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Abstract. In this article we discuss moduli and constants of quasi-Banach

space and give some important properties of these moduli and constants.
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1. Introduction

The study on Banach space geometry provides many fundamental notions and
interesting aspects, and sometimes has surprising results. The basic geometric
properties such as convexity, smoothness, non-squareness have made great con-
tributions to various fields of Banach space theory. Strict convexity of Banach
spaces was first introduced in 1936 by Clarkson [1] as the property that the unit
sphere contains no non-trivial line segments, that is, 1−‖2−1(x+y)‖ > 0 when-
ever ‖x‖ = ‖y‖ = 1. Clarkson [1] made use of these values to define the uniform
version of convexity to look at how convex the unit ball is in a space. And the
modulus of convexity provides a quantification of the geometric structure of the
space from the viewpoint of convexity. A situation similar to this also occurs
in smoothness and other properties. A Banach space B is said to be smooth
if each unit vector has a unique norm one support functional. In fact, this is
equivalent to the statement that the norm is Gateaux differentiable, which hap-
pens iff limt→0+ = sup(‖x + ty‖ + ‖x − ty‖)/2 − 1 = 0 where x, y ∈ SB and
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‖x‖ = 1. This allows us to quantify the geometric structure of the space from
the viewpoint of smoothness, namely, the modulus of smoothness of a Banach
space B. An advantage of these quantifications is that the complete duality
between uniform convexity and uniform smoothness can be easily deduced by
the well-known Lindenstrauss formulas, that is, a Banach space B is uniformly
convex if and only if its dual space B∗ is uniformly smooth. The same state-
ment still holds if B is replaced with B∗. Thus quantifying geometric structures
might lead better results. Note that the same duality does not hold between
strict convexity and smoothness in general, though one of those two properties
of B∗ implies the other of B. There are some other ideas to quantify geometric
structures of Banach spaces.
Many of the geometric constants for Banach Spaces have been investigated so
far. These constants play an important role in the description of various geomet-
ric structures of Banach Spaces. In 1901 Jung [2] was the first who introduced
a geometric constant for Banach Space. In 1936 and 1937 Clarkson [1, 3] in-
troduced classical modulus of convexity to define a uniformly convex space. A
great number of such moduli have been defined and introduced since then. The
theory of the geometry of Banach Space has evolved very rapidly over the past
fifty years. By contrast the study of quasi-Banach Space has lagged far behind,
even though the first research papers in the subject appeared in the early 1940’s
[4].
There are very sound reasons to develop the understanding of these Space, but
the absence of one of the fundamental tools of functional analysis, the Hahn-
Banach theorem, has proved a very significant stumbling block. However, there
has been some progress in the non-convex theory and arguably it has contributed
to our appreciation of Banach space theory. A systematic study of quasi-Banach
Space only really started in the late 1950’s and early 1960’s with the work of
Klee, Peck, Rolewicz, Waelbroeck and Zelazko. The efforts of these researchers
tended to go in rather separate directions. The subject was given great impe-
tus by the paper of Duren, Romberg and Shields in 1969 which demonstrated
both the possibilities for using quasi-Banach Space in classical function theory
and also high-lighted some key problems related to the HahnBanach theorem.
This opened up many new directions of research. The 1970’s and 1980’s saw
a significant increase in activity with a number of authors contributing to the
development of a coherent theory. An important breakthrough was the work
of Roberts in [5] and [6], who showed that the Krein-Milman theorem fails in
general quasi-Banach Space by developing powerful new techniques.
Quasi-Banach Space (Hp-Space when p < 1) were also used significantly in
Alexandrov’s solution of the inner function problem in 1982 [7]. During this
period three books on the subject appeared by Turpin [8], Rolewicz [9] (actu-
ally an expanded version of a book [6]. In the 1990’s it seems to the author
that while more and more analysts find that quasi-Banach Space have uses in
their research, paradoxically the interest in developing a general theory has sub-
sided somewhat. The strictly convex Banach spaces were introduced in 1936 by
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Clarkson, [1], who also studied the concept of uniform convexity. The uniform
convexity of Lp spaces, 1 < p < ∞, was also established in [1]. The concept
of duality map was introduced by Beurling and Livingston [10] and was further
developed by many others and, De Figueiredo [11]. General properties of the
duality map can be found in De Figueiredo [11]. The most recent research work
in this field is carried out by [12] and [13].

2. Quasi-Banach Spaces

This section collects some basic facts about quasi-Banach spaces. We restrict
ourselves to [11] and the references therein for an extensive overview. If B is a
(real) vector space, we say that ‖.‖ : B → [0,∞) is a quasi-norm if

(1) ‖x‖ = 0 if, and only if x = 0
(2) ‖αx‖ = |α|‖x‖ for all α ∈ R and x ∈ B
(3) there is a constant C ≥ 1, such that ‖x + y‖ ≤ C (‖x‖+ ‖y‖) for all

x, y ∈ B.

The constant C is often referred to as the modulus of concavity, of the quasi-
norm. A very basic and important result is the Aoki-Rolewicz theorem. This
result can be interpreted as saying that of 0 < p ≤ 1 is given by C = 2q/p−1

then there is a constant B so that for any x1, x2, ..., xn ∈ B we have∥∥∥∥∥
n∑
k=1

xk

∥∥∥∥∥ ≤ B
(

n∑
k=1

‖xk‖p
)1/p

. (1)

It is then possible to replace ‖.‖ by an equivalent p-subadditive quai-norm ‖| . |‖
so that

‖| x+ y |‖≤ (‖| x |‖p + ‖| y |‖p)1/p

The space B is said to be p-normable if (1) holds. We will say that B is p-normed
if the quasi-norm on B is p-subadditive.
If a quasi-normed vector space B is complete with respect to the metric induced
by ‖.‖, it is called a quasi-Banach space.

3. Preliminaries

Definition 3.1. For a non-trivial quasi-Banach space B, the modulus of con-
vexity is a function δB : (0, 2] −→ [0, 1] defined as

δB(ε) = inf

{
1− ‖x1 + x2‖

2C
: ε ∈ [0, 2] C ≥ 1, x1, x2 ∈ SB;

‖x1 − x2‖
C

ε

}
. (2)

A characteristic or related coefficient of this modulus is:

δ0(B) = sup {ε ∈ [0, 2] : δB(ε) = 0} . (3)
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Definition 3.2. Let B be a nontrivial quasi-Banach space and SB be a unit ball
in B, the modulus of smoothness is a function ρB : [0,∞) −→ [0,∞) defined
as,

ρB(t) = sup

{
1− ‖x1 + x2‖

2C
: ∀ x1, x2 ∈ SB ; C ≥ 1,

‖x1 − x2‖
C

≤ t ; t ≥ 0

}
,

(4)

ρ1B(t) = sup

{
‖x1 + tx2‖+ ‖x1 − tx2‖

2C
− 1

C
: x1, x2 ∈ SB ; t ≥ 0

}
, (5)

ρ2B(t) = sup

{
1

C

[
min

(
‖x1 + x2‖, ‖x1 − x2‖

)
− 1
]

: x1, x2 ∈ SB ; t ≥ 0

}
. (6)

A characteristic or related coefficient of this modulus is

ρ0(B) = lim
t→0+

(
ρB(t)

t

)
= lim
t→0+

(
ρ1B(t)

t

)
= lim
t→0+

(
ρ2B(t)

t

)
. (7)

Definition 3.3. For a non-trivial quasi-Banach space B the Yang-Wang Mod-
ulus is a function γB : [0, 1] −→ [0, 4] defined as,

γB(t) = sup

{
‖x1 + tx2‖2 + ‖x1 − tx2‖2

2C2
: x1, x2 ∈ SB; t ∈ [0, 1] ; C ≥ 1

}
. (8)

A characteristic or related coefficient of this modulus is,

γ0(B) = lim
t→0+

(
γB(t)− 1

C

t

)
. (9)

Definition 3.4. For a non-trivial quasi-Banach space B, the von Neumann-
Jordan constant is denoted by CNJ(B) and is defined as the smallest constant
K, for which the following estimate holds;

1

K
≤ ‖x1 + x2‖2 + ‖x1 − x2‖2

2C2
(
‖x1‖2 + ‖x2‖2

) ≤ K,

where x1, x2 ∈ SB with (x1, x2) 6= (0, 0) and C ≥ 1 .

Equivalently, it can be written as,

CNJ(B) = sup

{
‖x1 + x2‖2 + ‖x1 − x2‖2

2C2
(
‖x1‖2 + ‖x2‖2

) : x1, x2 ∈ SB ; C ≥ 1

}
. (10)

The parametrized form of this constant is,

CNJ(B) = sup

{
‖x1 + tx2‖2 + ‖x1 − tx2‖2

2C2(1 + t2)
; t ∈ [0, 1] ; C ≥ 1

}
, (11)



126 H. M. U. A. Qadri, Q. Mehmood

where SB is unit sphere and x1, x2 ∈ SB. By taking t = 1 and x1 = x2 = x, we
obtain

CNJ(B) =
‖2x‖2

2C2(1 + 1)
≥ 22

2C(1 + 1)
=

1

C
.

Definition 3.5. For a non-trivial quasi-Banach space B the James Gao-Lau
constant is defined as

J(B) = sup

{
1

C
min

(
‖x1 + x2‖, ‖x1 − x2‖

)
: x1, x2 ∈ SB;C ≥ 1

}
. (12)

The parametrized form of this constant is,

J(B) = sup

{
1

C
min

(
‖x1 + tx2‖, ‖x1 − tx2‖

)
: C ≥ 1 ; t ∈ [0, 1]

}
. (13)

4. Main Results

Here are some basic algebraic inequalities. These inequalities are very important.
With the help of these inequalities, we will be able to proceed some main results.

Lemma 4.1. Every convex function f with convex domain in R is continuous.

Lemma 4.2. [12] For all 0 ≤ a ≤ 2 and 0 ≤ b ≤ 2 we have

a2 + b2

4c2
≤
(
a+ b

2c
− 1

c

)2

+
1

c2
.

Lemma 4.3. [12] For all a ∈ R, b > 0 and t ≥ 0 we have

at2 + b2

1 + t2
≤ a+

√
a2 + b2

2
.

Lemma 4.4. [12] Let 1 < p <∞ and 0 ≤ t ≤ 1, then the function;

φ(t) = (1 + t)p/(1 + tp),

is strictly increasing.

Lemma 4.5. [12] Let 0 < r ≤ 1 and 0 ≤ t ≤ 1, then ∀s, t ∈ [0,∞)

|tr − sr| ≤ |t− s|r.

Lemma 4.6. Let 0 ≤ a ≤ 1 and r0 =

√
4+(1+a)4−(1+a)2

2 , then

(1) a ≤ r0 if a ∈ [0,
√

2− 1]

(2) a ≥ r0 if a ∈ [
√

2− 1, 1]

Proof. Let a ∈ [0,
√

2− 1], then

4 + (1 + a)4 − [(1 + a)2 + 2a]2 = 4(1− a− 3a2 − a3)

= −4(a+ 1)(a+ 1 +
√

2)(a+ 1−
√

2)

≥ 0.
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This implies that √
4 + (1 + a)4 ≥ [(1 + a)2 + 2a]

r0 ≥ a.

Let a ∈ [
√

2− 1, 1], then we can prove it similarly. �

Lemma 4.7. Let B be a quasi-Banach space, then for every x ∈ B with ‖x‖ = 1
and x∗ ∈ X∗ with ‖x∗‖ = 1

ρB(τ) = sup

{
τε

2
− δB∗(ε) : τ > 0; ε ∈ (0, 2]

}
,

ρB∗(τ) = sup

{
τε

2
− δB(ε) : τ > 0; ε ∈ (0, 2]

}
.

Proof. Let τ > 0 and ε ∈ (0, 2] & x, y ∈ SB with ‖x‖ = 1 , ‖y‖ = 1. Then
by Hahn-Banach theorem, ∃ x∗, y∗ ∈ S∗B with ‖x∗‖ = 1 , ‖y∗‖ = 1 such
that;

‖x+ y‖ = 〈x+ y, x∗0〉
‖x− y‖ = 〈x− y, y∗0〉.

Then,

‖x+ y‖+ τ‖x− y‖ − 2C = 〈x+ y, y∗0〉+ τ〈x− y, x∗0〉 − 2C

= 〈x, x∗0 + τy∗0〉+ 〈y, x∗0 − τy∗0〉 − 2C

= ‖x∗0 + τy∗0‖+ ‖x∗0 − τy∗0‖ − 2C.

Therefore, we get

‖x+ y‖+ τ‖x− y‖
2C

− 1 =
‖x∗0 + τy∗0‖+ ‖x∗0 − τy∗0‖

2C
− 1.

Now, ‖x− y‖ < ε so, we get

‖x+ y‖
2C

− 1 +
τεC

2C
=
‖x∗0 + τy∗0‖+ ‖x∗0 − τy∗0‖

2C
− 1.

Taking supremum on both sides, with ‖x‖ = ‖y‖ = 1 and ‖x∗‖ = ‖y∗‖ = 1
we have,

sup

{
‖x+ y‖

2C
− 1

}
+
τεC

2C
= sup

{
‖x∗0 + τy∗0‖+ ‖x∗0 − τy∗0‖

2C
− 1

}
−δB(ε) +

τε

2
= ρB∗(τ)

ρB∗(τ) =
τε

2
− δB(ε).

ρB∗(τ) ≥ sup

{
tε

2
− δB(ε) : t > 0; ε ∈ (0, 2]

}
. (14)
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Now to prove the reverse inequality, we proceed as:
Let x∗, y∗ ∈ S∗B with ‖x∗‖ = 1 , ‖y∗‖ = 1 and let δ > 0 then for every τ > 0
∃ x, y ∈ SB with ‖x‖ = 1 , ‖y‖ = 1 such that;

‖x∗ + τy∗‖ = 〈x0 + τy∗, x∗〉+ ε

‖x∗ − τy∗‖ = 〈y0τy∗, x∗〉+ ε.

Then,

‖x∗ + τy∗‖+ ‖x∗ − τy∗‖ − 2C = 〈x0, x∗ + τy∗〉+ 〈y0, x∗ − τy∗〉 − 2C + 2ε

= 〈x0 + y0, x
∗〉+ τ〈x0 − y0, y∗〉 − 2C + 2ε

= ‖x0 + y0‖+ τ‖x0 − y0‖ − 2C + 2ε

= ‖x0 + y0‖ − 2C + τ‖x0 − y0‖+ 2ε.

Now since, ‖x− y‖ ≤ ε so, we get

‖x∗ + τy∗‖+ ‖x∗ − τy∗‖ − 2C

2C
=
‖x0 + y0‖ − 2C + τεC

2C
+ +

ε

C

=
‖x0 + y0‖ − 2C

2C
+
τεC

2C
+

ε

C

=
‖x0 + y0‖

2C
− 1 +

τε

2
+ +

ε

C
.

Taking supremum on both sides, with ‖x‖ = ‖y‖ = 1 and ‖x∗‖ = ‖y∗‖ = 1
we have,

sup

{
‖x∗ + τy∗‖+ ‖x∗ − τy∗‖

2C
− 1

}
= sup

{
‖x0 + y0‖

2C
− 1

}
+
τε

2
+

ε

C

ρB∗(τ) = −δB(ε) +
τε

2
+

ε

C

ρB∗(τ) =
τε

2
− δB(ε) +

ε

C
.

ρB∗(τ) ≤ sup

{
τε

2
− δB(ε) : τ > 0, ε ∈ (0, 2]

}
. (15)

Hence, by combining (14) and (15) we get

ρB∗(τ) = sup

{
τε

2
− δB(ε) : τ > 0; ε ∈ (0, 2]

}
. (16)

�

Lemma 4.8. Let B be quasi-Banach Space. ∀ 0 ≤ ε1 ≤ J(B) ≤ 2;

δB(ε) ≥ 2(1− J(B))

2− J(B)
+

(
J(B)

2(2− J(B))

)
ε. (17)
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Proof. Since for all 0 ≤ ε ≤ J(B) ≤ 2, we have

δB(J(B)− δB(ε)

J(B)− ε
≤ 1− δB(ε)

2− ε

(for simplicity we shall consider from now δB = δ and J(B) = J)

(δ(J)− δ(ε))(2− ε) ≤ (1− δ(ε))(J − ε)
2(δ(J)− δ(ε))− ε(δ(J)− δ(ε)) ≤ (J(1− δ(ε))− ε(1− δ(ε)))

2δ(J)− 2(δ(ε))− εδ(J) ≤ (J − Jδ(ε))− ε
ε− εδ(J) + 2δ(J)− J ≤ 2δ(ε)− Jδ(ε)

ε(1− δ(J)) + 2δ(J)− J ≤ (2− J)δ(ε).

Since we know that 1− J
2 ≤ δ(J) this implies 1− δ(J) ≤ J

2 . Therefore, we get

ε

(
J

2

)
+ 2(δ(J))− J ≤ (2− J)δ(ε)

Jε+ 4− 2J − 2J

2(2− J)
≤ δ(ε)

Jε+ 4− 4J

2(2− J)
≤ δ(ε)

Jε

2(2− J)
+

4− 4J

2(2− J)
≤ δ(ε).

It can be re-arranged as

δ(ε) ≥
(

J

2(2− J)

)
ε+

4− 4J

2(2− J)

δ(ε) ≥ 4− 4J

2(2− J)
+

(
J

2(2− J)

)
ε

δ(ε) ≥
2(1− J)

2− J
+

(
J

2(2− J)

)
ε

δB(ε) ≥ 2(1− J(B))

2− J(B)
+

(
J(B)

2(2− J(B))

)
ε.

�

Lemma 4.9. Let B be a quasi-Banach Space. For all 0 ≤ J(B) ≤ ε ≤ 2

δB(ε) ≥
[

1

J(B)
− 1

2

]
ε. (18)

Proof. Since we know that δ(ε)
ε is a non-decreasing function, therefore we can

have,

δ(J)

J
≤ δ(ε)

ε
.
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This can be written as,

δ(ε)

ε
≥ δ(J)

J

δ(ε) ≥
(
δ(J)

J

)
ε.

But, we know that

1− J

2
≤ δ(J).

Therefore, we have;

δ(ε) ≥

(
1− J

2

J

)
ε

=

(
2− J

2J

)
ε

δ(ε) ≥
[

1

J
− 1

2

]
ε

δB(ε) ≥
[

1

J(B)
− 1

2

]
ε.

Hence Proof �

Theorem 4.10. Let B be a quasi-Banach Space. Then

ρB(1) ≤ 2

(
1− 1

J(B)

)
.

Proof. If J(B) = 2 or if B is not uniformly non-square, then ρB(1) = 1 and
there is nothing to prove.
Assume J(B) < 2 . According to Lemma (4.7), we have

ρB(1) = sup

{
ε

2
− δ∗B(ε)

}
. (19)

Here we just need to show that

ε

2
− δ∗B(ε) ≤ 2

(
1− 1

J(B)

)
. (20)

Let 0 < ε ≤ J and if ε ≤ 4
(
1− 1

J

)
then the equality in (20) occurs.

Case 1. Let 4
(
1− 1

J

)
< ε ≤ J then by Lemma 4.8, we have

δ∗B(ε) ≥ 2(1− J)

2− J
+

(
J

2(2− J)

)
ε. (21)

From which it follows that

δB(ε) ≥ 2− 2J

2− J
+

(
J

2(2− J)

)
ε,
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subtracting from ε
2 on both sides

ε

2
− δB(ε) ≥ ε

2
−
[

2− 2J

2− J
+

(
J

2(2− J)

)
ε

]
=

(
1− J
2− J

)
ε− 2− 2J

2(2− J)

≤
(

1− J
2− J

)
4

(
1− 1

J

)
− 2− 2J

2(2− J)

≤ 2

(
1− 1

J

)
.

Case 2. Let J < ε ≤ 2 then by Lemma 4.9,

δB(ε) ≥
(

1

J
− 1

2

)
ε

ε

2
− δB(ε) ≥ ε

2
−
(

1

J
− 1

2

)
ε

=

(
1− 1

J

)
ε ≤ 2

(
1− 1

J

)
.

This completes the proof. �

Theorem 4.11. Let B be a quasi-Banach Space. Then

CNJ(B) ≤ 1 + CρB(1)

[√
(1− CρB(1))

2
+ 1− (1− CρB(1))

]
. (22)

Proof. The proof can be consulted from [12, Theorem 3.3] �

Corollary 4.12. Let B be a quasi-Banach Space such that,

ρB(1) ≤
√
J(B)− 1 (23)

Then, the equality holds in (23) if B is not uniformly non-square.

Proof. By Lemma 4.10, we have

ρB(1) ≤ 2

(
1− 1

J

)
≤
√
J(B)− 1. (24)

If B is not uniformly non-square then the equality holds in (24). If the equality
holds in (19) then we have the equality in the second inequality of (24) which
shows that either J(B) = 2 or B is uniformly non-square. This completes the
proof. �

Corollary 4.13. Let B be a quasi-Banach Space, then√
J(B)− 1 ≤ J(B)

2
. (25)
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Proof. Let √
J(B)− 1 ≤ J(B)

2
.

Taking square on both sides

J(B)− 1 ≤
[
J(B)

2

]2
.

This can be written as [
J(B)

2

]2
≥ J(B)− 1.

J(B)2 ≥ 4J(B)− 4.

(J(B)− 2)
2 ≥ 0.

This completes the proof. �

Corollary 4.14. For a quasi-Banach space B the inequality

CNJ(B) ≤ J(B) +
√
J(B)− 1 +

[√
1 + (1−

√
J(B)− 1)2 − 1

]
. (26)

holds if and only if B is not uniformly non-square.

Proof. Let

f(t) = 1 + t
[√

(1 + t)2 + 1− (1− t)
]
.

The function f(t) is strictly increasing and hence by Corollary 4.12,

CNJ(B) ≤ f(ρB(1)) ≤ f(
√
J(B)− 1),

which implies (26).
We can immediately see that the equality in (26) holds if B is not uniformly
non-square. If the equality in (26) holds then we have,

f(ρB(1)) ≤ f(
√
J(B)− 1).

Which shows that
ρB(1) ≤

√
J(B)− 1.

Which implies that B is not uniformly non-square by Corollary 4.12. This com-
pletes the proof. �

Corollary 4.15. Let B be a quasi-Banach Space. Then

CNJ(B) ≤ J(B) +
√
J(B)− 1

[√
(1− CρB(1))

2
+ 1− 1

]
. (27)

Proof. The proof is obvious on the same pattern as we have done in the above
corollaries. �

Theorem 4.16. Let B be a non-trivial quasi-Banach space, then

CNJ(B) = sup

{
γB(t)

1 + t2
: t ∈ [0, 1]

}
. (28)
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Proof. Since we know that the parametric form of the von-Numan james constant
is,

CNJ(B) = sup

{
‖x1 + tx2‖2 + ‖x1 − tx2‖2

2C2(1 + t2)
: t ∈ [0, 1];C ≥ 1

}

= sup

{
γB(t)

1 + t2
: t ∈ [0, 1]

}
.

�

Competing interests

The authors declare that they have no competing interests.

References

1. Clarkson, J. A. (1936). Uniformly convex spaces. Transactions of the American Mathe-
matical Society, 40 (3), 396-414. https://doi.org/10.1090/S0002-9947-1936-1501880-4

2. Jung, H. W. E. (1899). ber die kleinste kugel die eine rumliche figur einschliesst... Mar-

burg..
3. Clarkson, J. A. (1937). The von Neumann-Jordan constant for the Lebesgue spaces. Ann.

of Math., 38, 114-115.

4. Day, M. M. (1940). The spaces Lp with 0 < p < 1. Bulletin of the American Mathematical
Society, 46 (10), 816-823.

5. Roberts, J. W. (1975). Pathological compact convex sets in Lp[0, 1], 0 ≤ p < 1. In The

Altgeld Book, University of Illinois Functional Analysis Seminar (Vol. 1976).
6. Roberts, J. W. (1977). A nonlocally convex F-space with the Hahn-Banach approximation

property. In Banach spaces of analytic functions (pp. 76-81). Springer, Berlin, Heidelberg.

7. Aleksandrov, A. B. (1983). The existence of inner functions in the ball. Mathematics of
the USSR-Sbornik, 46 (2), 143. https://doi.org/10.1070/SM1983v046n02ABEH002759

8. Turpin, P. Convexities in general topological vector spaces. Dissertationes Math

9. Rolewicz, S. (1957). On a certain class of linear metric spaces. Bull. Acad. Polon. Sci, 5,
471-473.

10. Beurling, A., & Livingston, A. E. (1962). A theorem on duality mappings in Banach spaces.
Arkiv fr Matematik, 4 (5), 405-411.

11. de Figueiredo, D. G. (1967). Topics in Nonlinear Functional Analysis (Vol. 48), University

of Maryland. Institute for Fluid Dynamics and Applied Mathematics.
12. Kwun, Y. C., Mehmood, Q., Nazeer, W., Haq, A. U., & Kang, S. M. (2016). Relations

between generalized von Neumann-Jordan and James constants for quasi-Banach spaces.

Journal of Inequalities and Applications, 2016 (1), 171. https://doi.org/10.1186/s13660-
016-1115-z

13. Nazeer, W., Mehmood, Q., Kang, S. M., & Haq, A. U. (2018). Generalized von Neumann-

Jordan and James Constants for Quasi-Banach Spaces. Journal of Computational Analysis
and Applications, 25(6),1043-1052.

Hussain Minhaj Uddin Ahmad Qadri

Aitchison College, Lahore 54000, Pakistan.
e-mail: minhaj h@hotmail.com

Qaisar Mehmood

Department of Mathematics, Govt. Science College, Wahdat Road, Lahore Pakistan.
e-mail: qaisar47@hotmail.com


