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1. Introduction and main results

I n convex analysis, convex sets and convex functions are core fundamental concepts, widely applied in
optimization theory, partial differential equations, geometric analysis, and other fields. The research on

convexity and generalized convexity is one of the important subjects in mathematical programming, numerous
generalizations of convex functions have been proved useful for developing suitable optimization problems
(see [1–3]). Let X be a real linear space (e.g., Rn). A set C ⊂ X is called a convex set if for any x1, x2 ∈ C and
any λ ∈ [0, 1], the following holds:

λx1 + (1 − λ)x2 ∈ C.

The expression λx1 + (1 − λ)x2 is called the convex combination of x1 and x2, which geometrically
represents the line segment connecting the two points. Therefore, the intuitive meaning of a convex set is:
the line segment connecting any two points in the set is completely contained within the set. In addition,
let C ⊂ X be a convex set. A function f : C → R is called a convex function if for any x1, x2 ∈ C and
any λ ∈ [0, 1], then

f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2).

If the inequality holds strictly for any x1 ̸= x2 and λ ∈ (0, 1), then f is called a strictly convex function;
if − f is a convex function, then f is called a concave function.

s-convex functions defined on a space of real numbers was introduced by Orlicz in [4] and was used in the
theory of Orlicz spaces. s-Orlicz convex sets and s-Orlicz convex mappings in linear spaces were introduced
by Dragomir in [5].

Definition 1. [5] Let X be a linear space and s ∈ (0, ∞). The set K ⊆ X will be called s-Orlicz convex in X if the
following condition is true: x, y ∈ K and α, β > 0 with αs + βs = 1 imply αx + βy ∈ K.

Definition 2. [5] The mapping f : K → R will be called s-Orlicz convex on K if for all x, y ∈ K and α, β ≥ 0
with αs + βs = 1 one has the inequality

f (αx + βy) ≤ αs f (x) + βs f (y).

Similarly, in this paper we introduce the class of s-convex functions defined on s-convex sets in Heisenberg
group Hn. Some discrete inequalities of Jensen’s type are also obtained. In fact, we discuss the s-convex subset,
the s-convex function and related conclusions on homogeneous sub semigroup of Heisenberg group.
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Definition 3. Let s ∈ (0, ∞), the Ω ⊆ Hn is called s-convex set in Hn if the following condition is true: x, y ∈ Ω
and α, β ≥ 0 with αs + βs = 1 imply δα(x) · δβ(y) ∈ Ω.

Example 1. Sub-semigroup Ω = {(z, t), z ∈ Rn, t = 1
4 |z|2} ⊂ Hn, where |z|2 = x2

1 + x2
2 + · · · + x2

n is the
modulus square of a real vector.

Definition 4. Let s ∈ (0, ∞), the Ω ⊆ Hn be a s-convex set. The mapping f : Ω → R is called s-convex on Ω if
for all x, y ∈ Ω and α, β ≥ 0 with αs + βs = 1, one has the inequality

f (δα(x) · δβ(y)) ≤ αs f (x) + βs f (y).

Here, · is the group law and δα(x) expresses the corresponding homogeneous structure on Heisenberg
group which is provided by the parabolic dilations. See the §2 for details.

Remark 1. In Definition 3, if s = 1, we call Ω is convex in Hn, and in Definition 4, if s = 1, f is called the
convex function on Ω in Hn.

From the Definition 3, it’s not difficult to obtain the following properties for special cases.

Proposition 1. Any convex subset Ω ⊆ Hn with the following properties:
(1) x, y ∈ Ω imply x · y ∈ Ω.
(2) x ∈ Ω, α ≥ 0 imply δα(x) ∈ Ω.

Theorem 1. Let s ∈ (0, ∞), for a given subset Ω ⊆ Hn, the following statements are equivalent:
(1) Ω is s convex.
(2) For every x1, · · · , xn ∈ Ω and α1, · · · , αn ≥ 0 with αs

1 + · · ·+ αs
n = 1, we have that δα1(x1) · . . . · δαn(xn) ∈

Ω.

Theorem 2. Let s ∈ (0, ∞), and a nonempty subset Ω ⊆ Hn. Denote

cos(Ω) =

{ n

∏
i=1

·δαi (xi) : αi ≥ 0,
n

∑
i=1

αs
i = 1, xi ∈ Ω, n ≥ 2

}
.

Then cos(Ω) is s-convex and will be called the s-convex hull of Ω. Here ∏n
i=1 ·δαi (xi) = δα1(x1) · δα2(x2) · . . . ·

δαn(xn).

Proposition 2. Let f : Ω → R be a s-convex mapping on the s-convex subset and ξ ∈ R so that f ε(ξ) = {x ∈ Ω :
f (x) ≤ ξ} is nonempty. Then f ε(ξ) is a s-convex subset of Ω.

Theorem 3. Let s-convex set Ω ⊆ Hn and f : Ω → R a mapping defined on Ω. The following statement are equivalent:
(1) f is s-convex function on Ω.

(2) For every αi ≥ 0 such that
n
∑

i=1
αs

i = 1, one has the inequality

f

(
n

∏
i=1

·δαi (xi)

)
≤

n

∑
i=1

αs
i f (xi),

for all n ≥ 2.

Theorem 4. Let f : Ω ⊆ Hn → R be a s-convex map on the s-convex set Ω and αi ≥ 0 with
n
∑

i=1
αs

i = 1. Let

xij ∈ Ω, 1 ≤ i, j ≤ n. Then we have the inequalities

f

(
n

∏
i=1

·δαiαj(xij)

)
≤ min{A, B} ≤ max{A, B} ≤

n

∑
i,j=1

αs
i αs

j f (xij),
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where A =
n
∑

i=1
αs

i f
(

∏n
j=1 ·δαj(xij)

)
and B =

n
∑

j=1
αs

j f
(
∏n

i=1 ·δαi (xij)
)
.

2. Preliminary

In this subsection, we give a brief review of some relevant notions and terminologies.

2.1. Heisenberg group Hn

Here, we list some relevant knowledges which required for this article in the Heisenberg group Hn (for
example, [6]).

The Heisenberg group Hn, is the Lie group (R2n+1, ·), where we consider in R2n+1 ≡ Cn ×R. In particular,
if one writes point as x = (z, t) with z ∈ Cn and t ∈ R, the group law · should be stated in a conventional form
such as

x · y = (z, t) · (w, s) = (z + w, t + s +
1
2

Im ⟨z, w⟩),

with the inner product explicitly defined as ⟨z, w⟩ =
n
∑

i=1
ziwi. Here x = (z1, · · · , zn, t) and y = (w1, · · · , wn, s).

The identity element is e = (0C
n
, 0) ∈ Hn, the inverse element of x−1 = (−z1, · · · ,−zn,−t), and the

center of the group is c = {(z1, · · · , zn, t)} ∈ Hn : z1, · · · , zn = 0.
Moreover, let any point x = (z, t) ∈ Ω ⊂ Hn and any y1 = (z1, t1) ∈ Ω, y2 = (z2, t2) ∈ Ω, there are
(1) z1 + z2 ∈ z,
(2) t1 + t2 + 1

2 Im ⟨z1, z2⟩ ∈ t,
(3) any x ∈ Ω, α ≥ 0, δα(x) ∈ Ω.
Then we call Ω is a sub-semigroup of Hn when Ω satisfies (1) and (2). If Ω satisfies (1), (2) and (3), then

we call Ω is a Homogeneous sub-semigroup of Hn.
The left invariant translates of the canonical basis at the identity are given by the vector fields

Xi =
∂

∂xi
− 1

2
xi+n

∂

∂t
, Xi+n =

∂

∂xi+n
+

1
2

xi
∂

∂t
, X2n+1 =

∂

∂t
,

where i = 1, · · · , n. The first 2n vector fields span the horizontal distribution in Hn. Left translation by x ∈ Hn

is the mapping Lx : Lx(x̃) = x · x̃.
For any λ > 0, the mapping δλ : δλ(z1, · · · , zn, t) = (λz1, · · · , λzn, λ2t) is called dilation. From the group

law and dilation rule, we easily obtain

δλ(x · y) = δλ(x) · δλ(y).

In addition, we give a convention, δλ · δµ = δλµ.

3. The proof of theorem and proposition

Proof of Proposition 1. Let x = (z, t), y = (w, s) ∈ Ω. We have

δα(x) · δβ(y) = (αz + βw, α2t + β2s + 2 Im⟨αz, βw⟩),

and
x · y = (z + w, t + s + 2 Im⟨z, w⟩) .

If any z, w ∈ Cn, αz + βw = z + w, and any t, s ∈ R, α2t + β2s + 2αβ Im⟨z, w⟩ = t + s + 2 Im⟨z, w⟩ .
From the complex component equation, since it must hold for all z, w ∈ Cn, we require α = 1, β = 1.

Substitute α = 1, β = 1 into the condition αs + βs = 1 ⇒ 1s + 1s = 2 = 1. This is a contradiction for
any s ∈ (0, ∞). Thus there is no pair (α, β) satisfying both αs + βs = 1 and δα(x) · δβ(y) = x · y for all x, y ∈ Ω.
Thus x · y ∈ Ω does not hold in general for a s-convex set Ω ⊆ Hn.

But, if taking α = 1 and β = 0 (or α = 0 and β = 1) in Definition 3 can directly lead to the conclusion (1).
Or x = y = 0 also true.
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In addition, for any x ∈ Ω, α = 1, β = 0, we can directly obtain the conclusion (2) by Definition 3.

Proof of Theorem 1. (1)→(2) We will prove by induction over n ∈ N and n ≥ 2. For n = 2, the argument
follows by Definition 3. Suppose that the statement holds for all 2 ≤ k ≤ n − 1. Let x1, · · · , xn ∈ Ω and
α1, · · · , αn ≥ 0 with αs

1 + · · ·+ αs
n = 1. If α1 = · · · = αn−1 = 0, then αn = 1 and thus δα1(x1) · . . . · δαn(xn) ∈ Ω.

Assume that αs
1 + · · ·+ αs

n−1 > 0, and consider

β1 =
α1

(αs
1 + · · ·+ αs

n−1)
1
s

, · · · , βn−1 =
αn−1

(αs
1 + · · ·+ αs

n−1)
1
s

.

Then βs
1 + · · ·+ βs

n−1 = 1.
In addition, let δα1(x1) · δα2(x2) · . . . · δαn−1(xn−1) = δβ(x). Let

x :=
n−1

∏
i=1

·δβi (xi) ∈ Ωi, β :=

(
n−1

∑
i=1

αs
i

) 1
s

.

Then using δβ as an automorphism,

n−1

∏
i=1

·δβi (xi) = δβ

(
n−1

∏
i=1

·δβi (xi)

)
= δβ(x),

and therefore
n−1

∏
i=1

·δβi (xi) = δβ(x) · δαn(xn).

Now apply s-convexity of f to the pair (x, xn) with coefficients (β, αn) satisfying βs + αs
n = 1, it follows

that δβ(x) · δαn(xn) ∈ Ω.
(2)→(1) This is obvious by Definition 3. Thus Theorem 1 is proved.

Proof of Theorem 2. Let x, y ∈ cos(Ω), then x, y can be written by

x =
n

∏
i=1

·δαi (xi) with αi ≥ 0, xi ∈ Ω, and
n

∑
i=1

αs
i = 1, n ≥ 2,

and

y =
m

∏
j=1

·δβ j(yj) with β j ≥ 0, yj ∈ Ω, and
m

∑
j=1

βs
j = 1, m ≥ 2.

Consider α, β ≥ 0 with αs + βs = 1. Then

δα(x) · δβ(y) = δα

(
n

∏
i=1

·δαi (xi)

)
·
(

m

∏
j=1

·δβ j(yj)

)
=

m+n

∏
k=1

·δγk (zk),

where

γ1 = αα1, · · · , γn = ααn, γn+1 = ββ1, · · · , γn+m = ββm,

and

z1 = x1, · · · , zn = xn, zn+1 = y1, · · · , zn+m = ym.
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We have

n+m

∑
k=1

γs
k = αs(αs

1 + · · ·+ αs
n) + βs(βs

1 + · · ·+ βs
m) = αs + βs = 1.

Which shows that δα(x) · δβ(y) ∈ cos(Ω) and the statement is proved.

Proof of Proposition 2. Let x, y ∈ f ε(ξ) and α, β ≥ 0 with αs + βs = 1, then f (x) ≤ ξ and f (y) ≤ ξ. Which
imply that αs f (x) ≤ αsξ and βs f (y) ≤ βsξ. Thus f (δα(x) · δβ(y)) ≤ αs f (x) + βs f (y) ≤ (αs + βs)ξ = ξ, which
shows that f ε(ξ) is a s-convex subset of Ω.

Proof of Theorem 3. (1)→(2) The fact that ∏n
i=1 ·δαi (xi) ∈ Ω for all n ≥ 2 follows from Theorem 1, we will use

induction over n ≥ 2.
If n = 2, the inequality is obvious by the Definition 4.
Suppose that the above inequality is valid for all 2 ≤ k ≤ n − 1. Let x1, · · · , xn ∈ Ω and α1, · · · , αn ≥ 0

with αs
1 + · · ·+ αs

n = 1. If α1 = · · · = αn−1 = 0 then αn = 1 and the inequality is obvious.
Assume that αs

1 + · · ·+ αs
n−1 > 0 and put

β1 =
α1

(αs
1 + · · ·+ αs

n−1)
1
s

, · · · , βn−1 =
αn−1

(αs
1 + · · ·+ αs

n−1)
1
s

.

Then βs
1 + · · ·+ βs

n−1 = 1. And obviously δβ1(x1) · . . . · δβn−1(xn−1) ∈ Ω, using the inductive hypothesis
we also can state

f
(
δβ1(x1) · . . . · δβn−1(xn−1)

)
≤ βs

1 f (x1) + · · ·+ βs
n−1 f (xn−1).

Now, let δα1(x1) · δα2(x2) · . . . · δαn−1(xn−1) = δβ(x). Let

x :=
n−1

∏
i=1

·δβi (xi) ∈ Ωi, β :=

(
n−1

∑
i=1

αs
i

) 1
s

.

Then using δβ as an automorphism, we observe that

f

(
n

∏
i=1

·δαi (xi)

)
= f

(
(αs

1 + · · ·+ αs
n−1)

1
s

δα1(x1) · . . . · δαn−1(xn−1)

(αs
1 + · · ·+ αs

n−1)
1
s

· δαn(xn)

)
(1)

≤βs f

(
δα1(x1) · . . . · δαn−1(xn−1)

(αs
1 + · · ·+ αs

n−1)
1
s

)
+ αs

n f (xn).

Note that this last inequality was obtained by Definition 4 in β and αn as βs + αs
n = αs

1 + · · ·+ αs
n−1 + αs

n = 1.
On the other hand

f

(
δα1(x1) · . . . · δαn−1(xn−1)

(αs
1 + . . . + αn−1)

1
s

)
= f
(
δβ1(x1) · . . . · δβn−1(xn−1)

)
≤βs

1 f (x1) + · · ·+ βs
n−1 f (xn−1)

=
αs

1 f (x1) + · · ·+ αs
n−1 f (xn−1)

αs
1 + · · ·+ αs

n−1
.

Using the inequality (1), we get

f

(
n

∏
i=1

·δαi (xi)

)
≤(αs

1 + · · ·+ αs
n−1)

αs
1 f (x1) + · · ·+ αs

n−1 f (xn−1)

αs
1 + · · ·+ αs

n−1
+ αs

n f (xn)

=
s

∑
i=1

αs
i f (xi).
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(2)→(1) This is obvious by Definition 4. Therefore, the proof of Theorem 3 is completed.

Corollary 1. Let f : Ω ⊆ Hn → R be a s-convex map and Pi ≥ 0 with P(s)
n =

n
∑

i=1
Ps

i > 0. Then for all xi ∈ Ω, one has

the inequality

f

(
1

[P(s)
n ]

1
s

n

∏
i=1

·δPi (xi)

)
≤ 1

Ps
n

n

∑
i=1

Ps
i f (xi).

The proof is obvious by the above inequality of Theorem 3 choosing αi = Pi

(P(s)
n )

1
s
⇒

n
∑

i=1
αs

i = 1. then

Theorem 3 should yield the clean statement

f

(
1

[P(s)
n ]

1
s

n

∏
i=1

·δαi (xi)

)
≤

n

∑
i=1

αs
i f (xi) =

1
Ps

n

n

∑
i=1

Ps
i f (xi).

Corollary 2. With the above assumptions for f and xi, one has the inequality

f
(

x1 · . . . · xn

n
1
s

)
≤ f (x1) + · · ·+ f (xn)

n
.

Similarly, taking αi = n−1/s to obtain

f (δ−1/s(x1) · . . . · δ−1/s(xn)) ≤
1
n

n

∑
i=1

f (xi).

Corollary 3. Let f , Ω, xi be as above and qi ≥ 0 with Qn =
s
∑

i=1
qi > 0. Then one has the inequality

f

∏n
i=1 ·δ

q
1
s

i

(xi)

Q
1
s
n

 ≤ 1
Qn

n

∑
i=1

qi f (xi).

The proof is obvious by the Theorem 3, choosing αi =
(

qi
Qn

) 1
s ⇒

n
∑

i=1
αs

i = 1. Then

f

∏n
i=1 ·δ

q
1
s
i

(xi)

Q
1
s
n

 ≤
n

∑
i=1

αs
i f (xi) =

1
Qn

n

∑
i=1

qi f (xi).

Proof of Theorem 4. Fix i ∈ {1, · · · , n}. Thus by Theorem 3, we can state

f

(
n

∏
j=1

·δαj(xij)

)
≤

n

∑
j=1

αs
j f (xij).

Now, by multiplying by αs
i ≥ 0 we have

αs
i f

(
n

∏
j=1

·δαj(xij)

)
≤

n

∑
j=1

αs
i αs

j f (xij),

which gives, by addition, that

f

(
n

∏
i,j=1

·(δαi · δαj(xij))

)
≤

n

∑
i=1

αs
i f

(
n

∏
j=1

·δαj(xij)

)
≤

n

∑
i,j=1

αs
i αs

j f (xij).
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Thus f
(

∏n
i,j=1 ·(δαi · δαj(xij))

)
≤ A ≤

n
∑

i,j=1
αs

i αs
j f (xij). The second part is proved similarly.

Corollary 4. With the above assumptions and supposing that xij is symmetric, that is xij = xji for all i, j ∈ (1, · · · , n),
one has the inequality

f

(
n

∏
i,j=1

·(δαi · δαj(xij))

)
≤

n

∑
i=1

αs
i f

(
n

∏
j=1

·δαj(xij)

)
≤

n

∑
i,j=1

αs
i αs

j f (xij).
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