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1. Introduction and main results

n convex analysis, convex sets and convex functions are core fundamental concepts, widely applied in
m optimization theory, partial differential equations, geometric analysis, and other fields. The research on
convexity and generalized convexity is one of the important subjects in mathematical programming, numerous
generalizations of convex functions have been proved useful for developing suitable optimization problems
(see [1-3]). Let X be a real linear space (e.g., R"). A set C C X s called a convex set if for any x1,x, € C and
any A € [0,1], the following holds:

Axp+ (1—A)xy € C.

The expression Ax; + (1 — A)xp is called the convex combination of x; and x;, which geometrically
represents the line segment connecting the two points. Therefore, the intuitive meaning of a convex set is:
the line segment connecting any two points in the set is completely contained within the set. In addition,
let C C X be a convex set. A function f : C — R is called a convex function if for any x1,x; € C and
any A € [0,1], then

fFAxp+ (1 =MA)xg) < Af(x1) + (1 —A)f(x2).

If the inequality holds strictly for any x; # x, and A € (0,1), then f is called a strictly convex function;
if —f is a convex function, then f is called a concave function.

s-convex functions defined on a space of real numbers was introduced by Orlicz in [4] and was used in the
theory of Orlicz spaces. s-Orlicz convex sets and s-Orlicz convex mappings in linear spaces were introduced
by Dragomir in [5].

Definition 1. [5] Let X be a linear space and s € (0, c0). The set K C X will be called s-Orlicz convex in X if the
following condition is true: x,y € K and «, 8 > 0 with a® + ° = 1 imply ax + By € K.

Definition 2. [5] The mapping f : K — R will be called s-Orlicz convex on K if for all x,y € Kand «, > 0
with a® 4+ B° = 1 one has the inequality

flax+By) < a’f(x) + B f(y)-

Similarly, in this paper we introduce the class of s-convex functions defined on s-convex sets in Heisenberg
group H". Some discrete inequalities of Jensen’s type are also obtained. In fact, we discuss the s-convex subset,
the s-convex function and related conclusions on homogeneous sub semigroup of Heisenberg group.
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Definition 3. Lets € (0,00), the O C H" is called s-convex set in H" if the following condition is true: x,y € ()
and &, B > 0 with &° + p° = 1imply dx(x) - 65(y) € Q.

Example 1. Sub-semigroup Q = {(z,t),z € R",t = 1|z]?} C H", where |z|?> = x3 + x2 + - + 2 is the
modulus square of a real vector.

Definition 4. Let s € (0, 0), the O C H" be a s-convex set. The mapping f : () — R s called s-convex on ) if
forallx,y € Qand &, B > 0 with a® + B° = 1, one has the inequality

f(8a(x) - 0p(y)) < af(x) + B f(y)-

Here, - is the group law and &, (x) expresses the corresponding homogeneous structure on Heisenberg
group which is provided by the parabolic dilations. See the §2 for details.

Remark 1. In Definition 3, if s = 1, we call Q) is convex in H", and in Definition 4, if s = 1, f is called the
convex function on Q) in H".

From the Definition 3, it’s not difficult to obtain the following properties for special cases.

Proposition 1. Any convex subset () C H" with the following properties:
DM x,ye Qimplyx-y Q.
(2)x € O, a > 0imply 6,4(x) € Q.

Theorem 1. Let s € (0,00), for a given subset Q0 C H", the following statements are equivalent:

(1) Qs s convex.

(2) Foreveryxq,--- ,xy € Qanday,--- , 0y > 0with & + - - - 4+ &, = 1, we have that 5, (x1) - ... - 6, (xn) €
Q.

Theorem 2. Let s € (0,00), and a nonempty subset Q) C H". Denote

n n
cos(Q)) = {H-(Sai(xi) cw; >0, thf =1,x,€eQ,n> 2}.
i=1 i=1
Then co5(QY) is s-convex and will be called the s-convex hull of Q). Here [T} -0x;(xi) = ay (x1) - Oy (x2) - ... -
50‘11 (x”>'

Proposition 2. Let f : O — R be a s-convex mapping on the s-convex subset and { € R so that f¢(¢) = {x € O :
f(x) <&} is nonempty. Then f€(&) is a s-convex subset of Q).

Theorem 3. Let s-convex set ) C H" and f : (3 — R a mapping defined on Q). The following statement are equivalent:

(1) f is s-convex function on Q).
n
(2) For every a; > 0 such that ‘Zl «f =1, one has the inequality
1=

f (ﬂ-wo) < é«x?f(xi),
foralln > 2.

n

Theorem 4. Let f : O C H" — R be a s-convex map on the s-convex set Q) and a; > 0 with ) af = 1. Let
i=1

Xij € 0,1 <1i,j < n. Then we have the inequalities

! (-Ii"s“’“f(x”)> < min{A, B} < max{A,B} < Y- aiaif(xy),

ij=1
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where A = ‘i1 asf (H;Ll O (xij)> and B = il ucjsff (T -0a; (i)
i= j=

2. Preliminary

In this subsection, we give a brief review of some relevant notions and terminologies.

2.1. Heisenberg group H"

Here, we list some relevant knowledges which required for this article in the Heisenberg group H" (for
example, [6]).

The Heisenberg group H", is the Lie group (R?**1, .), where we consider in R?**! = C" x R. In particular,
if one writes point as x = (z,t) withz € C" and t € R, the group law - should be stated in a conventional form
such as

x-y=(zt) (w,s) = (Z+w,f+5+%1m (z,w)),

with the inner product explicitly defined as (z, w) = i z;W;. Here x = (21, -+ ,zn,t) and y = (w1, -+ , Wy, s).
i=1

The identity element is e = (O(CH,O) € H", the inverse element of x~! = (—zy,---,—z,, —t), and the
center of the groupisc = {(z1,- -+ ,zp,t)} € H" 1 29,- -+ ,z, = 0.

Moreover, let any point x = (z,t) € QO C H" and any y; = (zl, tl) €Oy = (22, tz) € (), there are

1)z +22 €z,

@t + 12+ 1 Im (z,22) e t,

(B)anyx € O, & >0, du(x) € Q.

Then we call Q) is a sub-semigroup of H" when () satisfies (1) and (2). If () satisfies (1), (2) and (3), then
we call Q) is a Homogeneous sub-semigroup of H".

The left invariant translates of the canonical basis at the identity are given by the vector fields

918 . 8 1 2
i = axi 2 z+natr i+n — axi+n g 2n+1 — ot

wherei =1, - - - ,n. The first 2n vector fields span the horizontal distribution in H". Left translation by x € H"
is the mapping Ly : Ly (%) = x - %.

For any A > 0, the mapping 6, : 65 (z1,- -+ ,zn, t) = (Azq, - - ,Azn,/\zt) is called dilation. From the group
law and dilation rule, we easily obtain

or(x-y) = oa(x) - or(y).
In addition, we give a convention, 6, - dy = 6,

3. The proof of theorem and proposition

Proof of Proposition 1. Let x = (z,t),y = (w,s) € Q). We have
0u(x) - 0p(y) = (az + Buw, &2t + Bs + 2Im(az, f)),

and
x-y=(z4+w, t+s+2Im(z,w)).

Ifany z,w € C", az + fw = z + w, and any t,s € R, a®t + f%s + 2aBIm(z, W) = t + s+ 2Im(z, @) .

From the complex component equation, since it must hold for all z,w € C", we require a« = 1,8 = 1.
Substitute « = 1, = 1 into the condition a® +f° = 1 = 1°4+1° = 2 = 1. This is a contradiction for
any s € (0,00). Thus there is no pair («, B) satisfying both a° + ° = 1 and 6, (x) - dg(y) = x -y forall x,y € Q.
Thus x - y € () does not hold in general for a s-convex set () C H".

But, if taking « = 1 and = 0 (or « = 0 and B = 1) in Definition 3 can directly lead to the conclusion (1).
Or x = y = 0 also true.
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In addition, for any x € 0, & = 1, B = 0, we can directly obtain the conclusion (2) by Definition 3. O

Proof of Theorem 1. (1)—(2) We will prove by induction over n € N and n > 2. For n = 2, the argument

follows by Definition 3. Suppose that the statement holds for all 2 < k < n—1. Let x1,---,x, € Q and

ay, -, 0 > 0witha] +- - +af =1 Ifag = - = a1 =0, thena, = 1 and thus 6, (x1) - ... -, (xn) € Q.
Assume that af + - - -+« _; > 0, and consider

X

(@ + -+ a_y)

pr=

Xp—1
17 " ,BTZ*l: 1°
s s

Then B + -+ B, = 1.
In addition, let 0y, (x1) - Oay (¥2) « -+ - O,y (¥n—1) = 6p(x). Let

1
n—1 n—1 s
X = 11 Op,(x;) €Qy, Bi= (Z af) .

Then using & p as an automorphism,

n—1 n—1
H 0p, (xi) = dp (I} '55,-(?61')) = 0p(x),

and therefore

n—1
11 0, (x;) = 6p(x) - Ou, (xn).

Now apply s-convexity of f to the pair (x, x,) with coefficients (B, a,) satisfying p° + a5, = 1, it follows
that 5[3 (x) ° 5“7! (.Xn) S Q.
(2)—(1) This is obvious by Definition 3. Thus Theorem 1 is proved. O

Proof of Theorem 2. Let x,y € cos(Q)), then x,y can be written by

n n
x=]]0u(x) with ;>0, x,€Q, and ) ai=1n2>2,
i=1 i=1
and

m

m
y=]] 0, (y;) with B; >0, y;€Q, and ) B;i=1mz=2.
j=1 j=1

Consider &, B > 0 with a® 4 ° = 1. Then

n m m+n
Sa(x) - 9p(y) = O (11~5a,»(xi)> : (H"Sﬁj(yj)) = I}—Il 0y (zk),
1= ]: —
where

Y1 =&K&, 0, Yn = K&y, Yn4l = ﬁ,Bl/ oty Yndm = ,B,er

and

Z1:x1/ o, Zn = Xp, Z]’l-i-l:yl/ ttty Zn+m:]/m~
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We have

n+m

Y mi=a(ai++a)+ BB+ B =+ =1
k=1

Which shows that 6, (x) - 05(y) € cos(Q) and the statement is proved. [

Proof of Proposition 2. Let x,y € f(¢) and a, > 0 with a° + p° = 1, then f(x) < ¢ and f(y) < . Which
imply that a°f(x) < a°¢ and °f(y) < B°¢. Thus f(da(x) - dp(y)) < a*f(x) + B f(y) < (a° + p°)¢ = ¢, which
shows that f¢(¢) is a s-convex subset of . [

Proof of Theorem 3. (1)—(2) The fact that [T} -d,,;(x;) € Q) for all n > 2 follows from Theorem 1, we will use
induction over n > 2.
If n = 2, the inequality is obvious by the Definition 4.
Suppose that the above inequality is valid forall2 < k <n —1. Letxy,--- ,x, € Qand ay,--- ,a, > 0
withaf +---+aj =1.Ifag = --- = a,_1 = 0 then &, = 1 and the inequality is obvious.
Assume that &] +--- +a;_; > 0and put
&1

p1= ;o Pa1 =
(5 4 +as )

Oy—1
(a4 +a5_)

@ =
@l

Then B +--- + B;,_; = 1. And obviously dg, (x1) ... g, ,(x,—1) € Q, using the inductive hypothesis
we also can state

f(éﬁl(xl)""'5ﬁw4(xn—1)) < ﬁﬁf(xl)4""+_ﬁ2—1f(xn—1)

Now, let 6y, (x1) - 0uy (x2) -+ - Ou, 4 (x—1) = dp(x). Let
1

n—1 n—1
xi=]]0p(xi) e, B:= ( af)
i=1 =1

1

Then using g as an automorphism, we observe that

f<f!%@ﬂ>:f0ﬁ+'”+@4ﬁdﬁzllﬁfj{3?”'%””0 "

<ﬁsf <§le (Xl) CI— 5@7,,1 (xn—1)> +“Sf(x )
8 (w5 y) w

Note that this last inequality was obtained by Definition 4 in g and a, as f° +aj = a] +---+a;_; +a; = 1.
On the other hand

5,;(1 (xl) et 5,3(’17] (xn—l)
=f(dg,(x1) ... 0 Xy
f( (p{i+.,_+0¢n_1)% > f( ,Bl( 1) ,anl( 1))

<pif(x1) + -+ Baf(xn1)
_afa) e f(x)
B af o tag '

Using the inequality (1), we get

n s s “Sf(xl)*-"‘+‘“2, f(xnfl) .
f (Eﬁa,’(-’ﬁ)) §(041+~..+Dln71) 1 p(§++a’51i1 —i—ocnf(xn)

= Y ().
i=1
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(2)—(1) This is obvious by Definition 4. Therefore, the proof of Theorem 3 is completed. O

n
Corollary 1. Let f : 3 C H" — R be a s-convex map and P; > 0 with P Z P? > 0. Then for all x; € Q), one has

the inequality
1 £ Z
f 5p1 x < PS
P ) SR
n
The proof is obvious by the above inequality of Theorem 3 choosing «; = ( (1: ;)1 = Y aj = 1. then
Py7)s i=1
Theorem 3 should yield the clean statement

1 n n p Ny :i n ; o
f(mgs)]iﬂﬁm(xi)) Slglxlf( z) Pz;pzf( z)

Corollary 2. With the above assumptions for f and x;, one has the inequality

f<x1~.n..

to obtain

) ¢ Sl Sl

n

@ =

Similarly, taking a; = n~1/*

FOoags(xr) b)) <+ Y ().

i=1

S
Corollary 3. Let f,Q), x; be as above and q; > 0 with Q, = Y q; > 0. Then one has the inequality
i=1

[Tie -0 1 (xi) 1
f 721 < 6 Z%’f(xz
Qi =

1 n
The proof is obvious by the Theorem 3, choosing «; = ( &) "= Y af =1.Then
i=1

[T 0 1 (%)

fl—t— | = Lairtn) = o Laf o
Q;l i=1 nji—1

Proof of Theorem 4. Fixi € {1,---,n}. Thus by Theorem 3, we can state

f (ﬁ'(stxj(xij)> < izx]s-f(xij).
i=

=1

Now, by multiplying by &} > 0 we have

aff (1—{ '(Stxj (Xl] ) Z‘X xl]
j=

which gives, by addition, that

f (ﬁ (O, - (5% Xij) ) lesf (H 5“/ Xjj > < i ocfoc}“-’f(x,-j).
L]

ij=1
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n
Thus f ( Fiz1+(0n; - O (xl-]-))> <AL “21 o (xij). The second part is proved similarly. [J
ij=

Corollary 4. With the above assumptions and supposing that x;; is symmetric, that is x;; = xj; foralli,j € (1,--- ,n),
one has the inequality

f (f[ (6 ~6aj<xij>>> < i,,;f (ﬁwm) < Y e f(xy).
i= j=

ij=1 ij=1
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