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Abstract: This article concerns the problem on the growth and the oscillation of some differential polynomials
generated by solutions of the second order non-homogeneous linear differential equation

f ′′ + P (z) eanzn
f ′ + B (z) ebnzn

f = F (z) eanzn
,

where an, bn are complex numbers, P (z) ( ̸≡ 0) is a polynomial, B (z) ( ̸≡ 0) and F (z) ( ̸≡ 0) are entire
functions with order less than n. Because of the control of differential equation, we can obtain some estimates
of their hyper-order and fixed points.
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1. Introduction and statement of results

T hroughout this paper, we assume that the reader is familiar with the usual notations and basic results
of the Nevanlinna’s value distribution theory of meromorphic functions [1–3]. In addition, we will use

λ ( f ) and λ ( f ) to denote respectively the exponents of convergence of the zero-sequence and the sequence of
distinct zeros of a meromorphic function f , ρ ( f ) to denote the order of growth of f . We say that a meromorphic
function a (z) is a small function of f (z) if T (r, a) = o (T (r, f )) as r → +∞ outside of a possible exceptional
set of finite logarithmic measure. In order to express the rate of growth of meromorphic solutions of infinite
order, we recall the following definitions.

Definition 1. ([2–4]) Let f be a meromorphic function. Then the hyper-order ρ2 ( f ) of f is defined by

ρ2 ( f ) = lim sup
r→+∞

log log T (r, f )
log r

,

where T (r, f ) is the Nevanlinna characteristic function of f . If f is an entire function, then the hyper-order
ρ2 ( f ) of f is defined as follows

ρ2 ( f ) = lim sup
r→+∞

log log T (r, f )
log r

= lim sup
r→+∞

log log log M (r, f )
log r

,

where M (r, f ) = max|z|=r | f (z)|.

Definition 2. ([2–4]) Let f be a meromorphic function. Then the hyper convergence exponents of the
zero-sequence and the distinct zeros of f are defined respectively by

λ2 ( f ) = lim sup
r→+∞

log log N
(

r, 1
f

)
log r

, λ2 ( f ) = lim sup
r→+∞

log log N
(

r, 1
f

)
log r

,
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where N
(

r, 1
f

)
and N

(
r, 1

f

)
are respectively the integrated counting functions of zeros and distinct zeros of

f in {z : |z| ≤ r}.

We now recall some previous results concerning linear differential equations of type

f ′′ + e−z f ′ + B (z) f = 0, (1)

where B (z) is an entire function, it is well-known that each solution f of the Eq. (1) is an entire function, and
that if f1, f2 are two linearly independent solutions of (1), then by [5], there is at least one of f1, f2 of infinite
order. Hence, ”most” solutions of (1) will have infinite order. But the Eq. (1) with B(z) = −(1+ e−z) possesses
a solution f (z) = ez of finite order.

In the case when B (z) is a polynomial, properties of solutions of (1) have been studied, e.g., in [6–9].
Provided that B (z) is a transcendental entire function and ρ (B) = 1, Gundersen pointed out that every
nontrivial solution of (1) is of infinite order, see [10]. Chen has considered the case B(z) = h (z) ebz, where
h (z) is a nonzero polynomial and b ̸= −1, see [11]. More precisely, he proved that every nontrivial solution f
of (1) satisfies ρ2 ( f ) = 1. The same paper contains a discussion about more general equations of type

f ′′ + A1 (z) eaz f ′ + A0 (z) ebz f = 0, (2)

where the non-vanishing entire functions A0 (z), A1 (z) satisfy ρ
(

Aj
)
< 1, j = 0, 1, and where a, b are complex

constants. If ab ̸= 0 and arg a ̸= arg b or if a = cb for some c > 1, then all nontrivial solutions f of (2) are
of infinite order, see [11]. In [12], Wang and Laine have investigated the growth of solutions of some second
order nonhomogenous linear differential equations related to (2) and have obtained the following result.

Theorem 1. [12] Let Aj (z) ( ̸≡ 0) (j = 0, 1) and H (z) be entire functions with max{ρ
(

Aj
)
(j = 0, 1) , ρ (H)} < 1,

and let a, b be complex constants that satisfy ab ̸= 0 and a ̸= b. Then every nontrivial solution f of the Eq.

f ′′ + A1 (z) eaz f ′ + A0 (z) ebz f = H, (3)

is of infinite order.

Remark 1. If ρ (H) = 1, then Eq. (3) can possesses a solution of finite order. For instance the Eq. f ′′ +
z2e−iz f ′ + zeiz f = 2z2 cos z satisfies ρ (H) = ρ

(
2z2 cos z

)
= 1 and has a finite order solution f (z) = z.

Recently, the author extend the result of Wang and Laine to the case when ρ(H) = 1 and proved the
following result.

Theorem 2. [13] Let B (z) ( ̸≡ 0), F (z) ( ̸≡ 0) be entire functions with

max{ρ (B) , ρ (F)} < 1,

and let A, a1, a2 be complex numbers such that Aa1a2 ̸= 0, a1 ̸= a2. Then every solution f of the differential equation

f ′′ + Aea1z f ′ + B (z) ea2z f = F (z) ea1z,

satisfies
λ ( f ) = λ ( f ) = ρ ( f ) = +∞, λ2 ( f ) = λ2 ( f ) = ρ2( f ) ≤ 1.

In this paper, we extend our considerations to non-homogeneous differential equation of type

f ′′ + P (z) eanzn
f ′ + B (z) ebnzn

f = F (z) eanzn
. (4)

We now proceed to prove three theorems concerning the growth of solutions of (4) and some differential
polynomials generated by solutions of this equation. The first main result of this paper states as follows.
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Theorem 3. Let B (z) ( ̸≡ 0) , F (z) ( ̸≡ 0) be entire functions with

max {ρ (B) , ρ (F)} < n,

and let an, bn be complex numbers such that anbn ̸= 0, an ̸= bn and P (z) ( ̸≡ 0) be a polynomial. Then every solution f
of the differential equation (4) satisfies

λ ( f ) = λ ( f ) = ρ ( f ) = +∞, λ2 ( f ) = λ2 ( f ) = ρ2( f ) ≤ n.

Example 1. Consider the second-order nonhomogeneous differential equation

f ′′ + (z + 1) ez2
f ′ + (zez + 3) e−2z2

f =
(
z + 2e−z) ez2

.

In this equation, we have

P (z) = z + 1, B (z) = zez + 3, F (z) = z + 2e−z.

Since
ρ (B) = 1, ρ (F) = 1, max {ρ (B) , ρ (F)} = 1 < n = 2,

and the exponential factors satisfy

1 = a2 ̸= b2 = −2, a2b2 = −2 ̸= 0,

all the assumptions of Theorem 3 are fulfilled. Therefore, every solution f of the above differential equation
satisfies

λ ( f ) = λ ( f ) = ρ ( f ) = +∞, λ2 ( f ) = λ2 ( f ) = ρ2( f ) ≤ 2.

Corollary 1. Under the assumptions of Theorem 3, let Q (z) = bnzn + bn−1zn + · · · + b1z + b0 (n ≥ 1) be a
polynomial. Then every solution f of the differential equation

f ′′ + P (z) eanzn
f ′ + B (z) eQ(z) f = F (z) eanzn

, (5)

satisfies λ ( f ) = λ ( f ) = ρ ( f ) = +∞, λ2 ( f ) = λ2 ( f ) = ρ2( f ) ≤ n.

Proof. We can write (5) as follows

f ′′ + P (z) eanzn
f ′ + B (z) ebnzn+bn−1zn+···+b1z+b0 f = F (z) eanzn

,

that is
f ′′ + P (z) eanzn

f ′ + C (z) ebnzn
f = F (z) eanzn

,

where
C (z) = B (z) ebn−1zn−1+···+b1z+b0 ,

and
ϱ (C) ≤ max

{
ρ (B) , ρ

(
ebn−1zn−1+···+b1z+b0

)}
= max {ρ (B) , n − 1} < n,

so by applying Theorem 3, we get the result.

Many important results have been obtained on the fixed points of general transcendental meromorphic
functions for almost four decades (see [14] ). It was in the year 2000 that Z. X. Chen first pointed out the relation
between the exponent of convergence of distinct fixed points and the rate of growth of solutions of second
order linear differential equations with entire coefficients (see [15]). In [4], Wang and Yi investigated fixed
points and hyper order of differential polynomials generated by solutions of second order linear differential
equations with meromorphic coefficients. In [16], Laine and Rieppo gave an improvement of the results of [4]
by considering fixed points and iterated order. In [17], Liu and Zhang have investigated the fixed points and
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hyper order of solutions of some higher order linear differential equations with meromorphic coefficients and
their derivatives. After that, in [18], Bela ïdi gave an extension of the results of [17].

We know that a differential equation bears a relation to all derivatives of its solutions. Hence, linear
differential polynomials generated by its solutions must have special nature because of the control of
differential equations, see [4,13,16,19–23].

The second main purpose of this paper is to study the relation between small functions and some
differential polynomials generated by solutions of the second order linear differential equation (4). We obtain
some estimates of their hyper order and fixed points.

Theorem 4. Under the assumptions of Theorem 3, let d0 (z) , d1 (z) , d2 (z) , b (z) be entire functions such that at least
one of d0 (z) , d1 (z) , d2 (z) does not vanish identically with ρ

(
dj
)
< n (j = 0, 1, 2) , ρ (b) < ∞, and let φ (z) be an

entire function with finite order. If f is a solution of the Eq. (4) , then the differential polynomial

g f = d2 f ′′ + d1 f ′ + d0 f + b, (6)

satisfies
λ ( f ) = λ ( f ) = λ

(
g f − φ

)
= λ

(
g f − φ

)
= ρ ( f ) = +∞,

λ2 ( f ) = λ2 ( f ) = λ2

(
g f − φ

)
= λ2

(
g f − φ

)
= ρ2 ( f ) ≤ n.

In particular, if f is a solution of Eq. (4) , then the differential polynomial g f = d2 f ′′ + d1 f ′ + d0 f + b has infinitely

many fixed points and satisfies λ
(

g f − z
)
= λ

(
g f − z

)
= ρ ( f ) = +∞, λ2

(
g f − z

)
= λ2

(
g f − z

)
= ρ2 ( f ) ≤ n.

In the next, we investigate the relation between infinite order solutions of a pair non-homogeneous linear
differential equations and we obtain the following result.

Theorem 5. Under the assumptions of Theorem 3, let F1 ̸≡ 0 and F2 ̸≡ 0 be entire functions such that
max

{
ρ
(

Fj
)

: j = 1, 2
}

< n and F1 − KF2 ̸≡ 0 for any complex constant K, φ (z) is an entire function with finite
order. If f1 is a solution of Eq.

f ′′ + P (z) eanzn
f ′ + B (z) ebnzn

f = F1 (z) eanzn
, (7)

and f2 is a solution of Eq.
f ′′ + P (z) eanzn

f ′ + B (z) ebnzn
f = F2 (z) eanzn

, (8)

then the differential polynomial g f1−K f2 = d2
(

f ′′1 − K f ′′2
)
+ d1

(
f ′1 − K f ′2

)
+ d0 ( f1 − K f2) + b satisfies

λ ( f1 − K f2) = λ ( f1 − K f2) = λ
(

g f1−K f2 − φ
)
= λ

(
g f1−K f2 − φ

)
= ρ ( f1 − K f2) = ∞,

and
λ2 ( f1 − K f2) = λ2 ( f1 − K f2) = λ2

(
g f1−K f2 − φ

)
= λ2

(
g f1−K f2 − φ

)
= ρ2 ( f1 − K f2) ≤ n,

for any complex constant K.

Remark 2. This paper is an improvement of paper [13]. Indeed, when P (z) is a constant, n = 1 and d2 (z) ≡ 0,
we get the results of [13].

2. Some auxiliary lemmas

Lemma 1. [24] Let P1, P2, ..., Pn (n ≥ 1) be non-constant polynomials with degree d1, d2, ..., dn, respectively, such that

deg
(

Pi − Pj
)
= max

{
di, dj

}
for i ̸= j. Let A (z) =

n
∑

j=1
Bj (z) ePj(z), where Bj (z) ( ̸≡ 0) are entire functions with

ρ
(

Bj
)
< dj. Then ρ (A) = max

1≤j≤n
{dj}.

Lemma 2. [11] Suppose that P (z) = (α + iβ) zn + · · · ( α, β are real numbers, |α| + |β| ̸= 0) is a polynomial
with degree n ≥ 1, that A (z) ( ̸≡ 0) is an entire function with ρ (A) < n. Set g (z) = A (z) eP(z), z = reiθ ,
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δ (P, θ) = α cos nθ − β sin nθ. Then for any given ε > 0, there is a set E1 ⊂ [0, 2π) that has linear measure zero, such
that for any θ ∈ [0, 2π)⧹ (E1 ∪ E2), there is R > 0, such that for |z| = r > R, we have

(i) If δ (P, θ) > 0, then

exp {(1 − ε) δ (P, θ) rn} ≤
∣∣∣g (

reiθ
)∣∣∣ ≤ exp {(1 + ε) δ (P, θ) rn} .

(ii) If δ (P, θ) < 0 , then

exp {(1 + ε) δ (P, θ) rn} ≤
∣∣∣g (

reiθ
)∣∣∣ ≤ exp {(1 − ε) δ (P, θ) rn} ,

where E2 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set.

Lemma 3. [25] Let f be a transcendental meromorphic function of finite order ρ. Let ε > 0 be a constant, k and j be
integers satisfying k > j ≥ 0. Then the following two statements hold:

(i) There exists a set E3 ⊂ (1,+∞) which has finite logarithmic measure, such that for all z satisfying |z| /∈
E3 ∪ [0, 1], we have ∣∣∣∣∣ f (k) (z)

f (j) (z)

∣∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε) . (9)

(ii) There exists a set E4 ⊂ [0, 2π) which has linear measure zero, such that if θ ∈ [0, 2π) \ E4, then there is a
constant R = R (θ) > 0 such that (9) holds for all z satisfying arg z = θ and |z| ≥ R.

Lemma 4. [26] Let f be an entire function and suppose that

G (z) :=
log+

∣∣∣ f (k) (z)
∣∣∣

|z|ρ
,

is unbounded on some ray arg z = θ with constant ρ > 0. Then there exists an infinite sequence of points zn = rneiθ

(n = 1, 2, ...), where rn → +∞, such that G (zn) → ∞ and∣∣∣∣∣ f (j) (zn)

f (k) (zn)

∣∣∣∣∣ ≤ 1
(k − j)!

(1 + o (1)) rk−j
n , j = 0, 1, ..., k − 1,

as n → +∞.

Lemma 5. [26] Let f be an entire function with ρ ( f ) = ρ < +∞. Suppose that there exists a set E5 ⊂ [0, 2π) which
has linear measure zero, such that log+

∣∣ f
(
reiθ)∣∣ ≤ Mrσ for any ray arg z = θ ∈ [0, 2π) \ E5, where M is a positive

constant depending on θ, while σ is a positive constant independent of θ. Then ρ ( f ) = ρ ≤ σ.

Lemma 6. [18,27] Let Aj(z) (j = 0, 1, ..., k − 1) , F(z) ̸≡ 0 be finite order meromorphic functions.

(i) If f is a meromorphic solution of the differential equation

f (k) + Ak−1 (z) f (k−1) + · · ·+ A1 (z) f ′ + A0 (z) f = F, (10)

with ρ ( f ) = +∞, then f satisfies
λ ( f ) = λ ( f ) = ρ ( f ) = +∞.

(ii) If f is a meromorphic solution of Eq. (10) with ρ ( f ) = +∞, ρ2 ( f ) = ρ, then f satisfies

λ ( f ) = λ ( f ) = ρ ( f ) = +∞, λ2 ( f ) = λ2 ( f ) = ρ2 ( f ) = ρ.
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Lemma 7. [21,28] Let B0 (z) , B1 (z) , ..., Bk−1 (z) , H (z) be entire functions of finite order. If f is a solution of the
equation

f (k) + Bk−1 (z) f (k−1) + · · ·+ B1 (z) f ′ + B0 (z) f = H (z) ,

then ρ2 ( f ) ≤ max
{

ρ
(

Bj
)

(j = 0, 1, ..., k − 1) , ρ (H)
}

.

Lemma 8. [2] Let P(z) = anzn + · · ·+ a0, an ̸= 0 be a polynomial with degree n ≥ 1. Then for every ε > 0, there
exists rε > 0 such that for all sufficiently large r = |z| > rε, we have the double inequality

(1 − ε) |an| rn ≤ |P(z)| ≤ (1 + ε) |an| rn.

Lemma 9. [19] Let P (z) =
n
∑

i=0
aizi and Q (z) =

n
∑

i=0
bizi be nonconstant polynomials where ai, bi (i = 0, 1, ..., n) are

complex numbers, an ̸= 0, bn ̸= 0 such that arg an ̸= arg bn or an = cbn (0 < c < 1). We denote index sets by

Λ1 = {0, P} ,

Λ2 = {0, P, Q, 2P, P + Q} .

(i) If Hj (j ∈ Λ1) and HQ ̸≡ 0 are all meromorphic functions of orders that are less than n, setting Ψ1 (z) =

∑
j∈Λ1

Hj (z) ej, then Ψ1 (z) + HQeQ ̸≡ 0.

(ii) If Hj (j ∈ Λ2) and H2Q ̸≡ 0 are all meromorphic functions of orders that are less than n, setting Ψ2 (z) =

∑
j∈Λ2

Hj (z) ej, then Ψ2 (z) + H2Qe2Q ̸≡ 0.

Lemma 10. Let P (z) =
n
∑

i=0
aizi and Q (z) =

n
∑

i=0
bizi be nonconstant polynomials where ai, bi (i = 0, 1, ..., n) are

complex numbers, an ̸= 0, bn ̸= 0 such that arg an ̸= arg bn or an = cbn (c > 1). We denote index sets by

Λ3 = {0, P, Q, P + Q, 2P, 2Q} .

Let Hj (j ∈ Λ3) be meromorphic functions of orders that are less than n, setting Ψ3 (z) = ∑
j∈Λ3

Hj (z) ej. If there

exists j ∈ Λ3 − {0} such that Hj ̸≡ 0, then Ψ3 (z) ̸≡ 0.

Proof. By Lemma 1, we have ρ (Ψ3) = n. Hence, Ψ3 (z) ̸≡ 0.

3. Proof of Theorem 3

We begin by proving that every solution f of Eq. (4 ) is transcendental.
Let a = −an and b = bn − an. Then ab ̸= 0 and a ̸= b, so Eq. (4) becomes

eazn
f ′′ + P f ′ + Bebzn

f = F. (11)

Our first goal is to show that any solution f of (4) satisfies ρ ( f ) ≥ n. Assume, on the contrary, that
ρ ( f ) < n. It is clear that f ̸≡ 0. Obviously ρ

(
f (j)

)
< n (j = 1, 2), ρ (B f ) < n. Rewrite (11) as

f ′′eazn
+ B f ebzn

= F − P f ′. (12)

i) If f ′′ ̸≡ 0, then by (12) and the Lemma 1, we have

n = ρ
{

f ′′eazn
+ B f ebzn

}
= ρ

{
F − P f ′

}
< n.

This is a contradiction.
ii) If f ′′ ≡ 0, then by (12) we have

n = ρ
{

B f ebzn
}
= ρ

{
F − P f ′

}
< n.
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This is a contradiction. Thus, ρ ( f ) ≥ n, and every solution of f of Eq. (4) must be transcendental.
Now, we prove by contradiction that ρ ( f ) = +∞. Suppose, on the contrary, that ρ ( f ) = ρ < +∞. Since

ρ (F) < n, then for any given ε (0 < 2ε < n − ρ (F)) and sufficiently large r, we have

|F (z)| ≤ exp
{

rρ(F)+ε
}

. (13)

By Lemma 2, there exists a set E ⊂ [0, 2π) of linear measure zero, such that whenever θ ∈ [0, 2π) \ E, then
δ (azn, θ) ̸= 0, δ (bzn, θ) ̸= 0 and δ (azn, θ) ̸= δ (bzn, θ). By Lemma 3(ii), there exists a set E4 ⊂ [0, 2π) which
has linear measure zero, such that if θ ∈ [0, 2π) \ E4, then there is a constant R = R (θ) > 1 such that for all z
satisfying arg z = θ and |z| ≥ R, we have∣∣∣∣∣ f (j) (z)

f (i) (z)

∣∣∣∣∣ ≤ |z|2ρ , 0 ≤ i < j ≤ 2. (14)

For any fixed θ ∈ [0, 2π) \ (E ∪ E4), set

δ1 = max {δ (azn, θ) , δ (bzn, θ)} ,

and
δ2 = min {δ (azn, θ) , δ (bzn, θ)} ,

then δ2 < δ1 and δ1 ̸= 0, δ2 ̸= 0.
We now analyze three cases separately.
Case 1. Suppose that δ1 = δ (azn, θ) > 0, then δ2 = δ (bzn, θ). By Lemma 2, for any given ε with 0 < 2ε <

min
{

δ1−δ2
δ1

, 2, n − ρ (F)
}

, we obtain ∣∣∣eazn
∣∣∣ ≥ exp {(1 − ε) δ1rn} , (15)

for sufficiently large r. We now prove that log+ | f ′′ (z)| / |z|ρ(F)+ε is bounded on the ray arg z = θ. We assume
that log+ | f ′′ (z)| / |z|ρ(F)+ε is unbounded on the ray arg z = θ. Then by Lemma 4, there is a sequence of points
zm = rmeiθ , such that rm → +∞, and that

log+ | f ′′ (zm)|
rρ(F)+ε

m

→ +∞, (16)

∣∣∣∣∣ f (j) (zm)

f ′′ (zm)

∣∣∣∣∣ ≤ 1
(2 − j)!

(1 + o (1)) r2−j
m ≤ 2r2−j

m , (j = 0, 1) , (17)

for m is large enough. From (16) for any sufficiently large number C > 1 we have

log+ | f ′′ (zm)|
rρ(F)+ε

m

> C, then
∣∣ f ′′ (zm)

∣∣ > exp
{

Crρ(F)+ε
m

}
as m → +∞. (18)

From (13) and (18), we get

∣∣∣∣ F (zm)

f ′′ (zm)

∣∣∣∣ ≤ exp
{

rρ(F)+ε
m

}
exp

{
Crρ(F)+ε

m

} =
1

exp
{
(C − 1) rρ(F)+ε

m

} → 0, (19)

as m → +∞. From (11), we obtain ∣∣∣eazn
∣∣∣ ≤ |P|

∣∣∣∣ f ′

f ′′

∣∣∣∣+ ∣∣∣Bebzn
∣∣∣ ∣∣∣∣ f

f ′′

∣∣∣∣+ ∣∣∣∣ F
f ′′

∣∣∣∣ . (20)

(i) If δ2 > 0, then by Lemma 2, for ε as above, we obtain∣∣∣B (z) ebzn
∣∣∣ ≤ exp {(1 + ε) δ2rn} , (21)
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for sufficiently large r. By using Lemma 8, there exists α > 0 such that for sufficiently large |z| = r, we have

|P (z)| ≤ αrk, k = deg P ≥ 1. (22)

By substituting (15), (17), (19), (21) and (22) into (20), we have

exp {(1 − ε) δ1rn
m} ≤

∣∣∣eazn
m
∣∣∣

≤ |P (zm)|
∣∣∣∣ f ′ (zm)

f ′′ (zm)

∣∣∣∣+ ∣∣∣B (zm) ebzn
m
∣∣∣ ∣∣∣∣ f (zm)

f ′′ (zm)

∣∣∣∣+ ∣∣∣∣ F (zm)

f ′′ (zm)

∣∣∣∣
≤αrk

m (2rm) + 2r2
m exp {(1 + ε) δ2rn

m}+ o (1)

≤C1rk+1
m exp {(1 + ε) δ2rn

m} , (23)

where C1 > 0 is some constant. By 0 < ε < δ1−δ2
2δ1

and (23), we can get

exp

{
(δ1 − δ2)

2

2δ1
rn

m

}
≤ C1rk+1

m ,

which is a contradiction.
(ii) If δ2 < 0, then by Lemma 2, for ε as above, we obtain∣∣∣B (z) ebzn

∣∣∣ ≤ exp {(1 − ε) δ2rn} < 1, (24)

for sufficiently large r. Substituting (15), (17), (19 ), (22) and (24) into (20), we have

exp {(1 − ε) δ1rn
m} ≤

∣∣∣eazn
m
∣∣∣

≤ |P (zm)|
∣∣∣∣ f ′ (zm)

f ′′ (zm)

∣∣∣∣+ ∣∣∣B (zm) ebzn
m
∣∣∣ ∣∣∣∣ f (zm)

f ′′ (zm)

∣∣∣∣+ ∣∣∣∣ F (zm)

f ′′ (zm)

∣∣∣∣
≤2αrk+1

m + 2r2
m + o (1) ≤ C2rk+1

m , (25)

where C2 > 0 is some constant, which is a contradiction. Therefore,

log+
∣∣ f ′′ (z)

∣∣ / |z|ρ(F)+ε ,

is bounded and we have ∣∣ f ′′ (z)
∣∣ ≤ exp

{
Mrρ(F)+ε

}
(M > 0),

on the ray arg z = θ. Hence, using the same reasoning as in the proof of Lemma 3.1 in [29], by two-fold iterated
integration, along the line segment [0, z] , we conclude that

f (z) = f (0) + f ′ (0)
z
1!

+

z∫
0

t∫
0

f ′′ (u) dudt.

So, we get for a sufficiently large r

| f (z)| ≤ | f (0)|+
∣∣ f ′ (0)

∣∣ |z|
1!

+

∣∣∣∣∣∣
z∫

0

t∫
0

f ′′ (u) dudt

∣∣∣∣∣∣
≤ | f (0)|+

∣∣ f ′ (0)
∣∣ |z|

1!
+

∣∣ f ′′ (z)
∣∣ |z|2

2!
=

1
2
(1 + o (1)) r2 ∣∣ f ′′ (z)

∣∣
≤1

2
(1 + o (1)) r2 exp

{
Mrρ(F)+ε

}
≤ exp

{
rρ(F)+2ε

}
, (26)

on the ray arg z = θ.



Open J. Math. Anal. 2026, 10(1), 1-14 9

Case 2. Suppose that δ1 = δ (bzn, θ) > 0, then δ2 = δ (azn, θ). By Lemma 2, for any given ε with 0 < 2ε <

min
{

δ1−δ2
δ1

, 2, n − ρ (F)
}

, we obtain

∣∣∣B (z) ebzn
∣∣∣ ≥ exp {(1 − ε) δ1rn} , (27)

for sufficiently large r. We now prove that log+ | f (z)| / |z|ρ(F)+ε is bounded on the ray arg z = θ. We assume
that log+ | f (z)| / |z|ρ(F)+ε is unbounded on the ray arg z = θ. Then by Lemma 4, there is a sequence of points
zm = rmeiθ , such that rm → +∞, and that

log+ | f (zm)|
rρ(F)+ε

m

→ +∞, (28)

for m is large enough. From (13) and (28), we get as in ( 19)∣∣∣∣ F (zm)

f (zm)

∣∣∣∣ → 0, (29)

for m is large enough. From (11), we obtain∣∣∣Bebzn
∣∣∣ ≤ ∣∣∣eazn

∣∣∣ ∣∣∣∣ f ′′

f

∣∣∣∣+ |P|
∣∣∣∣ f ′

f

∣∣∣∣+ ∣∣∣∣ F
f

∣∣∣∣ . (30)

(i) If δ2 > 0, then by Lemma 2, for ε as above, we obtain∣∣∣eazn
∣∣∣ ≤ exp {(1 + ε) δ2rn} (31)

for sufficiently large r. Substituting (14), (22), (27), (29) and (31) into (30), we have

exp {(1 − ε) δ1rn
m} ≤

∣∣∣B (zm) ebzn
m
∣∣∣

≤
∣∣∣eazn

m
∣∣∣ ∣∣∣∣ f ′′ (zm)

f (zm)

∣∣∣∣+ |P (zm)|
∣∣∣∣ f ′ (zm)

f (zm)

∣∣∣∣+ ∣∣∣∣ F (zm)

f (zm)

∣∣∣∣
≤r2ρ

m exp {(1 + ε) δ2rn
m}+ αrk+2ρ

m + o (1)

≤C3rk+2ρ
m exp {(1 + ε) δ2rn

m} , (32)

where C3 > 0 is some constant. By 0 < ε < δ1−δ2
2δ1

and (32), we can get

exp

{
(δ1 − δ2)

2

2δ1
rn

m

}
≤ C3rk+2ρ

m ,

which is a contradiction.
(ii) If δ2 < 0, then by Lemma 2, for ε as above, we obtain∣∣∣eazn

∣∣∣ ≤ exp {(1 − ε) δ2rn} < 1, (33)

for sufficiently large r. Substituting (14), (22), (27), (29) and (33) into (30), we have

exp {(1 − ε) δ1rn
m} ≤

∣∣∣B (zm) ebzn
m
∣∣∣

≤
∣∣∣eazn

m
∣∣∣ ∣∣∣∣ f ′′ (zm)

f (zm)

∣∣∣∣+ |P (zm)|
∣∣∣∣ f ′ (zm)

f (zm)

∣∣∣∣+ ∣∣∣∣ F (zm)

f (zm)

∣∣∣∣
≤r2ρ

m + αrk+2ρ
m + o (1) ≤ C4rk+2ρ

m ,
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where C4 > 0 is some constant, which is a contradiction. Therefore,

log+ | f (z)| / |z|ρ(F)+ε ,

is bounded and we have
| f (z)| ≤ exp

{
rρ(F)+2ε

}
,

on the ray arg z = θ.

Case 3. Suppose now that δ1 < 0. From (11 ) we get

−1 = eazn f ′′

P f ′
+ Bebzn f

P f ′
− F

P f ′
. (34)

By Lemma 2, for any given ε with 0 < 2ε < n − ρ (F), we obtain∣∣∣eazn
∣∣∣ ≤ exp {(1 − ε) δ (azn, θ) rn} ≤ exp {(1 − ε) δ1rn} , (35)∣∣∣B (z) ebzn
∣∣∣ ≤ exp {(1 − ε) δ (bzn, θ) rn} ≤ exp {(1 − ε) δ1rn} , (36)

for sufficiently large r. We now prove that log+ | f ′ (z)| / |z|ρ(F)+ε is bounded on the ray arg z = θ. We assume
that log+ | f ′ (z)| / |z|ρ(F)+ε is unbounded on the ray arg z = θ. Then by Lemma 4 there is a sequence of points
zm = rmeiθ , such that rm → +∞, and that

log+ | f ′ (zm)|
rρ(F)+ε

m

→ +∞, (37)

∣∣∣∣ f (zm)

f ′ (zm)

∣∣∣∣ ≤ (1 + o (1)) rm ≤ 2rm. (38)

From (13) and (37), we have ∣∣∣∣ F (zm)

f ′ (zm)

∣∣∣∣ → 0, (39)

for m is large enough. By using Lemma 8, there exists β > 0 such that for sufficiently large |z| = r, we have

|P (z)| ≥ βrk, k = deg P ≥ 1. (40)

Substituting (14), (35), (36), (38 ), (39) and (40) into (34), we have

1 ≤

∣∣∣eazn
m

∣∣∣
|P (zm)|

∣∣∣∣ f ′′ (zm)

f ′ (zm)

∣∣∣∣+
∣∣∣B (zm) ebzn

m

∣∣∣
|P (zm)|

∣∣∣∣ f (zm)

f ′ (zm)

∣∣∣∣+ 1
|P (zm)|

∣∣∣∣ F (zm)

f ′ (zm)

∣∣∣∣
≤ r2ρ

m

βrk
m

exp {(1 − ε) δ1rn
m}+ 2

rm

βrk
m

exp {(1 − ε) δ1rn
m}+

1
βrk

m
o (1) . (41)

By δ1 < 0, we have

r2ρ−k
m
β

exp {(1 − ε) δ1rn
m}+ 2

r1−k
m
β

exp {(1 − ε) δ1rn
m}+

1
βrk

m
o (1) → 0,

as rm → +∞. From (41) we obtain 1 ≤ 0 as rm → +∞, which is a contradiction. Therefore,
log+ | f ′ (z)| / |z|ρ(F)+ε is bounded and we have∣∣ f ′ (z)

∣∣ ≤ exp
{

Mrρ(F)+ε
}

(M > 0),
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on the ray arg z = θ. This implies, as in Case 1, that

| f (z)| ≤ exp
{

rρ(F)+2ε
}

. (42)

Therefore, for any given θ ∈ [0, 2π) \ (E ∪ E4), we have got (42) on the ray arg z = θ, provided that r
is large enough. Then by Lemma 5, we have ρ ( f ) ≤ ρ (F) + 2ε < n, which is a contradiction. Hence every
transcendental solution f of (4) must be of infinite order.

We have
max

{
ρ
(

Peanzn
)

, ρ
(

Bebnzn
)

, ρ
(

Feanzn
)}

= n,

so by using Lemma 7, we obtain ρ2 ( f ) ≤ n.

Since F ̸≡ 0, then by Lemma 6, we get

λ ( f ) = λ ( f ) = ρ ( f ) = +∞, λ2 ( f ) = λ2 ( f ) = ρ2( f ) ≤ n.

4. Proof of Theorem 4

Suppose that f is a solution of Eq. (4). Then by Theorem 3, we have ρ ( f ) = +∞ and ρ2 ( f ) ≤ n. First,
we prove ρ

(
g f

)
= ρ ( f ) = ∞ and ρ2

(
g f

)
= ρ2 ( f ) ≤ n. Suppose that arg an = arg bn or an = cbn, 0 < c < 1.

First, we suppose that d2 ̸≡ 0. Substituting f ′′ = Feanzn − P (z) eanzn
f ′ − B (z) ebnzn

f into g f , we get

g f − d2Feanzn − b =
(

d1 − d2Peanzn
)

f ′ +
(

d0 − d2Bebnzn
)

f . (43)

Differentiating both sides of Eq. (43) and replacing f ′′ with Feanzn − P (z) eanzn
f ′ − B (z) ebnzn

f , we obtain

g′f −
(

d2Feanzn
)′

−
(

d1 − d2Peanzn
)

Feanzn − b′

=
[
d2P2e2anzn −

(
(d2P)′ + (anzn)′ d2P + d1P

)
eanzn − d2Bebnzn

+ d0 + d
′
1

]
f ′

+
[
d2PBe(an+bn)zn −

(
(d2B)′ + (bnzn)′ d2B + d1B

)
ebnzn

+ d
′
0

]
f . (44)

Then, by (43) and (44), we have

α1 f ′ + α0 f = g f − d2Feanzn − b, (45)

β1 f ′ + β0 f = g′f −
(

d2Feanzn
)′

−
(

d1 − d2Peanzn
)

Feanzn − b′. (46)

Set

h =α1β0 − α0β1 =
(

d1 − d2Peanzn
) [

d2PBe(an+bn)zn − ((d2B)′ + (bnzn)′ d2B + d1B)ebnzn
+ d

′
0

]
−

(
d0 − d2Bebnzn

) [
d2P2e2anzn − ((d2P)′ + (anzn)′ d2P + d1P)eanzn − d2Bebnzn

+ d0 + d
′
1

]
. (47)

We prove h ̸≡ 0. Now check all the terms of h. Since the term d2
2P2Be(2an+bn)zn

is eliminated, by (47) we
can write h = Ψ2 (z)− d2

2B2e2bnzn
, where Ψ2 (z) is defined as in Lemma 9 (ii). Thus, by d2 ̸≡ 0 and B ̸≡ 0, we

see that h ̸≡ 0.
Suppose now an = cbn, c > 1. By (47), we can write

h = Ψ3 (z) = H0 + Han eanzn
+ Hbn ebnzn

+ Han+bn e(an+bn)zn
+ H2an e2anzn

+ H2bn e2bnzn
,

where H0, Han , Hbn , Han+bn , H2an , H2bn are entire functions of orders less than n. By d2 ̸≡ 0, B ̸≡ 0, we have
H2bn = −d2

2B2 ̸≡ 0. Then by Lemma 10, we have h ̸≡ 0.
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Now suppose d2 ≡ 0, d1 ̸≡ 0, by (47) we can write

h = d1

(
d1Bebnzn

+ d
′
0

)
− d0

(
d1Peanzn

+ d0 + d
′
1

)
= d2

1Bebnzn − d0d1Peanzn
+ d1d

′
0 − d2

0 − d0d
′
1.

By Lemma 1 and d2
1B ̸≡ 0, we have ρ (h) = n. Hence, h ̸≡ 0.

Finally, if d2 ≡ 0, d1 ≡ 0, d0 ̸≡ 0, then we have h = −d2
0 ̸≡ 0. Hence, h ̸≡ 0. By (45), (46) and (47), we

obtain

f =

α1

(
g′f −

(
d2Feanzn

)′
− α1Feanzn − b′

)
− β1

(
g f − d2Feanzn − b

)
h

. (48)

If ρ
(

g f

)
< ∞, then by (48) we get ρ ( f ) < ∞ and this is a contradiction. Hence ρ

(
g f

)
= ∞.

Now we prove that ρ2

(
g f

)
= ρ2 ( f ) . By (6), we get ρ2

(
g f

)
≤ ρ2 ( f ) and by (48) we have ρ2 ( f ) ≤

ρ2

(
g f

)
. This yield ρ2

(
g f

)
= ρ2 ( f ) ≤ n.

Set w (z) = d2 f ′′ + d1 f ′ + d0 f + b − φ. Since ρ (φ) < ∞, then we have ρ (w) = ρ
(

g f

)
= ρ ( f ) = ∞

and ρ2 (w) = ρ2

(
g f

)
= ρ2 ( f ). In order to prove λ

(
g f − φ

)
= λ

(
g f − φ

)
= ∞ and λ2

(
g f − φ

)
=

λ2

(
g f − φ

)
= ρ2 ( f ), we need to prove only λ (w) = λ (w) = ∞ and λ2 (w) = λ2 (w) = ρ2 ( f ) . By g f = w+ φ,

we get from (48)

f =

α1

(
w′ + φ′ −

(
d2Feanzn

)′
− α1Feanzn − b′

)
− β1

(
w + φ − d2Feanzn − b

)
h

. (49)

So, we can write

f =
α1w′ − β1w

h
+ ψ, (50)

where

ψ (z) =
α1

(
φ′ −

(
d2Feanzn

)′
− α1Feanzn − b′

)
− β1

(
φ − d2Feanzn − b

)
h

.

Substituting (50) into Eq. (4), we obtain

α1

h
w′′′ + ϕ2w′′ + ϕ1w′ + ϕ0w = Feanzn −

(
ψ′′ + P (z) eanzn

ψ′ + B (z) ebnzn
ψ
)
= G, (51)

where ϕj (j = 0, 1, 2) are meromorphic functions with ρ
(
ϕj
)
< ∞ (j = 0, 1, 2). Since ρ (ψ) < ∞, by Theorem 3,

it follows that G ̸≡ 0. By α1 ̸≡ 0, h ̸≡ 0 and Lemma 6, we obtain λ (w) = λ (w) = ρ (w) = ∞, λ2 (w) = λ2 (w) =

ρ2 (w) = ρ2 ( f ), i.e., λ
(

g f − φ
)

= λ
(

g f − φ
)

= ρ
(

g f

)
= ρ ( f ) = ∞ and λ2

(
g f − φ

)
= λ2

(
g f − φ

)
=

ρ2

(
g f

)
= ρ2 ( f ) ≤ n.

By f is infinite order solution of Eq. (4) and Lemma 6 again, we have

λ ( f ) = λ ( f ) = λ
(

g f − φ
)
= λ

(
g f − φ

)
= ρ ( f ) = +∞,

λ2 ( f ) = λ2 ( f ) = λ2

(
g f − φ

)
= λ2

(
g f − φ

)
= ρ2 ( f ) ≤ n,

which completes the proof. If we put φ (z) = z, then we get

λ
(

g f − z
)
= λ

(
g f − z

)
= ρ ( f ) = +∞, λ2

(
g f − z

)
= λ2

(
g f − z

)
= ρ2 ( f ) ≤ n.
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5. Proof of Theorem 5

Suppose that f1 is a solution of Eq. (7) and f2 is a solution of Eq. (8). Set w = f1 − K f2. Then w is a
solution of equation

w′′ + P (z) eanzn
w′ + B (z) ebnzn

w = (F1 − KF2) eanzn
.

By ρ (F1 − KF2) < n, F1 − KF2 ̸≡ 0 and Theorem 3, we have ρ (w) = ∞ and ρ2 (w) ≤ n. Thus, by using
Theorem 4, we obtain

λ (w) = λ (w) = λ (gw − φ) = λ (gw − φ) = ρ (w) = +∞,

λ2 (w) = λ2 (w) = λ2 (gw − φ) = λ2 (gw − φ) = ρ2 (w) ≤ n,

that is
λ ( f1 − K f2) = λ ( f1 − K f2) = λ

(
g f1−K f2 − φ

)
= λ

(
g f1−K f2 − φ

)
= ρ ( f1 − K f2) = ∞,

and
λ2 ( f1 − K f2) = λ2 ( f1 − K f2) = λ2

(
g f1−K f2 − φ

)
= λ2

(
g f1−K f2 − φ

)
= ρ2 ( f1 − K f2) ≤ n,

for any complex constant K.

6. Conclusion

In this paper, we investigate the growth and oscillation properties of differential polynomials generated
by solutions of second-order non-homogeneous linear differential equations. Under suitable conditions on the
coefficients, we obtain estimates for their hyper-order and fixed points. We also improve and extend recent
results of the author [13].
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