > 2) and singular (1 < p < 2) regimes of the p-Laplace operator.

Theorem 9 (Efficiency). There exists a constant C > 0, independent of h, such that

ηh ≤ C
(
∥u− uh∥Lp(0,T;W1,p

0 (Ω))
+ osc( f )

)
, (85)

where osc( f ) denotes the data oscillation.

Proof. The proof is based on local lower bounds for the residual contributions using elementwise bubble
functions.

By definition, the global estimator satisfies

η
p
h = ∑

K∈Th

η
p
K, (86)

where each local indicator ηK consists of volume residuals, jump residuals, and temporal residual
contributions.

Let K ∈ Th be a fixed spacetime element and let bK denote the standard element bubble function on K.
Testing the error equation locally with

v = bKRK, (87)

where RK is the element residual, yields

∥RK∥
p′

Lp′ (K)
≤ C

(
∥∇(u− uh)∥

p
Lp(K) + oscK( f )p′

)
. (88)

Using inverse inequalities and properties of bubble functions, we obtain

ηvol
K ≤ C

(
∥u− uh∥Lp(K;W1,p(Ω)) + oscK( f )

)
. (89)

Let F be an interior facet of K and bF the corresponding facet bubble function. Testing with v = bF JF,
where JF denotes the jump residual, gives

∥JF∥
p′

Lp′ (F)
≤ C∥∇(u− uh)∥

p
Lp(ωF)

, (90)

where ωF is the patch of elements sharing the facet F.
This implies

η
jump
K ≤ C∥u− uh∥Lp(ωK ;W1,p(Ω)). (91)

The temporal residuals are treated analogously by employing one-dimensional bubble functions in time.
Using local inverse inequalities yields

ηtime
K ≤ C∥u− uh∥Lp(K;W1,p(Ω)). (92)

Combining the above bounds for all residual contributions yields

ηK ≤ C
(
∥u− uh∥Lp(ωK ;W1,p(Ω)) + oscK( f )

)
. (93)



Open J. Math. Anal. 2026, 10(1), 38-64 56

Summing over all elements and using the finite overlap property of patches ωK, we conclude

ηh ≤ C
(
∥u− uh∥Lp(0,T;W1,p

0 (Ω))
+ osc( f )

)
. (94)

The constant C > 0 is independent of the mesh size h.

Remark 4. The efficiency estimate shows that the proposed estimator does not overestimate the true error up
to data oscillation terms, which are unavoidable in the presence of rough source terms.

7. Convergence analysis

This section is devoted to the convergence analysis of the proposed adaptive spacetime finite element
method. The proof is based on uniform stability estimates, discrete compactness, and the reliability and
efficiency of the a posteriori error estimator.

7.1. Stability and discrete compactness

We first recall the discrete energy stability established in Theorem 6.

Lemma 1 (Uniform discrete stability). Let {uh}h>0 be the sequence of spacetime finite element solutions. There exists
a constant C > 0, independent of h, such that

sup
t∈(0,T)

∥uh(t)∥2
L2(Ω) +

∫ T

0
∥∇uh∥

p
Lp(Ω)

dt ≤ C. (95)

Proof. The proof is based on a discrete energy argument. Let uh ∈ Vh be the spacetime finite element solution
satisfying

⟨∂tuh, vh⟩+
∫

Ω
|∇uh|p−2∇uh · ∇vh dx = ⟨ f , vh⟩ ∀vh ∈ Vh, (96)

for almost every t ∈ (0, T).
We choose vh = uh(t) as test function. Since uh is piecewise smooth in time, this choice is admissible. We

obtain
⟨∂tuh, uh⟩+

∫
Ω
|∇uh|p dx = ⟨ f , uh⟩. (97)

Using the identity

⟨∂tuh, uh⟩ =
1
2

d
dt
∥uh(t)∥2

L2(Ω), (98)

we obtain
1
2

d
dt
∥uh(t)∥2

L2(Ω) +
∫

Ω
|∇uh|p dx = ⟨ f , uh⟩. (99)

Using Hölder’s inequality and the Poincaré inequality, we estimate

⟨ f , uh⟩ ≤ ∥ f ∥W−1,p′ (Ω)
∥uh∥W1,p

0 (Ω)
≤ C∥ f ∥W−1,p′ (Ω)

∥∇uh∥Lp(Ω). (100)

Applying Young’s inequality yields

⟨ f , uh⟩ ≤
1
2
∥∇uh∥

p
Lp(Ω)

+ C∥ f ∥p′

W−1,p′ (Ω)
. (101)

Substituting the above estimate, we arrive at

d
dt
∥uh(t)∥2

L2(Ω) + ∥∇uh∥
p
Lp(Ω)

≤ C∥ f ∥p′

W−1,p′ (Ω)
. (102)
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Integrating over (0, t) for any t ∈ (0, T), we obtain

∥uh(t)∥2
L2(Ω) +

∫ t

0
∥∇uh∥

p
Lp(Ω)

ds ≤ ∥uh(0)∥2
L2(Ω) + C

∫ T

0
∥ f ∥p′

W−1,p′ (Ω)
ds. (103)

Using the approximation property of the initial condition, ∥uh(0)∥L2(Ω) ≤ C∥u0∥L2(Ω), we conclude

sup
t∈(0,T)

∥uh(t)∥2
L2(Ω) +

∫ T

0
∥∇uh∥

p
Lp(Ω)

dt ≤ C, (104)

where C > 0 depends only on ∥u0∥L2(Ω), ∥ f ∥Lp′ (0,T;W−1,p′ (Ω))
, but is independent of the mesh size h.

This completes the proof.

Remark 5. The uniform energy bound is independent of the spacetime mesh size h. This estimate is
fundamental for establishing compactness and convergence of the adaptive spacetime finite element method.

Lemma 2 (Discrete compactness). There exist a subsequence (not relabeled) and a function u ∈ Lp(0, T; W1,p
0 (Ω))

such that
uh → u strongly in Lp(0, T; Lp(Ω)). (105)

Proof. The proof relies on uniform bounds, weak compactness, and a discrete version of the Aubin–Lions
compactness theorem.

From the uniform discrete stability estimate Lemma 1, the sequence {uh} satisfies

uh is bounded in Lp(0, T; W1,p
0 (Ω)) ∩ L∞(0, T; L2(Ω)).

Moreover, from the discrete variational formulation we have

∂tuh = f −∇ · (|∇uh|p−2∇uh) in W−1,p′(Ω), (106)

which implies
∂tuh isboundedin Lp′(0, T; W−1,p′(Ω)).

By reflexivity of Lp and W1,p
0 (Ω),

there exists a subsequence (not relabeled) and a function u ∈ Lp(0, T; W1,p
0 (Ω)) such that

uh ⇀ u weakly in Lp(0, T; W1,p
0 (Ω)),

and
uh

∗
⇀ u weakly-* in L∞(0, T; L2(Ω)).

The Sobolev embedding
W1,p

0 (Ω) ↪→↪→ Lp(Ω) ↪→W−1,p′(Ω)

is compact for 1 < p < ∞ and bounded Lipschitz domains Ω.
Let

X = W1,p
0 (Ω), Y = Lp(Ω), Z = W−1,p′(Ω).

Then X ↪→↪→ Y ↪→ Z. Together with the bounds

uh bounded in Lp(0, T; X), ∂tuh bounded in Lp′(0, T; Z),

the Aubin–Lions compactness theorem implies that

uh → u strongly in Lp(0, T; Lp(Ω)).

This concludes the proof.
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Remark 6. The strong convergence in Lp(0, T; Lp(Ω)) is essential for passing to the limit in the nonlinear
p–Laplace operator. This compactness result holds without any additional regularity assumptions on the exact
solution.

7.2. Convergence of the adaptive scheme

We consider the standard adaptive loop

SOLVE → ESTIMATE → MARK → REFINE,

where the marking step is performed using a Dörfler strategy with parameter 0 < θ < 1.

Remark 7. The strong convergence in Lp(0, T; Lp(Ω)) is essential for passing to the limit in the nonlinear
p–Laplace operator. This compactness result holds without any additional regularity assumptions on the exact
solution.

Theorem 10 (Global convergence of the adaptive scheme). Let {uh} be the sequence of discrete solutions generated
by the adaptive spacetime finite element method. Then

uh ⇀ u weakly in Lp(0, T; W1,p
0 (Ω)), (107)

where u is the unique weak solution of the parabolic p–Laplace problem.

Proof. The proof is based on uniform stability, compactness, and the monotonicity of the nonlinear diffusion
operator.

From the uniform discrete stability estimate Lemma 1, the sequence {uh} satisfies

sup
t∈(0,T)

∥uh(t)∥2
L2(Ω) +

∫ T

0
∥∇uh∥

p
Lp(Ω)

dt ≤ C, (108)

with a constant C > 0 independent of h. Consequently, {uh} is bounded in

Lp(0, T; W1,p
0 (Ω)).

Since Lp(0, T; W1,p
0 (Ω)) is reflexive for 1 < p < ∞, there exist a subsequence (not relabeled) and a function

u ∈ Lp(0, T; W1,p
0 (Ω)) such that uh ⇀ u weaklyinLp(0, T; W1,p

0 (Ω)).
By Lemma 2, we additionally have uh → ustronglyinLp(0, T; Lp(Ω)).
Define the nonlinear operator

A(v) := −∇ ·
(
|∇v|p−2∇v

)
. (109)

The operator A : W1,p
0 (Ω)→W−1,p′(Ω) is monotone, hemicontinuous, and coercive.

By weak convergence of ∇uh and strong convergence of uh, Minty’s trick implies

|∇uh|p−2∇uh ⇀ |∇u|p−2∇u weaklyinLp′(Ω× (0, T)). (110)

Passing to the limit in the discrete variational formulation yields

⟨∂tu, v⟩+
∫

Ω
|∇u|p−2∇u · ∇v dx = ⟨ f , v⟩ ∀v ∈ Lp(0, T; W1,p

0 (Ω)), (111)

which shows that u is a weak solution of the continuous parabolic p–Laplace problem.
Since the weak solution of the parabolic p–Laplace problem is unique, the entire sequence {uh} converges

to u, not only a subsequence.
This completes the proof.
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Remark 8. The global convergence result does not rely on any additional regularity assumptions on the exact
solution. It therefore applies to degenerate (1 < p < 2) and singular (p > 2) parabolic problems.

Theorem 11 (Quasi-optimal convergence rates). Assume that the exact solution u belongs to an approximation class
As with s > 0. Then the adaptive spacetime FEM satisfies

∥u− uh∥Lp(0,T;W1,p
0 (Ω))

≤ C (#Th)
−s, (112)

where #Th denotes the number of spacetime elements.

Proof. The proof follows the abstract framework of adaptive finite element methods and relies on stability,
reliability, efficiency, and estimator reduction.

By assumption, u ∈ As. Hence, there exists a constant C > 0 such that for any N ∈ N, there exists a
conforming spacetime mesh TN with #TN ≤ N satisfying

inf
vh∈Vh(TN)

∥u− vh∥Lp(0,T;W1,p
0 (Ω))

≤ CN−s. (113)

By the reliability of the a posteriori error estimator Theorem 8, we have

∥u− uh∥Lp(0,T;W1,p
0 (Ω))

≤ Crel ηh. (114)

Moreover, by efficiency Theorem 9

ηh ≤ Ceff

(
inf

vh∈Vh
∥u− vh∥Lp(0,T;W1,p

0 (Ω))
+ osc( f )

)
. (115)

Neglecting higher-order data oscillation terms yields

∥u− uh∥ ≤ C inf
vh∈Vh

∥u− vh∥. (116)

Let {T (k)
h }k≥0 be the sequence of meshes generated by the adaptive loop. Under Dörfler marking with

parameter 0 < θ < 1, there exists 0 < ρ < 1 such that

η2
k+1 ≤ ρ η2

k + C∥uk+1 − uk∥2, (117)

where ηk denotes the estimator on mesh T (k)
h . Using quasi-orthogonality of the nonlinear problem, the second

term can be absorbed, yielding
ηk+1 ≤ ρ1/2ηk. (118)

Standard mesh closure and refinement properties imply

#T (k)
h − #T (0)

h ≤ C
k−1

∑
j=0

#Mj, (119)

whereMj denotes the set of marked spacetime elements.
Combining estimator reduction with the definition of the approximation class As, we obtain

ηk ≤ C (#T (k)
h )−s. (120)

Using reliability once more yields

∥u− uh∥Lp(0,T;W1,p
0 (Ω))

≤ C (#Th)
−s, (121)

which proves the quasi-optimal convergence rate.
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Remark 9. The quasi-optimal convergence rate matches the best possible rate achievable by any sequence
of conforming spacetime meshes with the same number of degrees of freedom. In particular, the adaptive
algorithm automatically resolves degenerate and singular features of the solution.

8. Numerical experiments

In this section, we present numerical experiments to validate the theoretical results developed in the
previous sections. The goals are to verify convergence, demonstrate the effectiveness of the a posteriori error
estimator, and compare adaptive spacetime refinement with uniform refinement and classical time-stepping
FEM.

8.1. Benchmark problems

8.1.1. Manufactured solution

Let Ω = (0, 1)d, d = 1, 2, and T = 1. We prescribe the analytical solution

u(x, t) = tα
d

∏
i=1

xi(1− xi),

with α > 0 chosen such that u ∈ Lp(0, T; W1,p
0 (Ω)). The source term f is computed by inserting u into the

parabolic p–Laplace equation. This example is used to assess convergence rates in the absence of singularities.

8.1.2. Problem with singularities

To test robustness for limited regularity, we consider a problem whose solution exhibits spatial and
temporal singularities. A representative example is

u(r, t) = tβrγ, r = |x|,

with parameters β, γ > 0 chosen such that ∇u ∈ Lp(Ω × (0, T)) while u /∈ H2(Ω). This test illustrates the
performance of the method for degenerate p–Laplace problems.

8.2. Performance of adaptivity

8.2.1. Uniform versus adaptive refinement

We compare uniform refinement with the proposed adaptive spacetime refinement driven by the
residual-based a posteriori error estimator. The decay of the error and estimator with respect to the number
of spacetime elements demonstrates a clear advantage of adaptive refinement, particularly for problems with
localized singularities.

8.2.2. Spacetime FEM versus time-stepping FEM

We further compare the spacetime finite element method with a classical time-stepping FEM based on
implicit Euler discretization in time. For comparable numbers of degrees of freedom, the spacetime FEM
achieves higher accuracy and a more balanced error distribution, especially in regions with rapid temporal
variation.

8.2.3. Adaptive spacetime meshes

Representative adaptive spacetime meshes are shown to illustrate how refinement is automatically
concentrated in regions of large residuals. These results confirm the effectiveness of the proposed a posteriori
error estimator in guiding spacetime adaptivity.
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Summary.

Overall, the numerical experiments confirm the discrete energy stability, global convergence, and
quasi-optimal convergence rates predicted by the theoretical analysis. They also demonstrate the superiority
of adaptive spacetime FEM over uniform refinement and classical time-stepping approaches.

9. Adaptive spacetime algorithm

We summarize the adaptive spacetime finite element method for the nonlinear parabolic p–Laplace
problem in Algorithm 1.

Algorithm 1 Adaptive Spacetime Finite Element Method

Require: Initial spacetime mesh T0, tolerance ε > 0, initial guess u0
h

Ensure: Approximate solution uh
1: Set ℓ = 0
2: while stopping criterion not satisfied do
3: Solve: Find uℓ

h ∈ Vℓ
h such that

a(uℓ
h, vh) = F(vh) ∀vh ∈ Vℓ

h ,

using a nonlinear solver (Newton or Picard iteration)
4: Estimate: Compute the local spacetime error indicators {ηℓ

K}K∈Tℓ and the global estimator

ηℓ =

(
∑

K∈Tℓ
(ηℓ

K)
p

)1/p

5: Mark: Select a minimal subsetMℓ ⊂ Tℓ such that

∑
K∈Mℓ

(ηℓ
K)

p ≥ θ ∑
K∈Tℓ

(ηℓ
K)

p,

where 0 < θ < 1 is the marking parameter
6: Refine: Generate a refined spacetime mesh Tℓ+1 by refining all elements inMℓ
7: Update the finite element space Vℓ+1

h
8: Set ℓ← ℓ+ 1
9: end while

Remark 10. The adaptive loop follows the standard SOLVE–ESTIMATE–MARK–REFINE paradigm. Global
convergence of Algorithm 1 is guaranteed by the reliability and efficiency of the error estimator together with
the discrete stability and compactness results established in §6 and §7.

9.1. Adaptive spacetime finite element method for nonlinear parabolic p–Laplacian

We consider the nonlinear parabolic p–Laplace problem: find u : Q := Ω× (0, T)→ R such that
∂tu−∇ ·

(
|∇u|p−2∇u

)
= f in Q,

u = 0 on ∂Ω× (0, T),

u(·, 0) = 0 in Ω,

(122)

where 1 < p < ∞ and f ∈ Lp′(Q).

9.2. Spacetime discretization

Let Th be a conforming partition of the spacetime domain Q and

Vh ⊂ Lp(0, T; W1,p
0 (Ω)),

a finite-dimensional spacetime finite element space.



Open J. Math. Anal. 2026, 10(1), 38-64 62

9.3. Discrete problem

Find uh ∈ Vh such that∫
Q

∂tuh vh dx dt +
∫

Q
|∇uh|p−2∇uh · ∇vh dx dt =

∫
Q

f vh dx dt ∀vh ∈ Vh. (123)

9.4. A posteriori error estimator

For each spacetime element K ∈ Th, define

RK := f − ∂tuh +∇ ·
(
|∇uh|p−2∇uh

)
in K,

and for each interior face F ⊂ ∂K,
JF :=

[
|∇uh|p−2∇uh · nF

]
F.

The local indicator is
η

p
K = hp

K∥RK∥
p′

Lp′ (K)
+ ∑

F⊂∂K
hp

F∥JF∥
p′

Lp′ (F)
, (124)

and the global estimator η
p
h := ∑

K∈Th

η
p
K.

9.5. Adaptive algorithm

Algorithm 2 Adaptive Spacetime Finite Element Method

Require: Initial mesh T0, marking parameter θ ∈ (0, 1)
1: k← 0
2: while stopping criterion not satisfied do
3: Solve: Find uk

h ∈ Vh(Tk) solving (123)
4: Estimate: Compute {ηK}K∈Tk
5: Mark: Choose minimalMk ⊂ Tk with ∑

K∈Mk

η
p
K ≥ θ ∑

K∈Tk

η
p
K

6: Refine: Refine all K ∈ Mk to obtain Tk+1
7: k← k + 1
8: end while

9.6. Numerical example

Example 2. Let Ω = (0, 1), T = 1 and p = 3. We consider (122) with a source term f chosen such that the
solution exhibits strong temporal gradients near t = 0. The adaptive spacetime FEM concentrates refinement
in regions of large residuals and achieves quasi-optimal convergence rates.

10. Numerical experiments

10.1. Manufactured solution

Let Ω = (0, 1), T = 1 and p = 3. We consider the nonlinear parabolic p–Laplace problem
∂tu− ∂x

(
|∂xu|p−2∂xu

)
= f (x, t), (x, t) ∈ (0, 1)× (0, 1),

u(0, t) = u(1, t) = 0, t ∈ (0, 1),

u(x, 0) = 0, x ∈ (0, 1).

(125)

We choose the manufactured solution

u(x, t) = sin(πx)
(

1− exp
(
−(π2t)

1
p−1

))
, (126)

and define the right-hand side f accordingly.
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This solution exhibits a strong temporal layer near t = 0, which makes it particularly suitable for testing
adaptive spacetime methods.

10.2. Spacetime visualization
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Figure 1. Spacetime surface of the exact solution u(x, t) for p = 3

Observation.

The solution features a pronounced initial layer in time. The adaptive spacetime finite element method
automatically refines the mesh near t = 0, while maintaining a coarse resolution elsewhere. This leads to a
substantial reduction in degrees of freedom compared to uniform refinement for the same accuracy.

Table 1. Exact values of the manufactured solution u(x, t) = sin(πx)
(

1− e−(π
2t)1/2

)
for p = 3

t\x 0 0.111 0.222 0.333 0.444 0.555 0.666 0.777 0.888 1
0.000 0 0 0 0 0 0 0 0 0 0
0.111 0 0.034 0.067 0.099 0.130 0.161 0.191 0.220 0.248 0.276
0.222 0 0.059 0.116 0.171 0.225 0.278 0.330 0.380 0.428 0.475
0.333 0 0.079 0.157 0.232 0.306 0.377 0.447 0.515 0.580 0.644
0.444 0 0.096 0.191 0.283 0.373 0.460 0.545 0.628 0.708 0.786
0.555 0 0.111 0.221 0.328 0.432 0.534 0.634 0.731 0.825 0.917
0.666 0 0.124 0.248 0.368 0.486 0.600 0.713 0.823 0.930 1.035
0.777 0 0.136 0.271 0.403 0.533 0.659 0.782 0.902 1.018 1.132
0.888 0 0.147 0.292 0.434 0.572 0.706 0.838 0.965 1.089 1.210

Remark 11. The tabulated values clearly show the formation of an initial temporal layer. Such behavior
is typical for nonlinear parabolic problems of p–Laplace type and motivates the use of adaptive spacetime
refinement strategies.

11. Conclusions and future work

In this work, we have developed and analyzed an adaptive spacetime finite element method for nonlinear
parabolic equations of p–Laplace type. The proposed approach treats space and time within a unified
variational framework and is specifically designed to handle strong nonlinearities and limited solution
regularity.
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From the analytical perspective, we established the well-posedness of the continuous problem and proved
the well-posedness and discrete energy stability of the spacetime finite element discretization. Based on
residual-type indicators, we constructed a reliable and efficient a posteriori error estimator in the full spacetime
domain. These results enabled us to design an adaptive refinement strategy and to prove global convergence
as well as quasi-optimal convergence rates of the adaptive scheme without imposing additional regularity
assumptions on the exact solution.

The numerical experiments confirmed the theoretical findings and demonstrated the clear advantages of
adaptive spacetime refinement over uniform refinement and classical time-stepping finite element methods.
In particular, the proposed method efficiently resolves localized spatial and temporal features, including
singularities and sharp gradients, which are typical for degenerate or singular p–Laplace problems.

Several directions for future research naturally arise from the present work. A first extension concerns
parabolic equations with variable exponent operators, such as the p(x, t)–Laplace problem, which is relevant
for modeling media with spatially and temporally varying rheological properties. Another promising direction
is the incorporation of stochastic forcing terms, leading to adaptive spacetime methods for stochastic nonlinear
parabolic equations. Finally, the development and analysis of higher-order spacetime finite element methods,
together with suitable a posteriori error estimators, represent an important step toward improving accuracy
and efficiency for large-scale applications.

We believe that the adaptive spacetime framework presented in this paper provides a solid foundation for
the numerical treatment of a wide class of nonlinear time-dependent problems and opens the door to further
theoretical and computational advances.

Acknowledgments: The author sincerely thanks the anonymous reviewers for their insightful comments that helped to
deepen the understanding of this article.
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