

Short Note

The smallest radius of a ball containing the support of a compactly supported potential

Alexander G. Ramm

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA; ramm@ksu.edu

Received: 29 September 2025; Accepted: 31 December 2025; Published: 22 January 2026.

Abstract: Let $D \subset \mathbb{R}^3$ be a bounded domain. $q \in C(D)$ be a real-valued compactly supported potential, $A(\beta, \alpha, k)$ be its scattering amplitude, $k > 0$ be fixed, without loss of generality we assume $k = 1$, β be the unit vector in the direction of scattered field, α be the unit vector in the direction of the incident field. Assume that the boundary of D is a smooth surface S . Assume that $D \subset Q_a := \{x : |x| \leq a\}$, and $a > 0$ is the minimal number such that $q(x) = 0$ for $|x| > a$. Formula is derived for a in terms of the scattering amplitude.

Keywords: scattering theory, potential scattering, compactly supported potentials, the smallest radius of the ball containing the support of the potential

MSC: 35Q40, 81U05.

1. Introduction

Let $D \subset \mathbb{R}^3$ be a bounded domain. $q \in C(D)$ be a real-valued compactly supported potential, S is a smooth boundary of D , $A(\beta, \alpha, k)$ be its scattering amplitude, $k > 0$ be fixed, we assume $k = 1$ without loss of generality, β be the unit vector in the direction of scattered field, α be the unit vector in the direction of the incident field. Assume that $D \subset Q_a := \{x : |x| \leq a\}$, $a > 0$ is the minimal number such that $q(x) = 0$ for $|x| > a$, γ is the unit vector such that $a\gamma \in S$, and for any small $\epsilon > 0$ one has $\int_{D_\eta} |q(x)|^2 dx > 0$, where D_η is the part of D in a neighborhood of the point $a\gamma$ in the region $a - \epsilon < |x| < a$. This makes $c_2 > 0$ in formula (6) below for an arbitrary small $\eta > 0$.

The known formula for the scattering amplitude is (see, for example, [1,2]):

$$A(\beta, \alpha, k) = -\frac{1}{4\pi} \int_D e^{-ik\beta \cdot x} q(x) u(x, \alpha, k) dx, \quad (1)$$

where $u(x, \alpha, k)$ is the scattering solution (see, for example, [1], pp.256–259, [2], pp.359–439). Since $k > 0$ is fixed, we omit the dependence on k in what follows. The scattering amplitude corresponding to a compactly supported potential $q \in L^2(D)$ is an analytic function of β and α on the complex variety $M := \{z \in \mathbb{C}^3, z \cdot z = 1\}, z \cdot z := \sum_{j=1}^3 z_j^2$, see [1].

Our goal is to derive a formula for the a in terms of the scattering amplitude.

Let us formulate some facts. A proof of the first fact can be found in [1]; the second fact is well known.

A proof of the basic result of this research note, Theorem 1, is given in §2.

Fact 1. There exists $v(\alpha, \theta) \in L^2(S^2)$ such that

$$-4\pi \int_{S^2} A(\beta, \alpha) v(\alpha, \theta) d\alpha = \int_D e^{-i(\beta - \theta) \cdot x} q(x) dx (1 + O(\frac{1}{|\theta|})), \quad |\theta| \rightarrow \infty, \quad (2)$$

where

$$\theta \in M := \{z \in \mathbb{C}^3, z \cdot z = 1\}, \quad z \cdot z = \sum_{j=1}^3 z_j^2.$$

Estimate (2) is proved in [1], pp. 260–261. A numerical procedure for calculating $v(\alpha, \theta)$ is given in [1], pp. 265–266.

If u, v are real-valued vectors in \mathbb{R}^3 , and $z = u + iv$, then $z \cdot z = 1$ if and only if

$$(u, u) - (v, v) = 1, \quad (u, v) + (v, u) = 0,$$

where $(u, v) := \sum_{j=1}^3 u_j v_j$, $|v|^2 = (v, v)$.

It follows from (2) that if $\beta - \theta = \xi$, $\beta, \theta \in M$, and $|\theta| \rightarrow \infty$, then

$$\lim_{|\theta| \rightarrow \infty} [-4\pi \int_{S^2} A(\beta, \alpha) v(\alpha, \theta) d\alpha] = Q(\xi), \quad (3)$$

where $Q(\xi) := \int_D q(x) e^{-i\xi \cdot x} dx$ is the Fourier transform of q .

Fact 2. If $q \in L^2(D)$ is compactly supported, then its Fourier transform is an entire function of exponential type.

In §2 we prove that the the smallest number $a > 0$ such that the ball B_a contains the support of q can be calculated by the formula:

$$a = \overline{\lim}_{|v| \rightarrow \infty} \frac{\|Q(u + iv)\|}{|v|}. \quad (4)$$

Here $\|Q(u)\|^2 = (2\pi)^3 \int_{\mathbb{R}^3} |q(x)|^2 dx$, $\|Q(u + iv)\|^2 = (2\pi)^3 \int_{\mathbb{R}^3} |q(x)|^2 e^{2v \cdot x} dx$.

Theorem 1. Assume that $q \in L^2(D)$ is real-valued. Then the smallest radius of the ball containing the support of the potential is given by (4).

In §2 a proof of Theorem 1 is given.

2. Proof of Theorem 1

By Plancherel's formula one gets

$$\|Q(u + iv)\|^2 = (2\pi)^3 \int_D e^{2v \cdot x} |q(x)|^2 dx \leq c^2 e^{2|v|a}, \quad c^2 := (2\pi)^3 \int_D |q(x)|^2 dx. \quad (5)$$

Let us prove an estimate from below:

$$\|Q(u + iv)\|^2 \geq c_2^2 \eta e^{2|v|(a-\eta)}, \quad c_2^2 = \int_{D_\eta} |q|^2 dx, \quad (6)$$

where $\eta > 0$ is arbitrarily small, and D_η is sufficiently small, so that $\cos(x, \gamma) > 1 - \eta_1$, where η_1 is sufficiently small, γ is a unit vector such that $a\gamma \in \partial S$, S is the boundary of D . Thus, $v \cdot x > |v||x|(1 - \eta)$. From (5)–(6) one gets:

$$c_2 e^{|v|a(1-\eta)} \leq \|Q(u + iv)\| \leq c e^{|v|a}. \quad (7)$$

Taking natural logarithm of (7), dividing by $|v|$ and taking $|v| \rightarrow \infty$ yields formula (4).

Theorem 1 is proved. \square

The main novelty in this short note is formula (4). This formula differs from the known result: the Paley-Wiener theorem ([3], p.181).

How can one choose the function $v(\alpha, \theta)$ in (3)?

Let us give a method for doing this. This method is outlined on p. 266 in [1].

For $|x| > a$ the scattering solution

$$u(x, \alpha) = e^{i\alpha \cdot x} + \sum_{\ell=0}^{\infty} A_\ell(\alpha) Y_\ell(x_0) h_\ell(r),$$

where $x_0 := \frac{x}{|x|}$, $r := |x|$, $h_\ell(r)$ are spherical Hankel functions (see [1], p.262),

$$A_\ell(\alpha) = \int_{S^2} A(\beta, \alpha) \overline{Y_\ell(\beta)} d\beta,$$

and $Y_\ell(\beta)$ are the normalized spherical harmonics (see [1], pp261–263).

Definition 1.

$$\rho(x) = e^{-i\theta \cdot x} \int_{S^2} u(x, \alpha) v(\alpha, \theta') d\alpha - 1, \quad (8)$$

where $\theta' - \theta = \xi$, $\theta, \theta' \in M$, $|\theta| \rightarrow \infty$.

It is proved in [1], p. 265-266, that $\|\rho\|_{|x| \leq a} \leq c|\theta|^{-1}$, $|\theta| \rightarrow \infty$. Therefore, $v(\alpha, \theta)$ can be chosen as the solution to the minimization problem: $\|\rho\|_{a \leq |x| \leq b} = \min$, where minimization is taken over $v(\alpha, \theta) \in L^2(S^2)$, and $0 < a < b$ are two arbitrary numbers. Practically $b - a$ can be chosen of the order of 1.

The reader may generalize Theorem 1 by assuming that $q \in L^2(D)$ rather than $q \in C(D)$.

3. Conclusion

A formula is given for the radius of the smallest ball containing the support of a compactly supported potential $q(x)$. It is assumed that $q \in L^2(D)$ is a real-valued potential, and $D \subset \mathbb{R}^3$ is a bounded domain.

References

- [1] Ramm, A. G. (2005). *Inverse Problems*. Springer.
- [2] Ramm, A. G. (2017). *Scattering by Obstacles and Potentials*. World Scientific.
- [3] Rudin, W. (1973). *Functional Analysis*. McGraw- Hill Book Co., New York.

© 2026 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (<http://creativecommons.org/licenses/by/4.0/>).