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Abstract. The tangential stress and velocity field corresponding to the

flow of a generalized Oldroyd-B fluid in an infinite circular cylinder will
be determined by mean of Laplace and finite Hankel transform. The mo-
tion is produced by the cylinder, that after t = 0+, begins to rotate about
its axis, under the action of oscillating shear stress ΩR sin(ωt) given on
boundary. The solutions are based on an important remark regarding the
governing equation for the non- trivial shear stress. The solutions that
have been obtained satisfy all imposed initial and boundary conditions.
The obtained solution will be presented under series form in term of gener-
alized G-function. The similar solutions for the ordinary Oldroyd-B fluid,
Maxwell, ordinary Maxwell and Newtonian fluids performing the same mo-
tion will be obtained as special cases of our general solutions.
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1. Introduction

The Oldroyd-B fluid models is very important among the fluids of rate type due
to its special behavior. Also, this model contains the Newtonian fluid model and
Maxwell fluid model as special cases. The Oldroyd-B fluid model [1, 2] considered
the memory effects and elastic effects exhibited by a large class of fluids such as
the biological and polymeric liquids. The motion of a fluid in the neighborhood
of a moving body is of great interest for industry. The flow between cylinders or
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through a rotating cylinder has applications in the food industry and being one
of the most important and interesting problem of motion near rotating bodies.
Exact solutions for some simple flows of Oldroyd-B fluids were presented by
many authors, see for example, Rajagopal and Bhatnagar [3], Hayat et al. [4, 5].
The velocity distriution for different motions of Newtonian fluids through a cir-
cular cylinder is given in [6]. Wood [7] has considered the general case of helical
flow of an Oldroyd-B fluid, due to the combined action of rotating cylinders(with
constant angular velocities) and a constant axial pressure gradient. Accurate so-
lutions regarding motions of Non-Newtonian fluids in cylindrical domains appear
to be those of Ting [2], Srivastava [8] and Water and King [9] for second grade,
Maxwell and Oldroyd-B fluids respectively.
The most general solution corresponding to the helical flow of a second grade
fluid seem to be those of Fetecau and Cornia Fetecau [10], in which the cylinder
is rotating around its axis and sliding along the same axis with time-dependent
velocities.
There is a vast literature dealing with such fluids, but we shall recall here only
a few of the most recent papers [12-16]. Most existing solutions in the literature
correspond to problems with boundary conditions on the velocity. Though, all
above mentioned papers incorporate motion problem in which velocity is given
on the boundary. In [16], Renardy explained how well posed boundary value
problems can be formulated using boundary conditions on stress. Water and
King [17] were among the first specialists who used the shear stress on boundary
to find exact solution for motions of rate type fluids. Our goal is to investigate
analytical solution for the flow of a generalized Oldroyd-B fluid in a circular
cylinder. We considered the boundary conditions on the shear stress.
The flow of fluid is due to rotation of the cyliner around its axis, under the
action of oscillating shear stress ΩR sin(ωt) given on boundary. These solutions
are obtained by mean of integral transforms. The obtained solution satisfy the
all imposed initial and boundary conditions. Finally, solution of the ordinary
Oldroyd-B fluid, Maxwell, ordinary Maxwell and Newtonian fluid flows are ob-
tained as particular cases of our general results.

2. Mathematical formulation of the problem

For an Oldroyd-B fluid constitutive equations is

T = −pI+ S ; S + λ

(

dS

dt
− LS− SLT

)

,

T = µA+ µλr

(

dA

dt
− LA−ALT

)

, (1)

where T (Cauchy stress tensor), -pI (indeterminate spherical stress), S (stress

tensor), L (velocity gradient), µ (dynamic viscosity), A = L + LT (first the
Rivilin-Erickson tensor,) λ and λr (0 6 λr < λ) are relaxation and retardation
time.
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Assume an infinite circular cylinder rotate along z-axis with radius R. Cylinder
is filled with an Oldroyd-B fluid which is at rest at time t = 0. After t = 0+

the cylinder applies an oscillating rotational shear stress ΩR sin(ωt) to the fluid,
where ω is the angular frequency. We assumed that velocity field and the extra
shear stress are of the form

V = V(r, t) = W (r, t)eθ ; S = S(r, t), (2)

where eθ is unit vector in the θ-direction of the cylindrical coordinate system.We
assume that S and V is a function of time and radius only. At t = 0 there is no
motion in fluid i.e; fluid is at rest then

V(r, 0) = 0 ; S(r, 0) = 0. (3)

Introducing Eqs.(2) in(1) and using (3) we get Srr = Srz = Szθ = Szz = 0 and
the meaning partial differential equation.

(

1 + λ
∂

∂t

)

τ(r, t) = µ

(

1 + λr

∂

∂t

)(

∂

∂r
−

1

r

)

ω(r, t), (4)

where τ(r, t) = Srθ(r, t) is non-zero component of extra stress tensor. If we
neglect the body force, then due to rotation symmetry the balance of linear
momentum leads to the relevant equations.

ρ
∂

∂t
ω(r, t) =

(

∂

∂r
+

2

r

)

τ(r, t), (5)

where ρ is the constant density of the field. In order to obtained the governing
equations for shear stress on boundary we eliminate ω(r, t) between equation (4)
and (5) after elimination ω(r, t) we get,

(

1 + λ
∂

∂t

)

∂

∂t
τ(r, t) = ν

(

1 + λr

∂

∂t

)(

∂2

∂r2
+

1

r

∂

∂r
−

4

r2

)

τ(r, t), (6)

where ν = µ
ρ
is the Kinematic viscosity of the fluid. The governing model by

using fractional derivative is shown as;
(

1 + λDα
t

)

τ(r, t) = µ

(

1 + λrD
β
t

)(

∂

∂r
−

1

r

)

ω(r, t), (7)

ρDα
t ω(r, t) =

(

∂

∂r
+

2

r

)

τ(r, t), (8)

(

1 + λDα
t

)

∂

∂t
τ(r, t) = ν

(

1 + λrD
β
t

)(

∂2

∂r2
+

1

r

∂

∂r
−

4

r2

)

τ(r, t). (9)

Where

Dα
t f(t) =

1

Γ(1− α)

d

dt

t
∫

0

f(τ)

(t− τ)α
dτ ; 0 6 α < 1

is Caputo fractional derivative operator and Γ(.) is the Euler integral of second
kind or Gamma function.
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At t = 0 fluid is at rest because there is no rotation in the cylinder, at t = 0+

cylinder starts its rotation along its axis and boundary of cylinder applies shear
stress on fluid and radius of cylinder is R. Appropriate conditions i.e; initial and
boundary conditions are,

τ(r, t)|t=0 =
∂τ(r, t)

∂t
|t=0 = 0; rǫ[0, R] (10)

τ(R, t) = ΩR sin(ωt), : t > 0, (11)

where Ω is constant.

3. Calculation Of Shear Stress

We shall use the Laplace transform and Finite Hankel transform to determine
the exact analytical solution. Taking the Laplace transform of the equations (9)
and (11) we have

q(1 + λqα)τ (r, q) = ν(1 + λrq
β)

(

∂2

∂r2
+

1

r

∂

∂r
−

4

r2

)

τ (r, q), (12)

τ(R, q) = ΩR
ω

q2 + ω2
, (13)

where τ (r, q) represent the Laplace transform of the function τ(r, t). We can
write equation (12) as,

τ (r, q) =
ν(1 + λrq

β)

q + λqα+1

(

∂2

∂r2
+

1

r

∂

∂r
−

4

r2

)

τ (r, q). (14)

Finite Hankel transform of the function τ(r, q) defined as,

τH(rn, q) =

R
∫

0

rJ2(rrn)τ (r, q)dr, (15)

identity which we used here is,

R
∫

0

rJ2(rrn)

(

∂2

∂r2
+

1

r

∂

∂r
−

4

r2
J2(rrn)

)

τ(r, q)dr

= −Rτ(R, q)J ′
2(Rrn)rn − r2nτH(rn, q). (16)

Multiplying equation (14) by rJ2(rrn) then integrate from 0 to R with respect
to r, we get

R
∫

0

rJ2(rrn)τ (r, q)dr =
ν(1 + λrq

β)

q + λqα+1

R
∫

0

r

(

∂2

∂r2
+

1

r

∂

∂r
−

4

r2

)

J2(rrn)τ (r, q)dr.
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using equations (13), (15) and (16) we get,

τH(rn, q) =
ν(1 + λrq

β)

q + λqα+1
[−RrnJ

′
2(Rrn)τ (R, q)− r2nτH(rn, q)].

Now simplification for τH(rn, q) we get

τH(rn, q) =
−R2ΩωJ ′

2(Rrn)

(q2 + ω2)

νrn(1 + λrq
β)

(q + νr2n + λqα+1 + νλrqβr2n)
. (17)

Separating the function in suitable form as,

τH(rn, q) =
−R2ΩωJ ′

2(Rrn)

(q2 + ω2)rn
+

R2ΩωJ ′
2(Rrn)

(q2 + ω2)

q + λqα+1

rn(q + λqα+1 + νr2n + νλrqβr2n)
,

τH(rn, q) = τ1H(rn, q) + τ2H(rn, q), (18)

where,

τ1H(rn, q) =
−R2ΩωJ ′

2(Rrn)

rn(q2 + ω2)
= −R2ΩJ1(Rrn)

ω

q2 + ω2
, (19)

τ2H(rn, q) =
R2ΩωJ ′

2(Rrn)

rn(q2 + ω2)

q + λqα+1

(q + λqα+1 + νr2n + νλrqβr2n)
,

τ2H(rn, q) =
R2ΩωJ1(Rrn)

q2 + ω2

q + λqα+1

(q + λqα+1 + νr2n + νλrqβr2n)
. (20)

Using the identity i.e;

1

q + νr2n + λqβ+1 + νr2nλrqγ

=
1

λ

∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!

(

−νr2n
λ

)k

λm
r

qγm−k−1

(qβ + 1
λ
)k+1

.

Now equation (20) becomes,

τ2H(rn, q) = R2ΩJ1(Rrn)
1

λ

∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!
λm
r

(

−νr2n
λ

)k
ω

q2 + ω2

[

qβm−k

(qα + 1
λ
)k+1

+ λ
qα+βm−k

(qα + 1
λ
)k+1

]

. (21)

Taking the inverse Laplace transform of equation (19)

τ1H(rn, t) = −R2ΩJ1(Rrn) sin(ωt). (22)

Take the inverse Laplace transform and use convolution theorem of equation
(21) we get

τ2H(rn, t) = R2ΩJ1(Rrn)
1

λ

∞
∑

k=0

k
∑

m=0

k!

m!(k −m)!

(

−νr2n
λ

)k

λm
r

[

t
∫

0

sinω(t− s)
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Gα,βm−k,k+1(−λ−1, s)ds+ λ

t
∫

0

sinω(t− s)Gα,α+βm−k,k+1(−λ−1, s)ds

]

. (23)

WhereGa,b,c(., t) is the generalized G-function with £
−1{ qb

(qa−d)c } = Ga,b,c(d, t) ,

Re(ac−b) > 0 , Re(q) > 0 , | d
qa

|< 1 andGa,b,c(d, t) =
∑∞

j=0
t(c+j)a−b−1

Γ((c+j)a−b))
djΓ(c+j)

Γ(c)Γ(j+1)

Taking inverse Laplace transform of equation (18) and using equation (22) and
(23)

τH(rn, t) = −R2ΩJ1(Rrn) sin(ωt) +
R2ΩJ1(Rrn)

λ

∞
∑

k=0

k
∑

m=0

k!

m!(k −m)!

× λm
r

(

−νr2n
λ

)k[
t

∫

0

sinω(t− s)Gα,βm−k,k+1(−λ−1, s)ds

+ λ

t
∫

0

sinω(t− s)Gα,α+βm−k,k+1(−λ−1, s)ds

]

. (24)

Apply the inverse Hankel transform to equation (24) and using the known for-
mulae

H(r2) =

R
∫

0

r3J2(rrn)dr =
−R3J1Rrn

rn

τ(r, t) = 2

∞
∑

n=1

J2(rrn)

[J ′
2(rn)]

2
τH(rn, t)

τ(r, t) =
r2rnΩ sin(ωt)

R
+ 2R2Ω

∞
∑

n=1

J2(rrn)J1(Rrn)

J2
1 (rn)

1

λ

×
∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!
λm
r

(

−νr2n
λ

)k[
t

∫

0

sinω(t− s)Gα,βm−k,k+1(−λ−1, s)ds

+ λ

t
∫

0

sinω(t− s)Gα,α+βm−k,k+1(−λ−1, s)ds

]

(25)

4. Calculation for Velocity Field

Rewrite equation (8) and used equation (25) we get the non-integer order dif-
ferential equation for velocity.

ρDα
t ω(r, t) =

(

∂

∂r
+

2

r

)

τ(r, t)
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where

τ(r, t) = τ1(r, t) + τ2(r, t)

So above equation becomes;

ρDα
t ω(r, t) =

(

∂

∂r
+

2

r

)

τ1(r, t) +

(

∂

∂r
+

2

r

)

τ2(r, t) (26)

where

τ1(r, t) =
r2rnΩ sin(ωt)

R

τ2(r, t) = 2R2Ω

∞
∑

n=1

J2(rrn)J1(Rrn)

J2
1 (rn)

1

λ

∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!
λm
r

(

−νr2n
λ

)k

×

[

t
∫

0

sinω(t− s)Gα,βm−k,k+1(−λ−1, s)ds

+λ

t
∫

0

sinω(t− s)Gα,α+βm−k,k+1(−λ−1, s)ds

]

.

So,
(

∂

∂r
+

2

r

)

τ1(r, t) =
4rrnΩ sin(ωt)

R
, (27)

and

(

∂

∂r
+

2

r

)

τ2(r, t) =
2R2Ω

λ

∞
∑

n=1

J1(rrn)J1(Rrn)rn
J2
1 (rn)

∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!

×

(

−νr2n
λ

)k

λm
r

[

t
∫

0

sinω(t− s)Gα,βm−k,k+1(−λ−1, s)ds

+ λ

t
∫

0

sinω(t− s)Gα,α+βm−k,k+1(−λ−1, s)ds

]

. (28)

Use equation (27) and (28) in equation (26) we get,

ρDα
t ω(r, t) =

4rrnΩ sin(ωt)

R
+

2R2Ω

λ

∞
∑

n=1

J1(rrn)J1(Rrn)rn
J2
1 (rn)

×

∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!
λm
r

(

−νr2n
λ

)k[
t

∫

0

sinω(t− s)Gα,βm−k,k+1(−λ−1, s)ds
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+ λ

t
∫

0

sinω(t− s)Gα,α+βm−k,k+1(−λ−1, s)ds

]

. (29)

The Laplace transform of equation (29) is

̟(r, q) =
4rrnΩ

ρR

1

qα
ω

q2 + ω2
+

2R2Ω

ρλ

∞
∑

n=1

J1(rrn)J1(Rrn)rn
J2
1 (rn)

∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!

(

−νr2n
λ

)k

λm
r

[

ω

q2 + ω2

qβm−α−k

(qα + 1
λ
)k+1

+ λ
ω

q2 + ω2

qβm−k

(qα + 1
λ
)k+1

]

. (30)

Now Apply inverse Laplace transform to equation (30) and using the Convolution
theorem

ω(r, t) =
4rrnΩ

ρR

t
∫

0

sinω(t− τ)
tα−1

Γ(α)
dτ +

2R2Ω

ρλ

∞
∑

n=1

J1(rrn)J1(Rrn)rn
J2
1 (rn)

×
∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!

(

−νr2n
λ

)k

λm
r

[

t
∫

0

sinω(t− s)Gα,βm−α−k,k+1(−λ−1, s)ds

+ λ

t
∫

0

sinω(t− s)Gα,βm−k,k+1(−λ−1, s)ds

]

. (31)

5. Limiting case

5.1. Ordinary Oldroyd-B fluid. Letting α → 1 , β → 1 into equations
(25) and (31)we get the result of shear stress and velocity field respectively for
ordinary Oldroyd-B fluid.

τOB(r, t) =
r2rnΩ sin(ωt)

R
+ 2R2Ω

∞
∑

n=1

J2(rrn)J1(Rrn)

J2
1 (rn)

1

λ

∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!

×

(

−νr2n
λ

)k

λm
r

[

t
∫

0

sinω(t− s)G1,m−k,k+1(−λ−1, s)ds

+ λ

t
∫

0

sinω(t− s)G1,1+m−k,k+1(−λ−1, s)ds

]

, (32)
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ωOB(r, t) =
4rrnΩ

ρR

t
∫

0

sinω(t− τ)dτ +
2R2Ω

ρλ

∞
∑

n=1

J1(rrn)J1(Rrn)rn
J2
1 (rn)

×

∞
∑

k=0

k
∑

m=0

k!

(k −m)!m!

(

−νr2n
λ

)k

λm
r

[

t
∫

0

sinω(t− s)G1,m−k−1,k+1(−λ−1, s)ds

+ λ

t
∫

0

sinω(t− s)G1,m−k,k+1(−λ−1, s)ds

]

. (33)

5.2. Generalized Maxwell Fluid. By placing λr → 0 , β → 0 into equations
(25) and (31)we get the results of shear stress and velocity field for generalized
Maxwell fluid respectively.

τGM (r, t) =
r2rnΩ sin(ωt)

R
+ 2R2Ω

∞
∑

n=1

J2(rrn)J1(Rrn)

J2
1 (rn)

1

λ

∞
∑

k=0

(

−νr2n
λ

)k

[

t
∫

0

sinω(t−s)Gα,−k,k+1(−λ−1, s)ds+λ

t
∫

0

sinω(t−s)Gα,α−k,k+1(−λ−1, s)ds

]

,

(34)

ωGM (r, t) =
4rrnΩ

ρR

t
∫

0

sinω(t− τ)
tα−1

Γ(α)
dτ +

2R2Ω

ρλ

∞
∑

n=1

J1(rrn)J1(Rrn)rn
J2
1 (rn)

×
∞
∑

k=0

(

−νr2n
λ

)k[
t

∫

0

sinω(t− s)Gα,−α−k,k+1(−λ−1, s)ds

+ λ

t
∫

0

sinω(t− s)Gα,−k,k+1(−λ−1, s)ds

]

. (35)

5.3. Ordinary Maxwell Fluid. By putting α → 1 in equation (34) and (35)
we get expressing for the shear stress and velocity field for ordinary Maxwell
fluid respectively.

τOM (r, t) =
r2rnΩ sin(ωt)

R
+ 2R2Ω

∞
∑

n=1

J2(rrn)J1(Rrn)

J2
1 (rn)

1

λ

∞
∑

k=0

(

−νr2n
λ

)k

[

t
∫

0

sinω(t−s)G1,−k,k+1(−λ−1, s)ds+λ

t
∫

0

sinω(t−s)G1,1−k,k+1(−λ−1, s)ds

]

,

(36)
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ωOM (r, t) =
4rrnΩ

ρR

t
∫

0

sinω(t− τ)dτ

+
2R2Ω

ρλ

∞
∑

n=1

J1(rrn)J1(Rrn)rn
J2
1 (rn)

∞
∑

k=0

(

−νr2n
λ

)k

[

t
∫

0

sinω(t−s)G1,−1−k,k+1(−λ−1, s)ds+λ

t
∫

0

sinω(t−s)G1,−k,k+1(−λ−1, s)ds

]

.

(37)

5.4. Newtonian Fluid. Let λr → 0 and using the limit, i.e;

lim
λ→0

1

λk
G1,b,k

(

−1

λ
, t

)

=
t−b−1

Γ(−b)
,

b < 0 in (25) and (31) we can get results for Newtonian fluid as,

τNF (r, t) =
r2rnΩ sin(ωt)

R
+

2R2Ω

ω2 + ν2r4n

∞
∑

n=1

J2(rrn)J1(Rrn)

J2
1 (rn)

{ω2 sin(ωt)+

νr2nω cos(ωt)− ωνr2ne
−νr2nt}, (38)

ωNF (r, t) =
4rrnΩ

ρR

t
∫

0

sinω(t−τ)
tα−1

Γ(α)
dτ+

2R2Ω

ρ(ω2 + ν2r4n)

∞
∑

n=1

J1(rrn)J1(Rrn)rn
J2
1 (rn)

[

− ωνr2n

t
∫

0

e−νr2n(t−s) τ
α−1

Γ(α)
ds+ ω2

t
∫

0

sinω(t− s)
τα−1

Γ(α)
ds

+ νr2nω

t
∫

0

cosω(t− s)
τα−1

Γ(α)
ds

]

. (39)

6. Conclusion

The idea presented in this paper is to find a formula which is useful to find
out exact solutions for shear stress and velocity field of any Oldroyd-B fluid
which is present in rotationally oscillating cylinders. We used two transformation
i.e; Hankel transform and Laplace transform. At time t = 0+, cylinder starts
its rotation about its axis. To obtain the solutions we used the finite Hankel
and Laplace transforms. We express our results in the form of generalized G-
function, which satisfy the governing equations and fulfilled all imposed initial
and boundary conditions. Furthermore, the results for Ordinary Oldroyd-B
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fluid, fractional Maxwell fluid, ordinary Maxwell fluid and classical Newtonian
fluid are obtained as limiting cases.
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