Open Journal of s
Mathematical Analysis PEH Fre

Article
Fixed points of differential polynomials generated by
solutions of complex linear differential equations

Benharrat Belaidi

Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P.
227 Mostaganem-(Algeria); benharrat.belaidi@univ-mosta.dz

Received: 12 November 2025; Accepted: 16 December 2025; Published: 20 January 2026.

Abstract: This article concerns the problem on the growth and the oscillation of some differential polynomials
generated by solutions of the second order non-homogeneous linear differential equation

f"+P(z2) e“"znf’ + B (2) eb"Z”f = F(z)e™?,

where a,, b, are complex numbers, P (z) (#0) is a polynomial, B (z) (#0) and F(z) (#0) are entire
functions with order less than n. Because of the control of differential equation, we can obtain some estimates
of their hyper-order and fixed points.
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1. Introduction and statement of results

T hroughout this paper, we assume that the reader is familiar with the usual notations and basic results

of the Nevanlinna’s value distribution theory of meromorphic functions [1-3]. In addition, we will use

A (f) and A (f) to denote respectively the exponents of convergence of the zero-sequence and the sequence of
distinct zeros of a meromorphic function f, p (f) to denote the order of growth of f. We say that a meromorphic
function a (z) is a small function of f (z) if T (r,a) = o (T (r, f)) as ¥ — o0 outside of a possible exceptional
set of finite logarithmic measure. In order to express the rate of growth of meromorphic solutions of infinite
order, we recall the following definitions.

Definition 1. ([2-4]) Let f be a meromorphic function. Then the hyper-order p, (f) of f is defined by

r—+o0 logr

where T (7, f) is the Nevanlinna characteristic function of f. If f is an entire function, then the hyper-order
02 (f) of f is defined as follows

, loglog T (r,f) .. logloglog M (7, f)
= limsup—=—"——* =limsu
P2 (f) rHJroop log ¥ r%+oop log 4

7

where M (r, f) = max;—, |f (z).

Definition 2. ([2-4]) Let f be a meromorphic function. Then the hyper convergence exponents of the
zero-sequence and the distinct zeros of f are defined respectively by

loglog N (r, %) _ loglog N (r, %)
A (f) =limsup —————%~, Ay (f) = limsup ———~
r—to0 log 7 e log 7

7
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where N ( Jl;) dN (r, %) are respectively the integrated counting functions of zeros and distinct zeros of
z < r

fin{z:]|
We now recall some previous results concerning linear differential equations of type

f"+e#f +B(z2) f =0, 1)

where B (z) is an entire function, it is well-known that each solution f of the Eq. (1) is an entire function, and
that if f1, f> are two linearly independent solutions of (1), then by [5], there is at least one of f1, f, of infinite
order. Hence, "most” solutions of (1) will have infinite order. But the Eq. (1) with B(z) = —(1 + e~ %) possesses
a solution f (z) = e* of finite order.

In the case when B (z) is a polynomial, properties of solutions of (1) have been studied, e.g., in [6-9].
Provided that B (z) is a transcendental entire function and p (B) = 1, Gundersen pointed out that every
nontrivial solution of (1) is of infinite order, see [10]. Chen has considered the case B(z) = h (z)e"?, where
h (z) is a nonzero polynomial and b # —1, see [11]. More precisely, he proved that every nontrivial solution f
of (1) satisfies p, (f) = 1. The same paper contains a discussion about more general equations of type

f"+ Ay (z) e f + Ay (z) & f =0, 2)

where the non-vanishing entire functions Ay (z), A; (z) satisfy p (A;) < 1,j = 0,1, and where a, b are complex
constants. If ab # 0 and arga # argb or if a = cb for some ¢ > 1, then all nontrivial solutions f of (2) are
of infinite order, see [11]. In [12], Wang and Laine have investigated the growth of solutions of some second
order nonhomogenous linear differential equations related to (2) and have obtained the following result.

Theorem 1. [12] Let Aj (z) (#0) (j = 0,1) and H (z) be entire functions with max{p (A;) (j =0,1),p (H)} <1,
and let a, b be complex constants that satisfy ab # 0 and a # b. Then every nontrivial solution f of the Eq.

"+ A (z) e f' + Ao (z) e f = H, (3)
is of infinite order.

Remark 1. If p (H) = 1, then Eq. (3) can possesses a solution of finite order. For instance the Eq. f” +
Ze 2! 4 zel* f = 272 cos z satisfies p (H) = p (222 cosz) = 1 and has a finite order solution f (z) = z.

Recently, the author extend the result of Wang and Laine to the case when p(H) = 1 and proved the
following result.

Theorem 2. [13] Let B (z) (£ 0), F (z) (# 0) be entire functions with
max{p (B),p (F)} <1,
and let A, ay, ay be complex numbers such that Aayay # 0, ay # ap. Then every solution f of the differential equation
"+ Ae"*f' + B (z) e™* f = F(z) &M%,

satisfies

A(f) =A(f) =p(f) = +oo, A2 (f) = A2 () = p2(f) < 1.
In this paper, we extend our considerations to non-homogeneous differential equation of type
"4 P(z) e f' + B (z) e f = F (z) e™*". 4)

We now proceed to prove three theorems concerning the growth of solutions of (4) and some differential
polynomials generated by solutions of this equation. The first main result of this paper states as follows.
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Theorem 3. Let B (z) (#0), F (z) (# 0) be entire functions with

max {p (B), o ()} <n,

and let ay, by, be complex numbers such that a,b, # 0, a, # by and P (z) (# 0) be a polynomial. Then every solution f
of the differential equation (4) satisfies

A(f) =A(f) =p(f) = +oo, X2 (f) = A2 (f) = p2(f) < 1.
Example 1. Consider the second-order nonhomogeneous differential equation
"+ (z+1) ezzf’ + (ze* +3) e_zzzf = (z+2¢77) “.
In this equation, we have
P(z)=z+1, B(z) =z¢*+3, F(z) =z+2¢ ~.

Since
p(B)=1,p(F) =1, max{p(B),p(F)} =1<n=2,

and the exponential factors satisfy
l=uay# by = -2, abp = -2 #0,

all the assumptions of Theorem 3 are fulfilled. Therefore, every solution f of the above differential equation
satisfies

Af)=A(f) =p(f) = +o0, A2 (f) = X2 (f) = p2(f) < 2.

Corollary 1. Under the assumptions of Theorem 3, let Q (z) = buyz" + by, 12" +---+biz+by (n>1) bea
polynomial. Then every solution f of the differential equation

f"+P(z2) e“”znf’ + B(z) eQ(Z)f = F(z)e™?, 5)
satisfies A (f) = A (f) = p (f) = +00, A2 (f) = A2 (f) = p2(f) < m.
Proof. We can write (5) as follows

f// 4P (Z) eanz"f/ +B (Z) ebnz”Jrh,,,,lz"+~--+b12+bof —F (Z) eanZ”,

thatis
"+ P(z) e f' + C(z) e f = F (z) e,
where
C (Z) - B (Z) eh,l,lz"’1+---+blz+b0,
and

0 (C) < max {p (B),p (¥ "tz ) L — max {p (B),n—1} <,
so by applying Theorem 3, we get the result. O

Many important results have been obtained on the fixed points of general transcendental meromorphic
functions for almost four decades (see [14] ). It was in the year 2000 that Z. X. Chen first pointed out the relation
between the exponent of convergence of distinct fixed points and the rate of growth of solutions of second
order linear differential equations with entire coefficients (see [15]). In [4], Wang and Yi investigated fixed
points and hyper order of differential polynomials generated by solutions of second order linear differential
equations with meromorphic coefficients. In [16], Laine and Rieppo gave an improvement of the results of [4]
by considering fixed points and iterated order. In [17], Liu and Zhang have investigated the fixed points and
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hyper order of solutions of some higher order linear differential equations with meromorphic coefficients and
their derivatives. After that, in [18], Bela idi gave an extension of the results of [17].

We know that a differential equation bears a relation to all derivatives of its solutions. Hence, linear
differential polynomials generated by its solutions must have special nature because of the control of
differential equations, see [4,13,16,19-23].

The second main purpose of this paper is to study the relation between small functions and some
differential polynomials generated by solutions of the second order linear differential equation (4). We obtain
some estimates of their hyper order and fixed points.

Theorem 4. Under the assumptions of Theorem 3, let dy (z), d1 (z), d (z) , b (z) be entire functions such that at least
one of dy (z) ,d1 (), d2 (z) does not vanish identically with p (d;) < n (j=0,1,2),p0(b) < co, and let ¢ (z) be an
entire function with finite order. If f is a solution of the Eq. (4), then the differential polynomial

8f= dzf// + dlf/ +dof +0, (6)
satisfies
A(f) =A(f) =X(gf*<p) =A(gf*(p) =p(f) = +eo,
A (f) =2 (f) =X (8f*§0) = A2 (gf*QD) =p2(f) <n.
In particular, if f is a solution of Eq. (4), then the differential polynomial g = do f" +d1f' + dof + b has infinitely
many fixed points and satisfies A (gf — z) =A (gf — z) =p0(f) =+, Ay (gf — z) =A (gf — z) =p2(f) <n.

In the next, we investigate the relation between infinite order solutions of a pair non-homogeneous linear
differential equations and we obtain the following result.

Theorem 5. Under the assumptions of Theorem 3, let F; # 0 and F, # 0 be entire functions such that
max {p (F) : j=1,2} < nand Fy — KF, # 0 for any complex constant K, ¢ (z) is an entire function with finite
order. If f1 is a solution of Eq.

"4+ P(z)e™ f' + B (z) e f = Fy (z) ™, 7)

and f, is a solution of Eq.
f"+P(2) e f' 4+ B(2) " f = B2 (2) ", ®)

then the differential polynomial gf, _ky, = da (f{ — Kfy') +dy (f{ — Kf3) +do (f1 — Kf2) + b satisfies

AMfi—Kf2) =A(fi—Kf2) =2 (gfl—Kfz - 4’) =A (gfl—Kfz - §0> =p(fi —Kf2) = oo,
and
A (fi —=Kf2) = A2 (fi —Kfa) = A2 (gerfz - 4’) = A <8f171<f2 - fP) =p2(fi—Kf2) <m,

for any complex constant K.

Remark 2. This paper is an improvement of paper [13]. Indeed, when P (z) is a constant, n = 1 and d; (z) =0,
we get the results of [13].

2. Some auxiliary lemmas

Lemma 1. [24] Let Py, Py, ..., Py, (n > 1) be non-constant polynomials with degree dq, dy, ..., d, respectively, such that

deg (P; — P;) = max {d; d;} fori # j. Let A(z) = i B; (z) eli?), where B; (z) (# 0) are entire functions with
j=1

p (Bj) <dj. Then p (A) = max {d,}.

1<j<n

Lemma 2. [11] Suppose that P (z) = (a+iB)z" + --- (a, B are real numbers, |a| + |B| # 0) is a polynomial
with degree n > 1, that A (z) (#0) is an entire function with p (A) < n. Set g(z) = A(z)e’®, z = re®?
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0 (P,0) = acosnf — Bsinnb. Then for any given € > 0, there is a set Ey C [0,27r) that has linear measure zero, such
that for any 0 € [0,27r) \ (E1 U Ey), there is R > 0, such that for |z| = r > R, we have

(i) If 6 (P,0) > 0, then
exp {(1-¢)3(P,0)r"} < g (re) | < exp{(1+¢)6 (P,0)r"}.
(ii) If 6 (P,6) < 0, then
exp{(1+€)0 (P,0)r"} < | (re) | < exp {(1-€) 2 (P,0) "},
where Ey = {6 € [0,27) : 5 (P,0) = 0} is a finite set.

Lemma 3. [25] Let f be a transcendental meromorphic function of finite order p. Let e > 0 be a constant, k and j be
integers satisfying k > j > 0. Then the following two statements hold:

(i) There exists a set E3 C (1,4o00) which has finite logarithmic measure, such that for all z satisfying |z| ¢
E3 U [0, 1], we have

< |Z|(k—f)(P—1+€) ] )

(ii) There exists a set E4 C [0,27t) which has linear measure zero, such that if 6 € [0,27) \ E4, then there is a
constant R = R (0) > 0 such that (9) holds for all z satisfying argz = 6 and |z| > R.

Lemma 4. [26] Let f be an entire function and suppose that

is unbounded on some ray argz = 0 with constant p > 0. Then there exists an infinite sequence of points z, = rne'®

(n=1,2,..), where ry — 400, such that G (z,,) — oo and

n

f9) (zn)
f(k) (zn)

1 k=i .
< c(L+o(M)r ), j=01,..,k-1,

(k=)

asn — +oo.

Lemma 5. [26] Let f be an entire function with p (f) = p < 4oco. Suppose that there exists a set Es C [0,27) which
has linear measure zero, such that log™ | f (re”) | < M1 for any ray argz = 6 € [0,2m) \ Es, where M is a positive
constant depending on 6, while o is a positive constant independent of 6. Then p (f) = p < 0.

Lemma 6. [18,27] Let A;(z) (j =0,1,..,k—1), F(z) # 0 be finite order meromorphic functions.
(i) If f is a meromorphic solution of the differential equation
fO+ 41 @ fEV 4+ A (@) + Ao (2) f = F, (10)

with p (f) = oo, then f satisfies
A(f) = A(f) = p (f) = +oo.
(ii) If f is a meromorphic solution of Eq. (10) with p (f) = +o0, p2 (f) = p, then f satisfies

A(f) =A(f) = p(f) = +o0, M2 (f) = A2 (f) = p2 (f) = p.
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Lemma 7. [21,28] Let By (z),B1 (z),...,Bx_1 (z), H (z) be entire functions of finite order. If f is a solution of the
equation
fO 4 Bea @) fEV e+ B @)+ Bo(2) f = H(2),

then p (f) < max {p (B;) (j=0,1,...k—=1),0(H)}.

Lemma 8. [2] Let P(z) = a,2" + --- + ag,a, # 0 be a polynomial with degree n > 1. Then for every € > 0, there
exists r¢ > 0 such that for all sufficiently large r = |z| > re, we have the double inequality

(1—¢)|an|r" < |P(z)] < (1+e) |an|r".

n .

Lemma 9. [19] Let P (z) = Z‘, a;z' and Q (z) = Y. b;z' be nonconstant polynomials where a;, b; (i = 0,1,...,n) are
i=0

complex numbers, a, # 0, by, ;é 0 such that arga, # argby or a, = cby, (0 < ¢ < 1). We denote index sets by

A ={0,P},
Ay ={0,P,Q,2P,P+Q}.
(i) If Hj(j € A1) and Hg # 0 are all meromorphic functions of orders that are less than n, setting Y1 (z) =
g H;(z) ¢, then‘l’l( ) + HpeQ #£0.
JEMAL
(i) If H;(j € A2) and Haq # 0 are all meromorphic functions of orders that are less than n, setting ¥ (z) =

¥ Hj(z) e, then ¥5 (z) + Hyge*@ # 0.
JEA2

n . n .

Lemma 10. Let P(z) = Y a;z' and Q(z) = Y b;z" be nonconstant polynomials where a;, b; (i =0,1,...,n) are
i=0 i=0

complex numbers, a, # 0, by, # 0 such that arg a, # argb, or a, = cby, (c > 1). We denote index sets by

A3 ={0,P,Q,P+Q,2P,2Q}.

Let H; (j € A3) be meromorphic functions of orders that are less than n, setting Y3 (z) = e[j)\ H;j(z z)el. If there
JEA3

exists j € Az — {0} such that H; #£0, then Y3 (z) # 0.
Proof. By Lemma 1, we have p (¥3) = n. Hence, ¥3(z) #0. O

3. Proof of Theorem 3

We begin by proving that every solution f of Eq. (4 ) is transcendental.
Leta = —a, and b = b, —a,. Then ab # 0 and a # b, so Eq. (4) becomes

e f" + Pf' + Be"' f = F. (11)

Our first goal is to show that any solution f of (4) satisfies p (f) > n. Assume, on the contrary, that
p (f) < n.Itis clear that f # 0. Obviously p (f(j)) <n(j=1,2),p(Bf) < n. Rewrite (11) as

fe"" + Bfe" =F — Pf'. (12)
i) If /7 # 0, then by (12) and the Lemma 1, we have
n—p{f” e +Bfebz"} =p{F-Pf'} <n.

This is a contradiction.
ii) If f”” = 0, then by (12) we have

:p{Bfebzn} =p{F-Pf'} <n.
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This is a contradiction. Thus, p (f) > n, and every solution of f of Eq. (4) must be transcendental.
Now, we prove by contradiction that p (f) = +oc. Suppose, on the contrary, that p (f) = p < +oc. Since
p (F) < n, then for any given € (0 < 2¢ < n — p (F)) and sufficiently large r, we have

|F ()| < exp {rP(F)“}. (13)

By Lemma 2, there exists a set E C [0,277) of linear measure zero, such that whenever 6 € [0,27) \ E, then
0 (az",0) # 0,6 (bz",0) # 0and d (az",0) # 6 (bz",0). By Lemma 3(ii), there exists a set E; C [0,27r) which
has linear measure zero, such that if 8 € [0,27) \ E4, then there is a constant R = R (6) > 1 such that for all z
satisfying argz = 0 and |z| > R, we have

<z 0<i<j<2 (14)

‘f{) (2)
f

(
@ (z)
For any fixed 6 € [0,27) \ (EU Ey), set

0 = max{Jd (az",0),6 (b2",0)},

and
Jy = min {6 (az",0),6 (bz",0)},

then §; < 4; and 61 # 0, 6, # 0.

We now analyze three cases separately.

Case 1. Suppose that 1 = ¢ (az",0) > 0, then 6, = ¢ (bz",6). By Lemma 2, for any given e with 0 < 2¢ <
min {%,Z,n —p (F)}, we obtain

az"

e >exp{(1—¢)orr"}, (15)

for sufficiently large r. We now prove that log™ |f” (z)| / |z|° (F)+¢ js bounded on the ray argz = 0. We assume
thatlog™ | f” (z)| / |z|f (F)+¢ is unbounded on the ray argz = 0. Then by Lemma 4, there is a sequence of points
Zm = rme'?, such that r,, — +o0, and that

108+ Lf" (zm)]

(e T (16)
rm
f9) (zm) 1 I S
< =
‘ "(zm) | = (z_j)!(1+0(1))rm <2rm’, (j=0,1), 17)
for m is large enough. From (16) for any sufficiently large number C > 1 we have
lo + | g1 7 ;
grpl(fF)W > C, then |f" (Zm)‘ > exp {Cr%( HS} as m — 4oo0. (18)
m

From (13) and (18), we get

exp {Tfn(FHg} _ 1 0, (19)

Cexp {Crf,,(FHe} exp {(C -1) r%mﬁ}

F(zm)
f" (zm)

as m — 4o00. From (11), we obtain

!
n n F
e | < |P Jj:” —0—‘Behz ]{;’ + - (20)
(i) If 62 > 0, then by Lemma 2, for ¢ as above, we obtain
BG) e | <exp{(1+€) 8"}, (21)
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for sufficiently large r. By using Lemma 8, there exists a > 0 such that for sufficiently large |z| = r, we have
|P(z)| < ¥, k= degP > 1. (22)

By substituting (15), (17), (19), (21) and (22) into (20), we have

exp {(1—¢)diry} < "
f! (Zm) pen | | f (Zm) F (zm)
< m
<|P (zm)] 7 (2 + ’B (zm) e 7 (zm) + 77 (zm)
<ark (2ry) + 212 exp { (1 +€) 6orh} +0(1)
<G exp {(1+¢) ), 23)
where C; > 0 is some constant. By 0 < ¢ <@ 52 and (23), we can get
61—90
which is a contradiction.
(if) If 57 < 0, then by Lemma 2, for ¢ as above, we obtain
’B (z) e | <exp{(1—¢)dr"} <1, (24)
for sufficiently large r. Substituting (15), (17), (19 ), (22) and (24) into (20), we have
exp {(1 —¢) d1rp,
f'(zm) pen | | f (zm) F (zm)
< "
<|P (zm)] " (zm) + ‘B (zm)e 7 (zm) 7 (zm)
<L2arf 1292 40 (1) < CorkHl, (25)

where C, > 0 is some constant, which is a contradiction. Therefore,
log-‘r ‘f// (Z)‘ / |Z|p(F)+£

is bounded and we have
" @)] < exp {MrEeel v > 0),

on the ray arg z = 6. Hence, using the same reasoning as in the proof of Lemma 3.1 in [29], by two-fold iterated
integration, along the line segment [0, z] , we conclude that

fz)=F0)+f( f+/zo/tf“ ) dudt.

So, we get for a sufficiently large r

FEIIFO1+IF OB +| [ [ 77 ) dua
00
| " ﬁ_} 2| 41t
<11 +17 O 417 @1 B = L a oy 2l o)
§%(1+0(1))r exp {Mrp( ) E} <exp {rp(F)”s}, (26)

on the ray argz = 0.
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Case 2. Suppose that 6, = 0 (bz",0) > 0, then §, = ¢ (az",0). By Lemma 2, for any given £ with 0 < 2¢ <

min {%,2,1@ —p (F)}, we obtain

’B (z) e

>exp{(l—¢)or'},

27)

for sufficiently large r. We now prove that log* | (z)| / |z|*'F) ¢ is bounded on the ray argz = 6. We assume
thatlog™ |f (2)| / |z (F)+¢ is unbounded on the ray arg z = 6. Then by Lemma 4, there is a sequence of points

Zm = rme'?, such that r,, — 400, and that

log™ |f (zm)|

— +o0
o(F)1e +o0,
T'm

for m is large enough. From (13) and (28), we get as in ( 19)

‘F(Zm) -0,
f(zm)
for m is large enough. From (11), we obtain
" " 1" ! F
Be™'| < || | ] + 1oy | & +H
’ f fLof

(i) If 62 > 0, then by Lemma 2, for ¢ as above, we obtain

n
az
e

< exp{(1+¢) "}
for sufficiently large r. Substituting (14), (22), (27), (29) and (31) into (30), we have

exp {(1—€) o} < ]B (zm) 750

" (zm) f' (zm)
f (zm) f (zm)

Sr,%f exp {(1+¢)d&ry} + txrlfnﬂp +0(1)
<Car ¥ exp {(1+2) &},

F (zm)
f(zm)

n
e"%m

<

+ [P (zm)|

"

where C3 > 0 is some constant. By 0 < & < 5123152

2
oo 828575) <o

and (32), we can get

264

which is a contradiction.
(ii) If 0 < 0, then by Lemma 2, for ¢ as above, we obtain

az"

e <exp{(l—¢)dr'"} <1,

for sufficiently large r. Substituting (14), (22), (27), (29) and (33) into (30), we have

exp {(1—¢) a7y} < |B (z) e

’f”(zm) f' (zm)
f(zm) f(zm)
<2+ zxrﬁsz +o(1) < C4rlfn+2p,

F (zm)
f(zm)

< eaz?,,

+ P (zm)|

"

(28)

(29)

(30)

&1

(32)

(33)
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where C4 > 0 is some constant, which is a contradiction. Therefore,
log" |f (2)| / [z,

is bounded and we have
f (2)] < exp {reF)2},

on the ray argz = 6.

Case 3. Suppose now that §; < 0. From (11 ) we get

1!
qoe S g S E
1= o B (4)
By Lemma 2, for any given € with 0 < 2e < n — p (F), we obtain
| <exp{(1—e)d(az",0)r"} <exp{(1—¢)dor"}, (35)
[B(z)e""| <exp{(1—e)6(bz",0)r"} < exp{(1—e)orr"}, (36)

for sufficiently large r. We now prove that log™ |f’ (z)| / |z|° (F)*¢ js bounded on the ray argz = 6. We assume
thatlog™ |f' (z)| / |z|f (F)+¢ is unbounded on the ray arg z = 6. Then by Lemma 4 there is a sequence of points
Zm = rme'?, such that r,, — +o0, and that

1 + | £/ "
Ogrpg)f I e, 37)
;((ZZ’")) <(1+40(1))rm < 2. (38)
From (13) and (37), we have

for m is large enough. By using Lemma 8, there exists f > 0 such that for sulfficiently large |z| = r, we have
|P(z)| > Br*, k = degP > 1. (40)

Substituting (14), (35), (36), (38 ), (39) and (40) into (34), we have

N i VeI LA L [T AC YO Wy I
TP (zm)| | f' (zm) P (zm)| [ f" (zm) P (zm)| | f' (zm)
20
S;Tm; exp{(1—¢) o7} +2g7m§1 exp{(1—¢) o1} + ﬁi’,%o (1). (1)
By 61 < 0, we have
L2k Pk
mﬁ exp{(1—¢)éiry,} —0—2’”? exp{(1—¢)dry,}+ ,BT’,‘HO (1) =0,

as rp, — —4oo. From (41) we obtain 1 < 0 as r,, — oo, which is a contradiction. Therefore,
log™ | ()| / |z|°'P)** is bounded and we have

|f (z)| < exp {MrP(F)“} (M > 0),
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on the ray arg z = 6. This implies, as in Case 1, that

f (2)] < exp {rFIH2} 2)

Therefore, for any given 6 € [0,27) \ (EU E4), we have got (42) on the ray argz = 6, provided that r
is large enough. Then by Lemma 5, we have p (f) < p (F) 4+ 2¢ < n, which is a contradiction. Hence every
transcendental solution f of (4) must be of infinite order.

We have
max {p (Pe””zn) 0 (Beb”zn) .0 (Fe””zn> } =n,

so by using Lemma 7, we obtain p; (f) < n.

Since F # 0, then by Lemma 6, we get

Af) =A(f) =p(f) = +oo, A2 (f) = A2 (f) = pa(f) < .
4. Proof of Theorem 4

Suppose that f is a solution of Eq. (4). Then by Theorem 3, we have p (f) = +o0 and p, (f) < n. First,
we prove p (gf) =p(f) =o0and pp (gf) = 02 (f) < n. Suppose that arga, = argb, ora, = cb,, 0 < c < 1.
First, we suppose that d, # 0. Substituting f” = Fe™*' — P (z) e™* f' — B (z) ¢"*' f into s, we get

gy — daFe" — b= (dy — dyPe"™" ) f' 4 (do — daBe") f. (43)
Differentiating both sides of Eq. (43) and replacing f” with Fe™*" — P (z) e™?" f' — B (z) e""*" f, we obtain
g} — (sze“”Zn)/ — (dl — dzPe“”Zn) Fe™?" —p/
= [dszeZ“"Zn - ((dzP)’ + (anz") dyP + le) e — dyBet" 4 dy + d;} £
+ [d2PBe ) — ((dyB)' + (bz")' d2B + i B ) e + | £. (44)
Then, by (43) and (44), we have

w f +aof = gf — daFe™ —b, (45)

n / n n
Bif + Bof = g5 — (daFe™" ) — (1 — dpPe™" ) Fet™" —y/. (46)
Set
h=w1Po — aopy = (i — doPe*") [drPBel@ =" — ((dB)' + (b,2") doB +dy B)e™" + d |
- (do - dzBeb"Z"> [dzpzezﬂnZ” — ((d2P) + (ay2") doP + dyP)e™" — dyBe?™" 4 do + d’l} . W)
We prove h # 0. Now check all the terms of /. Since the term d%PZBe(Z""“’")Z” is eliminated, by (47) we
can write h = ¥ (z) — d3B2%e?"*", where ¥, (z) is defined as in Lemma 9 (ii). Thus, by d; # 0 and B # 0, we

see that h # 0.
Suppose now a,, = cby, ¢ > 1. By (47), we can write

h =¥ (z) = Ho+ Ha, "™ + Hy,e""" + Hy, 1, e =" 4 Hyy, %" 4 Hy, &%,

where Ho, Hy,, Hy,, H, 1 4,, H2a,, Hyp, are entire functions of orders less than n. By d, # 0, B # 0, we have
Hpj, = —d3B* # 0. Then by Lemma 10, we have h # 0.
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Now suppose d» = 0, dy # 0, by (47) we can write

h=dy (diBe' +dy) —do (drPe™ +do + )
= d?Be*" — dydy Pe™*" + dqdy — d3 — dod;.

By Lemma 1 and d%B # 0, we have p (h) = n. Hence, h # 0.
Finally, if d, = 0,d; = 0, dy # 0, then we have h = —d% # 0. Hence, i # 0. By (45), (46) and (47), we
obtain
n / n n
aq (g} - (sze””Z ) — ayFe™* — b’> - B1 (gf — dpFen® — b)
f= . ) (48)

If p (gf) < oo, then by (48) we get p (f) < oo and this is a contradiction. Hence p (gf> = oo.

Now we prove that p, (gf) = p2(f). By (6), we get ps (gf> < p2 (f) and by (48) we have p; (f) <
02 (gf). This yield p, (gf> =p2(f) <n.

Set w(z) = dof” +dif' +dof +b— ¢. Since p (¢) < oo, then we have p (w) = p (gf) =p(f) =
and pp (w) = p2 (gf) = p2(f). In order to prove A (gf - (p) = A (gf - qo) = oo and A, (gf —¢) =

Az <gf — q)) = 02 (f), weneed to prove only A (w) = A (w) = coand Ay (w) = Az (w) = p2 (f) . By gr = w+ ¢,
we get from (48)

aq (w’ + ¢ — (sze”"Zn>/ — txlFe”"Zn — b’) —B1 (w +¢— doFe™n?" — b)

f= 2 . (49)

So, we can write
 mw' — pw

f= i (50)

where

aq (q)’ — (sze”"Zn>/ — ayFe™?" — b’) - B1 ((p — dyFe™?" — b)
p(2) = . .

Substituting (50) into Eq. (4), we obtain

S+ g + gy’ + gow = Fe=' — (9" + P (2) ey + B (2) ') = G, (51)

where ¢; (j = 0,1,2) are meromorphic functions with p (¢;) < co (j = 0,1,2). Since p () < oo, by Theorem 3,
it follows that G # 0. By a1 # 0, # 0 and Lemma 6, we obtain A (w) = A (w) = p (w) = 00, A3 (w) = Ay (w) =

p2 (w) :pz<f),i-e.ﬁ(gf—¢) = A(gf—qv) = p(gf) =p(f) = ooandXz(gf—qD) = Az(gf—(P) =

P2 (gf) =p2(f) <n.
By f is infinite order solution of Eq. (4) and Lemma 6 again, we have

XA =AH=N(gr-9) = (85— 9) =0 (f) = +oo,

M) =M (f) =2 (g —¢) = A (gr—9) =p2(f) <,

which completes the proof. If we put ¢ (z) = z, then we get

X(gf—z> :/\(gf—z) =p(f) =+, A2 (gf—z) = A2 (gf_z> =p2(f) <mn.
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5. Proof of Theorem 5

Suppose that f; is a solution of Eq. (7) and f, is a solution of Eq. (8). Set w = f; — Kf;. Then w is a
solution of equation
w" + P (z) e w' + B (z) e w = (F; — KF) e™?".

By p (F; — KF;) < n, F; — KF, # 0 and Theorem 3, we have p (w) = oo and p; (w) < n. Thus, by using
Theorem 4, we obtain

Aw) =2 (w) = A (8w — @) = A (8w — @) = p (w) = +09,

Az (w) = Az (w) = Az (§w — @) = A2 (gw — @) = p2 (w) < 1,

that is
AMfi—Kf2) =A(fi—Kf2) =2 (gfl—Kfz - (P) =A (8f1—1<f2 - 90) =p(fi —Kf2) = oo,
and

A2 (fi —=Kf2) = A2 (fi —Kfa) = A2 (3f171<f2 - ?) = A2 (gflfoz - (P) =p2(fi—Kf2) <mn,

for any complex constant K.

6. Conclusion

In this paper, we investigate the growth and oscillation properties of differential polynomials generated
by solutions of second-order non-homogeneous linear differential equations. Under suitable conditions on the
coefficients, we obtain estimates for their hyper-order and fixed points. We also improve and extend recent
results of the author [13].
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