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ON UNSTEADY FLOW OF A VISCOELASTIC FLUID

THROUGH ROTATING CYLINDERS
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Abstract. The fractional calculus approach is used in the constitutive
relationship model of fractional Maxwell fluid. Exact solutions for the
velocity field and the adequate shear stress corresponding to the rotational

flow of a fractional Maxwell fluid, between two infinite coaxial circular
cylinders, are obtained by using the Laplace transform and finite Hankel
transform for fractional calculus. The solutions that have been obtained
are presented in terms of generalized Gb,c,d(·, t) and Rb,c(·, t) functions. In
the limiting cases, the corresponding solutions for ordinary Maxwell and
Newtonian fluids are obtained from our general solutions. Furthermore,
the solutions for the motion between the cylinders, when one of them is
at rest, are also obtained as special cases from our results. Finally, the
influence of the material parameters on the fluid motion is underlined by
graphical illustrations.
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1. Introduction

All things are movable and in a fluid state, which is a famous quotation from
Thales of Miletos, the first philosopher of Ancient Greece.
The inadequacy of the classical Navier-Stokes theory to describe rheologically
complex fluids such as polymer solutions, blood and heavy oils, has led to the
development of theories of non-Newtonian fluids. In particular many pastes,
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slurries, synovial polymer solutions and suspensions exhibit shear thinning be-
havior. In recent time the study of non-Newtonian fluids has become important.
Chemical engineering, food industry, biological analysis, petroleum industry and
many other fields use them. The academic workers and engineers are very much
interested in the geometry of flows of such types of fluids [1, 2]. In order to de-
scribe the non-linear relationship between the stress and the strain rate, numer-
ous models or constitutive equations have been proposed. Models of differential
type and rate type have received much attention [3].
In recent years, the fractional Maxwell fluid has obtained a special attention
amongst many fluids of rate type, as it includes as special cases the classical
Newtonian fluid and the ordinary Maxwell fluid. Fractional calculus has en-
countered much success in the description of viscoelastic characteristics. The
starting point of the fractional derivative model of non-Newtonian model is usu-
ally a classical differential equation which is modified by replacing the time
derivative of an integer order by the so-called Caputo fractional calculus opera-
tor. This generalization allows one to define precisely non-integer order integrals
or derivatives [4]. Fractional calculus has been found to be quite flexible in de-
scribing viscoelastic behavior [5, 6, 7].
During the past few years, attention has been given to the study on rotating
flow of viscoelastic fluids in an annulus. In those studies, the Maxwell model
was adopted to describe the viscoelastic fluid. The unidirectional flow of vis-
coelastic fluid with the fractional Maxwell model was studied by Tan et al. [8, 9]
and Hayat et al. [10]. Qi et al. [11, 12] studied the unsteady flow of a viscoelastic
fluid with fractional Maxwell model. Recently, Fetecau et al. [13] and Mahmood
et al. [14] also studied the flow of fractional Maxwell fluid between coaxial cylin-
ders. There is a vast literature dealing with such fluids, but we shall recall here
only a few of the recent papers [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] in
cylindrical domains.
The aim of this paper is to establish exact solutions of the velocity field and the
shear stress corresponding to the motion of a fractional Maxwell fluid between
two infinite circular cylinders. The laplace and finite Hankel transforms are used
to solve the problem and the solutions obtained are presented in terms of gener-
alized Gb,c,d(·, t) and Rb,c(·, t) functions. The solutions for ordinary Maxwell and
Newtonian fluids are obtained as limiting cases of our general solutions. Fur-
thermore, the solutions for the motion between the cylinders, when one of them
is at rest, are also obtained as special cases from our general results. Finally,
the influence of the material parameters on the velocity and shear stress of the
fluid is analyzed by graphical illustrations.

2. Formulation of the Problem

For the problem under consideration, we choose the cylindrical coordinates
(r, θ, z) and the components of velocity field w(r, t) are wr = 0, wθ = w(r, t),
wz = 0. Since the velocity field w is independent of θ and z, we also assume
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that the extra-stress tensor S depends only on r and t. Furthermore, if the fluid
is assumed to be at rest at the moment t = 0, then

w(r, 0) = 0, S(r, 0) = 0. (1)

For an incompressible fluid, the equation of continuity is

∇ ·w = 0, (2)

and in the absence of body forces and pressure gradient, the equation of motion
is

ρ
Dw

Dt
= ∇ ·T, (3)

where ρ is the density of the fluid, D/Dt is the material derivative and T is the
stress tensor. According to the above conditions, the constitutive equation and
the equation of motion become [11]

τ(r, t) + λαDα
t τ(r, t) = µr

∂

∂r

(
w(r, t)

r

)
, (4)

and respectively

ρ
∂w(r, t)

∂t
=

1

r2
∂

∂r
(r2τ(r, t)). (5)

Eliminating τ(r, t) from Eqs. (4) and (5), we obtain the governing equation of
the fluid

(1 + λDα
t )

∂w(r, t)

∂t
= ν

(
∂2

∂r2
+

1

r

∂

∂r
−

1

r2

)
w(r, t), (6)

where ν = µ/ρ is the kinematic viscosity of the fluid.
We consider an incompressible fractional Maxwell fluid at rest in an annular
region between two coaxial circular cylinders of radii R1 and R2(> R1). At time
t = 0+, both cylinders begin to rotate along their common axis. It is obvious
that the motion between the two cylinders is axially symmetric. Owing to the
shear, the fluid is gradually moved with the appropriate initial and boundary
conditions

w(r, 0) =
∂w(r, 0)

∂t
= 0 , τ(r, 0) = 0; r ∈ [R1, R2], (7)

w(R1, t) = Ω1R1t
a, w(R2, t) = Ω2R2t

a for t ≥ 0 a > 0, (8)

where Ω1 and Ω2 are constants.
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3. Solution of the Problem

In order to solve the problem (Eqs. (4) and (6) with initial and boundary
conditions (7) and (8)), we shall use the Laplace and the Hankel transforms.
Laplace transform is used to eliminate the time variable and to eliminate spatial
variable, Hankel transform is used. To avoid from lengthy calculations of residues
and contours integrals, the discrete inverse Laplace method will be used.

3.1. Calculation of the Velocity Field. Applying the Laplace transform to
Eqs. (6) and (8), using (7) and formulae

L
{
Dβ

t f(t)
}
= qβL {f(t)} , L {tn} =

Γ(n+ 1)

qn+1
; n > −1, (9)

we find that

(q + λqα+1)w(r, q) = ν

(
∂2

∂r2
+

1

r

∂

∂r
−

1

r2

)
w(r, q); r ∈ [R1, R2], (10)

w(R1, q) =
Ω1R1Γ(a+ 1)

qa+1
, w(R2, q) =

Ω2R2Γ(a+ 1)

qa+1
, (11)

where w(r, q) =
∫∞

0
w(r, t)e−qtdt is the Laplace transform of w(r, t) and q is the

transform parameter.
The Hankel transform of w(r, q) is defined as

wH(rn, q) =

∫ R2

R1

rw(r, q)B(r, rn)dr, (12)

where

B(r, rn) = J1(rrn)Y1(R2rn)− J1(R2rn)Y1(rrn), (13)

here rn are the positive roots of the transcendental equation B(R1, r) = 0 while
J1(·) and Y1(·) are the first and second kind Bessel functions of 1st order.
Now, applying the Hankel transform to Eq. (9), taking into account the condi-
tions (10) and the identity

∫ R2

R1

r

{
∂2

∂r2
+

1

r

∂

∂r
−

1

r2

}
w(r, q)B(r, rn)dr

=
2

πq2

{
Ω2R2J1(R1rn)− Ω1R1J1(R2rn)

J1(R1rn)

}
− r2nwH(rn, q), (14)

we find that

wH(rn, q) =
2ν {Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}Γ(a+ 1)

πJ1(R1rn) qa+1(λqα+1 + q + νr2n)
. (15)
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In order to obtain the velocity field w(r, t), we have to apply the inverse trans-
forms (both laplace and Hankel). For this, the above Eq. (14) can be written
as

wH(rn, q) =
2 {Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}Γ(a+ 1)

πr2nJ1(R1rn)

×

{
1

qa+1
−

1 + λqα

qa (λqα+1 + q + νr2n)

}
. (16)

Using the formula [27]

w(r, q) =
π2

2

∞∑

n=1

r2nJ
2
1 (R1rn)B(r, rn)

J2
1 (R1rn)− J2

1 (R2rn)
wH(rn, q), (17)

the inverse Hankel transform of wH(rn, q) is given as

w(r, q) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 −R2
1)

r(R2
2 −R2

1)

Γ(a+ 1)

qa+1
− πΓ(a+ 1)

×

∞∑

n=1

J1(R1rn)B(r, rn)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}

×
1 + λqα

qa (λqα+1 + q + νr2n)
. (18)

Finally, using the expansion

1 + λqα

qa (λqα+1 + q + νr2n)
=

1

λ

∞∑

k=0

(
−νr2n
λ

)k [
q−a−k−1

(qα + λ−1)k+1
+

λ qα−a−k−1

(qα + λ−1)k+1

]
,

(19)

and the known formulae [27]

L−1

{
1

qf

}
=

tf−1

Γ(f)
, f > 0 , (20)

L−1

{
qc

(qb − p)d

}
= Gb, c, d(p, t) , Re(bd− c) > 0, |

p

qb
| < 1 , (21)

where the generalized Gb, c, d(·, ·) function is defined by Eqs. (97) and (101) of
[28]

Gb, c, d(p, t) =

∞∑

j=0

pjΓ(d+ j)

Γ(d)Γ(j + 1)

t(d+j)b−c−1

Γ[(d+ j)b− c]
, (22)

and applying the discrete inverse Laplace transform to Eq. (17), we obtain the
velocity field w(r, t) under the form

w(r, t) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 −R2
1)

r(R2
2 −R2

1)
ta −

πΓ(a+ 1)

λ
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×

∞∑

n=1

J1(R1rn)B(r, rn) {Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}

J2
1 (R1rn)− J2

1 (R2rn)

∞∑

k=0

(
−νr2n
λ

)k

×
{
Gα,−a−k−1,k+1

(
−λ−1, t

)
+ λGα, α−a−k−1,k+1

(
−λ−1, t

)}
. (23)

3.2. Calculation of the Shear Stress. Applying the Laplace transform to
Eq. (4) and using the condition (7), we find that

τ (r, q) =
µ

1 + λqα

(
∂w(r, q)

∂r
−

w(r, q)

r

)
, (24)

where

∂w(r, q)

∂r
−

w(r, q)

r
=

2R2
1R

2
2(Ω2 − Ω1)

r2(R2
2 −R2

1)

Γ(a+ 1)

qa+1
+ πΓ(a+ 1)

×

∞∑

n=1

J1(R1rn)
(

2
rB(r, rn)− rnB̃(r, rn)

)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}

×
1 + λqα

qa (λqα+1 + q + νr2n)
. (25)

is obtained from Eq. (18) and

B̃(rrn) = J0(rrn)Y1(R2rn)− J1(R2rn)Y0(rrn).

Thus Eq. (24) becomes

τ(r, q) =
2µR2

1R
2
2(Ω2 − Ω1)

r2(R2
2 −R2

1)

Γ(a+ 1)

qa+1(1 + λqα)
+

+πµΓ(a+ 1)
∞∑

n=1

J1(R1rn)
(

2
rB(r, rn)− rnB̃(r, rn)

)

J2
1 (R1rn)− J2

1 (R2rn)
×

×{Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}
1

qa (λqα+1 + q + νr2n)
, (26)

applying again the discrete inverse Laplace transform as well as using the known
relation [28]

L−1

{
qc

qb − d

}
= Rb,c(d, t); Re (b− c) > 0, Re(q) > 0, (27)

where the generalized Rb,c(d, t) functions are defined by [28]

Rb,c(d, t) =
∞∑

n=0

dnt(n+1)b−c−1

Γ[(n+ 1)b− c]
(28)

and the expansion

1

qa (λqα+1 + q + νr2n)
=

1

λ

∞∑

k=0

(
−νr2n
λ

)k
q−a−k−1

(qα + λ−1)k+1
, (29)
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we obtain the shear stress τ(r, t) under the form

τ(r, t) =
2µR2

1R
2
2(Ω2 − Ω1)

λr2(R2
2 −R2

1)
Rα,−a−1

(
−λ−1, t

)
+

πµΓ(a+ 1)

λ

×

∞∑

n=1

J1(R1rn)
(

2
rB(r, rn)− rnB̃(r, rn)

)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)

− Ω1R1J1(R2rn)}

∞∑

k=0

(
−νr2n
λ

)k

Gα,−a−k−1,k+1

(
−λ−1, t

)
. (30)

4. Limiting cases

Case I. Making α → 1 into Eqs. (23) and (30), we obtain the velocity field

w
M
(r, t) =

Ω1R
2
1(R

2
2 − r2) + Ω2R

2
2(r

2 −R2
1)

r(R2
2 −R2

1)
ta −

πΓ(a+ 1)

λ

×

∞∑

n=1

J1(R1rn)B(r, rn)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}×

×

∞∑

k=0

(
−νr2n
λ

)k {
G1,−a−k−1,k+1

(
−λ−1, t

)
+ λG1,−a−k,k+1

(
−λ−1, t

)}
.

(31)

and the shear stress

τ
M
(r, t) =

2µR2
1R

2
2(Ω2 − Ω1)

λr2(R2
2 −R2

1)
R1,−a−1

(
−λ−1, t

)
+

πµΓ(a+ 1)

λ

∞∑

n=1

J1(R1rn)
(

2
rB(r, rn)− rnB̃(r, rn)

)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)

− Ω1R1J1(R2rn)}

∞∑

k=0

(
−νr2n
λ

)k

G1,−a−k−1,k+1

(
−λ−1, t

)
(32)

corresponding to an ordinary Maxwell fluid, performing the same motion.
Case II. By now letting λ → 0 into Eqs. (31) and (32) or α → 1 and λ → 0 into

Eqs. (23) and (30), using lim
λ→0

1
λkG1, b, k

(
−λ−1, t

)
= t−b−1

Γ(−b) ; b < 0, we obtain the

velocity field

w
N
(r, t) =

Ω1R
2
1(R

2
2 − r2) + Ω2R

2
2(r

2 −R2
1)

r(R2
2 −R2

1)
ta − πΓ(a+ 1)

×

∞∑

n=1

J1(R1rn)B(r, rn)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}

×

∞∑

k=0

(
−νr2n

)k ta+k

Γ(a+ k + 1)
, (33)
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and the associated shear stress

τ
N
(r, t) =

2µR2
1R

2
2(Ω2 − Ω1)

λr2(R2
2 −R2

1)
R1,−a−1

(
−λ−1, t

)
+

+πµΓ(a+ 1)

∞∑

n=1

J1(R1rn)
(

2
rB(r, rn)− rnB̃(r, rn)

)

J2
1 (R1rn)− J2

1 (R2rn)
×

×{Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}
∞∑

k=0

(
−νr2n

)k ta+k

Γ(a+ k + 1)
(34)

corresponding to a Newtonian fluid, performing the same motion.

5. Special cases

Making a = 1 in Eqs. (23) and (30), the solution for the velocity field

w
1
(r, t) =

Ω1R
2
1(R

2
2 − r2) + Ω2R

2
2(r

2 −R2
1)

r(R2
2 −R2

1)
t−

−
π

λ

∞∑

n=1

J1(R1rn)B(r, rn)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}×

×

∞∑

k=0

(
−νr2n
λ

)k {
Gα,−k−2,k+1

(
−λ−1, t

)
+ λGα, α−k−2,k+1

(
−λ−1, t

)}
.

(35)

and the shear stress

τ
1
(r, t) =

2µR2
1R

2
2(Ω2 − Ω1)

λr2(R2
2 −R2

1)
Rα,−2

(
−λ−1, t

)
+

+
πµ

λ

∞∑

n=1

J1(R1rn)
(

2
rB(r, rn)− rnB̃(r, rn)

)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)

− Ω1R1J1(R2rn)}

∞∑

k=0

(
−νr2n
λ

)k

Gα,−k−2,k+1

(
−λ−1, t

)
(36)

are recovered which are identical to [26].

Now making again a = 0 in Eqs. (24) and (32), the solutions

w
1M

(r, t) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 −R2
1)

r(R2
2 −R2

1)
t−

−
π

λ

∞∑

n=1

J1(R1rn)B(r, rn)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}×

×

∞∑

k=0

(
−νr2n
λ

)k {
G1,−k−2,k+1

(
−λ−1, t

)
+ λG1,−k−1,k+1

(
−λ−1, t

)}
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=
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 −R2
1)

r(R2
2 −R2

1)
t−

π

ν

∞∑

n=1

J1(R1rn)B(r, rn)

r2n[J
2
1 (R1rn)− J2

1 (R2rn)]

× {Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}

{
1− λ

q21ne
q2nt − q22ne

q1nt

q2n − q1n

}
,

(37)

and the shear stress

τ
1M

(r, t) =
2µR2

1R
2
2(Ω2 − Ω1)

λr2(R2
2 −R2

1)
R1,−2

(
−λ−1, t

)
+

πµ

λ

×

∞∑

n=1

J1(R1rn)
(

2
rB(r, rn)− rnB̃(r, rn)

)

J2
1 (R1rn)− J2

1 (R2rn)
{Ω2R2J1(R1rn)

− Ω1R1J1(R2rn)}

∞∑

k=0

(
−νr2n
λ

)k

G1,−k−2,k+1

(
−λ−1, t

)

=
2µR2

1R
2
2(Ω2 − Ω1)

r2(R2
2 −R2

1)

{
t− λ

(
1− e−t/λ

)}
+ πρ

×

∞∑

n=1

J1(R1rn)
(

2
rB(r, rn)− rnB̃(r, rn)

)

r2n[J
2
1 (R1rn)− J2

1 (R2rn)]
{Ω2R2J1(R1rn)

− Ω1R1J1(R2rn)}

{
1 +

q1ne
q2nt − q2ne

q1nt

q2n − q1n

}
(38)

corresponding to an ordinary Maxwell fluid performing the same motion are re-
covered [26].

Finally taking a = 1 in Eqs. (33) and (34), the solutions for the velocity field

w
1N

(r, t) =
Ω1R

2
1(R

2
2 − r2) + Ω2R

2
2(r

2 −R2
1)

r(R2
2 −R2

1)
t

−
π

ν

∞∑

n=1

J1(R1rn)B(r, rn)

r2n[J
2
1 (R1rn)− J2

1 (R2rn)]
×

× {Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}
{
1− e−νr2

n
t
}
, (39)

and the associated shear stress

τ
1N

(r, t) =
2µR2

1R
2
2(Ω2 − Ω1)

r2(R2
2 −R2

1)
t+ πρ

∞∑

n=1

J1(R1rn)
(

2
rB(r, rn)− rnB̃(r, rn)

)

r2n[J
2
1 (R1rn)− J2

1 (R2rn)]
×

×{Ω2R2J1(R1rn)− Ω1R1J1(R2rn)}
{
1− e−νr2

n
t
}
, (40)

corresponding to a Newtonian fluid are recovered [26].
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6. Conclusions

In this paper, the velocity w(r, t) and the shear stress τ(r, t) corresponding to
the flow of an incompressible Maxwell fluid with fractional derivatives, in the
annular region between two infinite coaxial circular cylinders, have been de-
termined using the Laplace and finite Hankel transforms. The solutions that
have been obtained, written under series form in terms of generalized G and
R-functions, satisfy all imposed initial and boundary conditions. In the special
cases, when α → 1 or α → 1 and λ → 0, the corresponding solutions for the
ordinary Maxwell and Newtonian fluids are obtained. These solutions satisfy
the associated boundary conditions (9), respectively, (10).
In order to reveal some relevant physical aspects of the obtained results, the di-
agrams of the velocity field w(r, t) have been drawn against r for different values
of the time t and of the material parameters. Figure 1 shows the profile of the
fluid motion at different values of time. From these figure one can clearly observe
that velocity of the fluid increases with passing time. Effect of power parameter
a on the velocity field is given in Figure 2. It shows that velocity of the fluid is
an increasing function of a. In Figures 3 and 4, it is shown that the laxation time
ν and λ has the same effect on the fluid motion. More exactly, velocity is an
increasing function with respect to both ν and λ. Effect of fractional parameter
α on the fluid motion is represented in Figure 5, it is clearly seen that velocity
of the fluid increases as fluid goes to Maxwell fluid.
Finally, for comparison, the diagrams of w(r, t) corresponding to fractional
Maxwell, ordinary Maxwell and Newtonian fluids are together drawn in Fig-
ure 6 for the same values of the common material constants and time t. The
Newtonian fluid is the swiftest, while the fractional Maxwell fluid is the slowest.
One thing is of worth mentioning that units of the material constants are SI
units in all figures, and the roots rn have been approximated by nπ/(R2 −R1).
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Figure 1. Profiles of the velocity w(r, t) given by Eq. (23) for
R1 = 0.1, R2 = 0.3, Ω1 = −1, Ω2 = 1, a = 2, ν = 0.003, µ =
2.916, λ = 4, α = 0.5 and different values of t.

Figure 2. Profiles of the velocity w(r, t) given by Eq. (23) for
R1 = 0.1, R2 = 0.3, Ω1 = −1, t = 3, Ω2 = 1, ν = 0.003, µ =
2.916, λ = 4, α = 0.5 and different values of a.
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Figure 3. Profiles of the velocity w(r, t) given by Eq. (23)
for R1 = 0.1, R2 = 0.3, Ω1 = −1, Ω2 = 1, t = 5, a = 2, µ =
2.916, λ = 3, α = 0.4 and different values of ν.

Figure 4. Profiles of the velocity w(r, t) given by Eq. (23)
for R1 = 0.1, R2 = 0.3, Ω1 = −1, Ω2 = 1, a = 2, t = 4, ν =
0.03, µ = 2, 916, α = 0.9 and different values of λ.
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Figure 5. Profiles of the velocity w(r, t) given by Eq. (23)
for R1 = 0.1, R2 = 0.3, Ω1 = −1, Ω2 = 1, a = 2, t = 6, ν =
0.003, µ = 2.916, λ = 1.5 and different values of α.

Figure 6. Profiles of the velocity w(r, t) corresponding to the
Newtonian, Maxwell and fractional Maxwell fluids, for R1 =
0.1, R2 = 0.3, Ω1 = −1, Ω2 = 1, a = 2, t = 6, ν = 0.0029, µ =
2.916, λ = 1.8 and α = 0.1.
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