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Abstract. In this paper, the notions of fuzzy zero-divisors and fuzzy inte-

gral domains are illustrated. Some fundamental properties of fuzzy integral
domains are proved. Moreover, the notions of fuzzy regular element and

fuzzy regular sequences are defined. It is shown that any permutation

(resp. any positive integral power) of a fuzzy regular sequence is again a
fuzzy regular sequence. At the end, fuzzy regular sequences of two fuzzy

submodules are related with the help of fuzzy short exact sequences.
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1. Introduction

The concept of fuzzy set theory was coined by L. Zadeh [1] to deal with the
vagueness. This new theory provide a rich and meaningful improvement. More-
over, fuzzy set theory may be considered as a generalization of the classic set
theory. Fuzzy sets has a wide range of applications in applied sciences such as
computer sciences, management sciences, control sciences, robotics, artificial in-
telligence, pattern recognition and operation research etc. A. Rosenfeld, in [2],
originated the concept of fuzzy groups and fuzzy subgroups. Since then many
people have studied about fuzzy subgroups (see [3], [4], [5] and [6])
Most of the algebraic structures have been fuzzified by many researchers. Firstly,
in [7], L. Wang-jin studied the fuzzy subrings and fuzzy ideals of a ring. L. W.
Jin introduced some operations on fuzzy ideals (see [8]). Many other researchers
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continued the investigation of fuzzy subrings and fuzzy ideals (see [9], [10], [11]
and [12]).
In [13], C.V. Negoita and D.A. Ralescu invented fuzzy submodules of a module.
After that F. Pan defined fuzzy quotient modules, fuzzy finitely generated mod-
ules and fuzzy exact sequences (see [14], [15] and [16]). Moreover, he introduced
the notation of fuzzy homomorphism between fuzzy submodules. G. Muganda
introduced the notation of free fuzzy modules (see [17]). In [18], R. Kumar, S.
K. Bhambri, and P. Kumar presented some fundamental operations on fuzzy
submodules.
This paper comprises six sections. Section 2 contains some auxiliary and prelim-
inary results. In Section 3, fuzzy zero-divisors and fuzzy integral domains of an
integral domain are defined. It is shown that the homomorphic image and pre-
image of a fuzzy integral domain is again a fuzzy integral domain. Also, some
fundamental properties of a fuzzy integral domain are proved. Section 4 and 5
are devoted to the study of fuzzy regular elements and fuzzy regular sequences.
Some results on fuzzy regular sequences are proved analogous to those that hold
for the ordinary regular sequences. Finally, Section 6 consists of some concluded
remarks.

2. Preliminaries

In this section, some basic definitions and fundamental results are given. In
this paper, R is denoted by a commutative ring with additive identity 0 and
multiplicative identity 1.

Definition 2.1. (see [1]) A fuzzy subset of a non-empty set X is defined by a
map

µ : X → [0, 1],

also called a membership function which assigns degree of membership to each
individual of X in the unit interval [0, 1]. The collection of all fuzzy subsets of
a set X is denoted by FP (X).

1R is referred as the characteristic function of R. Let µ, ν ∈ FP (R), then their
intersection is defined as follows:

(µ ∩ ν)(x) = µ(x) ∧ ν(x),

for all x ∈ R. Here, ∧ denotes the infimum value.

Definition 2.2. ([19, Definition 1.1.3]) Let a ∈ R, and 0 < λ ≤ 1. Then a fuzzy
point, aλ, of R is a fuzzy subset which is defined as follows:

aλ(x) =

{
λ, if x = a;
0, if x 6= a.

for all x ∈ R.
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Definition 2.3. ([19, Definition 1.1.13]) Let f : X → Y be a function, µ ∈
FP (X) and ν ∈ FP (Y ). Then the fuzzy subset f−1(ν) (resp. f(µ) ) of X (resp.
of Y ) is defined by:

f−1(ν)(x) = ν(f(x)) and

f(µ)(y) =

{
∨{µ(a) : a ∈ X, f(a) = y}, if f−1(y) 6= ∅;
0, otherwise.

for all x ∈ X and y ∈ Y. Here, ∨ denotes the supremum value.

Definition 2.4. ([7, Definition 3.1]) Let µ ∈ FP (R), then µ is called a fuzzy
subring of R, if the following conditions hold:

(1) µ(r − s) ≥ µ(r) ∧ µ(s),
(2) µ(rs) ≥ µ(r) ∧ µ(s) and
(3) µ(0) = 1,

for all r, s ∈ R. The set of all fuzzy subrings of R is denoted by FS(R).

Definition 2.5. ([7, Definition 3.2]) Let µ ∈ FS(R), then it is called a fuzzy
ideal of R, if µ(rs) ≥ µ(r) ∨ µ(s), for all r, s ∈ R.

Theorem 2.6. Let µ ∈ FS(R) and I an ideal of R. Define ξ ∈ FP (R/I) as
follows:

ξ(x+ I) = ∨{µ(y) : y + I = x+ I}
for all x ∈ R. Then ξ ∈ FS(R/I).

Proof. See [19, Theorem 3.2.10]. �

In the rest of paper, ξ is called the quotient fuzzy subring of R/I induced by µ.

3. Fuzzy Integral Domains

In this section, fuzzy zero-divisors, fuzzy integral domains are defined and some
significant results are proved.

Definition 3.1. Let µ ∈ FS(R), then a non-zero and non-unit element r ∈ R is
called a fuzzy zero-divisor over µ, if there exists a non-zero and non-unit element
s ∈ R such that µ(rs) = 1. If a non-zero element is not a fuzzy zero-divisor over
µ, then it is called a fuzzy non-zero divisor over µ.

Note that if µ 6= 01 is a fuzzy sub-ring of R, then every zero-divisor over R is a
fuzzy zero-divisor over µ. One can see that the converse is not true.

Definition 3.2. Let R be an integral domain and µ ∈ FS(R). Then µ is called
a fuzzy integral domain of R, if there does not exist any fuzzy zero-divisor over
µ. FID(R) is denoted by the set of all fuzzy integral domains of R.

From now on, R∗ is denoted by the set of all unit elements of R. Moreover,
in the rest of this section, R is assumed to be an integral domain. Also, µ∗ is
denoting the following set:

µ∗ = {r ∈ R : µ(r) = 1}.
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Example 3.3. Let R = Q[x] be the polynomial ring with rational coefficients
and µ a fuzzy sub-ring of R which is defined as:

µ(x) =

{
1, if x ∈ Z;
0.5, if x /∈ Z.

Here, Z denotes the ring of integers. Since µ∗ = Z ⊆ Q = {0} ∪ R∗. By next
Lemma 3.4, it follows that µ is a fuzzy integral domain.

In the next result, a characterization of fuzzy integral domains is given.

Lemma 3.4. Let µ ∈ FS(R), then the following conditions are equivalent:

(1) µ ∈ FID(R).
(2) µ(r) 6= 1, for all non-zero and non-unit elements r ∈ R.
(3) µ∗ ⊆ {0} ∪R∗.

In particular, 01 is a fuzzy integral domain of R.

Proof. Note that (2) and (3) are equivalent. We prove that (1) is equivalent to
(2). Suppose that (2) holds and there exist r, s ∈ R such that µ(rs) = 1. By
(2), it follows that rs = 0 or rs is unit.
If rs = 0, then either r = 0 or s = 0 since R is an integral domain. Now, if rs is
unit, then both r and s are units. From each case we conclude that there does
not exist any fuzzy zero-divisor over µ. So, µ is a fuzzy integral domain of R.
Conversely, let µ ∈ FID(R). Suppose that µ(r) = 1, for some non-zero element
r ∈ R. Then, we have:

µ(r2) ≥ µ(r) ∧ µ(r) = 1.

It implies that µ(r2) = 1. If r is non-unit, then r will become a fuzzy zero-divisor
over µ which is not possible. Hence, r is unit. This proves that µ(r) 6= 1, for all
non-zero and non-unit elements r ∈ R. �

Note that if µ is a fuzzy integral domain of R, then the equality µ∗ = {0} ∪R∗
is not true in general, see Example 3.3.

Remark 3.1. (i) Let µ ∈ FS(R), then the following conditions are equivalent:

(1) R is a field.
(2) Every fuzzy sub-ring of R is a fuzzy integral domain.
(3) 1R is a fuzzy integral domain.

(ii) Let µ be a fuzzy ideal of R such that µ ∈ FID(R), then the following
conditions are equivalent:

(1) R/µ = {µ} i.e. R/µ is the zero ring.
(2) r + µ = 0 + µ, for all r ∈ R.
(3) 1 + µ = 0 + µ.
(4) µ(1) = 1.
(5) µ = 1R.

Corollary 3.5. Let µ be a fuzzy ideal of R such that µ ∈ FID(R). Then the
following hold:
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(1) If µ∗ 6= {0}, then R is a field and µ = 1R. In particular, R/µ = {µ}.
(2) If R is not a filed, then µ∗ = {0} and µ 6= 1R. In particular, R/µ is an

integral domain.

Proof. (1) Suppose that µ∗ 6= {0}. By [19, Thoerem 3.1.10], µ∗ is an ideal of
R. Since µ is a fuzzy integral domain. By Lemma 3.4, we have µ∗ ⊆ {0} ∪ R∗.
Then there exists a unit element r ∈ R such that r ∈ µ∗. It follows that µ∗ = R.
This proves that

µ = 1R and R = {0} ∪R∗.
Hence, R is a field. By Remark 3.1(ii), R/µ = {µ}.

(2) It is easy in view of (1) and Remark 3.1(i). �

In the next Examples, it is shown that the assumptions in Corollary 3.5 are
necessary.

Example 3.6. (1) Let R = Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z} and I =<

3, 2 +
√
−5 >. Let µ ∈ FP (R) such that

µ(x) =

{
1, if x = 0;
1− 1

nx
, where nx is the smallest positive integer such that x /∈ Inx .

Then µ is a fuzzy ideal of R with µ∗ = {0}. By Lemma 3.4, µ is a fuzzy integral
domain. Note that neither R is a field nor µ = 1R.

(2) Let R = Z[x]. Suppose that µ ∈ FP (R):

µ(r) =



1, if r ∈< x2 > and r /∈< x3 >;
0, if r /∈< x2 >;
1− 1

4 , if r ∈< x3 > and r /∈< x4 >;
1− 1

5 , if r ∈< x4 > and r /∈< x5 >;
...

....

Then µ is a fuzzy ideal of R with µ∗ =< x2 >* R∗ ∪{0} = {0,±1}. By Lemma
3.4, µ is not a fuzzy integral domain. Note that neither R is a field nor µ = 1R.
Moreover, R/µ ∼= R/µ∗ = Z[x]/ < x2 > is neither the zero ring nor an integral
domain.

Lemma 3.7. Let µ, ν ∈ FS(R) such that µ ⊆ ν. If ν ∈ FID(R), then µ ∈
FID(R).

Proof. By Lemma 3.4, it is obvious. Note that µ∗ ⊆ ν∗ since µ ⊆ ν. �

Corollary 3.8. Let µ ∈ FID(R) and ν ∈ FS(R). Then µ ∩ ν ∈ FID(R).

Proof. It is easy in view of Lemma 3.7. �

Suppose that f : R → S is the zero ring homomorphism between the integral
domains such that R is not a field. If ν ∈ FID(S), then f−1(ν)(r) = ν(f(r)) =
ν(0) = 1, for all r ∈ R. In particular, f−1(ν) = 1R which is not a fuzzy
integral domain (see Remark 3.1(i)). Hence, under the zero ring homomorphism
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between the integral domains the pre-image of a fuzzy integral domain is not a
fuzzy integral domain.
Now suppose that µ ∈ FS(R). Let s ∈ S by any non-zero element. Since f is
the zero ring homomorphism, then by the definition of f(µ), we have:

f(µ)(s) = 0, for all non-zero elements s ∈ S.

This proves that f(µ)(s) = 01 a fuzzy integral domain of S (see Lemma 3.4).
Hence, under the zero ring homomorphism between the integral domains, the
image of any fuzzy sub-ring is a fuzzy integral domain.
It seems to be unknown to the authors that the homomorphic image of any fuzzy
sub-ring is also fuzzy sub-ring. So, we will prove it in the following Lemma 3.9.
The similar result is true for fuzzy subgroups (see [20, Theorem 3.6]).
In the rest of this section, 0′ is denoted by the additive identity of the ring S.

Lemma 3.9. Let f : R → S be a ring homomorphism and µ ∈ FS(R). Then
f(µ) ∈ FS(S).

Proof. Clearly, f(µ)(0′) = 1. Now let s1, s2 ∈ S be any elements. If either
f−1({s1}) = ∅ or f−1({s2}) = ∅, then by definition of f(µ), we have:

f(µ)(s1) = 0 or f(µ)(s2) = 0.

It follows that in either case f(µ)(s1) ∧ f(µ)(s2) = 0. Hence,

f(µ)(s1 + s2) ≥ f(µ)(s1) ∧ f(µ)(s2) and f(µ)(s1s2) ≥ f(µ)(s1) ∧ f(µ)(s2).

So, assume that f−1({si}) is non-empty for each i = 1, 2. Then, by the proof of
[19, Theorem 3.2.7], we have:

f(µ)(s1 + s2) ≥ f(µ)(s1) ∧ f(µ)(s2) and f(µ)(s1s2) ≥ f(µ)(s1) ∧ f(µ)(s2)

From each case, we conclude that f(µ) ∈ FS(S). �

Theorem 3.10. Let R,S be two integral domains and f : R → S a non-zero
ring homomorphism. Then the following are true:

(1) If µ ∈ FID(R), then f(µ) ∈ FID(S).
(2) If µ ∈ FID(R), then µ is constant over ker(f) if and only if f is injec-

tive.
(3) If ν ∈ FID(S) such that f−1(ν) ∈ FID(R), then f is injective.
(4) If ν ∈ FID(S) and f is injective such that f(R∗) = S∗. Then f−1(ν) ∈

FID(R).

Proof. First of all note that f(1) = 1 since f : R → S is a non-zero ring
homomorphism between the integral domains. It follows that f(R∗) ⊆ S∗.

(1) Suppose that µ ∈ FID(R). By Lemma 3.9, we have f(µ) ∈ FS(S). Now
suppose that s1 ∈ S such that f(µ)(s1) = 1. Then

1 = f(µ)(s1) =
∨

f(z)=s1

µ(z).
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It implies that µ(z) = 1, for some z ∈ R such that f(z) = s1. Since µ is a fuzzy
integral domain of R, then by Lemma 3.4, it follows that z = 0 or z is a unit
element. Hence, s1 = 0′ or s1 is unit. It proves that f(µ) is a fuzzy integral
domain of S, see Lemma 3.4.

(2) Suppose that µ ∈ FID(R) and µ is constant over ker(f). Let r ∈ ker(f)
be any element, then f(r) = 0′ = f(0). But µ is constant over ker(f), it follows
that µ(r) = µ(0) = 1. This proves that:

r ∈ µ∗ ⊆ {0} ∪R∗, see Lemma 3.4.

But f(R∗) ⊆ S∗ and f(r) = 0′. Then it follows that r = 0 and hence ker(f) =
{0}. So, f is injective. Note that the converse is obvious. Also, for the proof of
(3), we refer to [19, Theorem 3.2.6] and (2).

(4) Let ν ∈ FID(S) and f be injective such that f(R∗) = S∗. Then it follows
that f−1(ν) ∈ FS(R) (see [19, Theorem 3.2.6]). Suppose that f−1(ν)(r) = 1,
where r ∈ R \ {0}. Since f is injective, then f(r) ∈ S \ {0′}. Then,

ν(f(r)) = 1.

It proves that f(r) ∈ S∗ since ν is a fuzzy integral domain of S (see Lemma
3.4). But f(R∗) = S∗ and f is injective, we conclude that r is an element of R∗.
Therefore, by Lemma 3.4, f−1(ν) is a fuzzy integral domain of R. �

We now give Examples to show that if the assumption of Theorem 3.10(4) does
not hold, then the pre-image of a fuzzy integral domain is not necessarily a fuzzy
integral domain.

Example 3.11. (1) Let R = Z and S = Q. Suppose that f : R → S is the
natural inclusion map. Then f(R∗) = {±1} is a proper subset of S∗ = Q \ {0}.
Suppose that ν is a fuzzy subring of S which is defined as:

ν(x) =

{
1, if x ∈ Z;
0.5, if x /∈ Z.

Then ν∗ = Z ⊆ {0} ∪ S∗. So, we conclude that ν is a fuzzy integral domain of
S, see Lemma 3.4. Note that f−1(ν)(r) = ν(f(r)) = ν(r) = 1, for all r ∈ R. By
Remark 3.1(i), it follows that f−1(ν) = 1R is not a fuzzy integral domain of R.

(2) Let R = Q[x], S = Q[x]/I and I =< x >, then it follows that:

S∗ = {a+ I : a ∈ Q \ {0}} and S ∼= Q.

Let f : R → S be the natural projection map. Then note that f(R∗) = S∗ and
f is not injective.
Now, assume that ν = 01. Then it is a fuzzy integral domain of S. On the other
hand, we have:

f−1(ν)(r) = ν(f(r)) = ν(r + I) =

{
1, if r ∈ I;
0, r /∈ I.

Then (f−1(ν))∗ = I * R∗ and hence f−1(ν) is not a fuzzy integral domain of
R.
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Corollary 3.12. Let R,S be two integral domains and f : R → S a non-zero
ring homomorphism. Then the following conditions are equivalent:

(1) f is injective.
(2) Every fuzzy integral domain of R is constant over ker(f).
(3) 01 is constant over ker(f).

Proof. It is easy in view of Theorem 3.10(2) and the fact that 01 is a fuzzy
integral domain of R. �

Note that Example 3.11(2) shows that the claim in Corollary 3.12 is not true if
f is not injective. We will close this section with the following result related to
fuzzy integral domains of quotient rings.

Proposition 3.13. Suppose that µ ∈ FID(R) and I is a prime ideal of R. Let
ξ be the quotient fuzzy subring of R/I induced by µ. Then ξ ∈ FID(R/I).

Proof. First of all note that R/I is an integral domain. Let µ ∈ FID(R), then
by Theorem 2.6, ξ is the fuzzy sub-ring of R/I induced by µ.
Suppose that ξ(r + I) = 1, for some r ∈ R. Then there exists y ∈ r + I such
that µ(y) = 1. Suppose that y = r + a where a ∈ I. By Lemma 3.4, it follows
that r + a = 0 or r + a is unit. Recall that µ is a fuzzy integral domain of R.
If r + a = 0 then r ∈ I. This proves that r + I = I. If r + a is unit, then it
follows that r + I is unit. Hence, ξ(r + I) 6= 1, for all non-zero and non-unit
elements r + I ∈ R/I. It implies that ξ is a fuzzy integral domain of R/I (see
Lemma 3.4). �

4. Fuzzy Regular Sequences

In this section, the notions of fuzzy regular elements and fuzzy regular sequences
are given. Also, some interesting results concerning these ideas are proved. In
the rest of paper, M will be denoted as an R-module with additive identity θ.
First of all, we will define a regular element over M .

Definition 4.1. A non-zero element r ∈ R is called an M -regular element, if
rm 6= θ, for all m ∈M \ {θ}.
Definition 4.2. ([19, Definition 4.1.8]) Let µ ∈ FP (M), then µ is called a fuzzy
R-submodule of M , if the following conditions hold:

(1) µ(x− y) ≥ µ(x) ∧ µ(y),
(2) µ(rx) ≥ µ(x) and
(3) µ(θ) = 1,

for all r ∈ R and x, y ∈ M . The set of all fuzzy R-submodules of M will be
denoted by FSM(M).

Note that µ is a fuzzy ideal of R if and only if µ ∈ FSM(R).

Definition 4.3. Let µ ∈ FSM(M). A non-zero element r ∈ R is called a
µ-regular element(or fuzzy regular over µ), if

µ(rm) = 1 for some m ∈M =⇒ rm = θ.
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Remark 4.1. (1) If µ∗ = {θ}, then every non-zero element of R is fuzzy regular
over µ.

(2) If r ∈ R is both a µ-regular and M -regular element, then µ∗ = {θ}.
Suppose that x ∈ µ∗ then µ(x) = 1. It implies that µ(rx) ≥ µ(x) = 1 and hence
µ(rx) = 1. But r is µ-regular, it follows that rx = θ. Then x = θ since r is
M -regular. Hence, µ∗ = {θ}.

(3) Converse of (2) is not true, see Example 4.4(2)(below).
(4) It is possible that there does not exist any fuzzy regular element over µ,

see Example 4.4(1)(below).
(5) In general, there is no relation between µ-regular elements and M -regular

elements, see Example 4.4(below).
(6) If µ is a fuzzy submodule ofM andN a submodule ofM . Suppose that µ|N

is the restriction of µ over N . Then, it is obvious that µ|N is a fuzzy submodule
of N . Moreover, every µ-regular element is also a µ|N -regular element.

Example 4.4. (1) Let R = Z4 and define a fuzzy ideal µ of R as follows:

µ(x) =

{
1, if x = 0, 2;
0, if x = 1, 3.

Note that µ(1 ·2) = µ(2) = 1 and µ(2 ·3) = µ(2) = 1. But 1 ·2 6= 0 and 2 ·3 6= 0.
It follows that µ has no fuzzy regular element. Moreover, 1 is an R-regular
element.

(2) Let R = Z, M = Z4 and µ a fuzzy subset of M which is defined as:

µ(x) =

{
1, if x = 0;
0, if x 6= 0.

Then µ ∈ FSM(M). Since µ∗ = {0}, then every non-zero element of R is fuzzy
regular over µ (see Remark 4.1(1)). But 2 · 2 = 0, it follows that 2 ∈ R is not an
M -regular element.

Let M1 be an R-submodule of M and µ ∈ FSM(M). Suppose that ξ is the
fuzzy subset of the R-module M/M1:

ξ(x+ rM) = sup{µ(y) : y ∈ x+ rM}, for all x ∈M.

By [19, Theorem 4.2.1], ξ ∈ FSM(M/M1). From now on, ξ is called the quotient
fuzzy R-submodule of the R-module M/M1 induced by µ.
In the following result, the relation between fuzzy non-zero divisors and fuzzy
regular elements is proved.

Lemma 4.5. Let R be an integral domain and µ 6= 1R a fuzzy ideal of R. If
r ∈ R is µ-regular, then it is a fuzzy non-zero divisor over µ. Converse is true
if, r is non-unit. Hence, a non-zero and non unit element of R is µ-regular if
and only if it a fuzzy non-zero divisor over µ.

Proof. Let r ∈ R be µ-regular, then r 6= 0. Assume that µ(rs) = 1, for some
s ∈ R. By the assumption on r, it follows that rs = 0 and hence s = 0. This
proves that r is a fuzzy non-zero divisor over µ.
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For the converse, let r ∈ R\R∗∪{0} be a fuzzy non-zero divisor over µ. Suppose
that µ(rs) = 1, where s ∈ R \ {0}. Since r is a fuzzy non-zero divisor over µ, it
implies that s ∈ R∗ and rs /∈ R∗ ∪ {0}. Note that

µ((rs)r) ≥ µ(rs) = 1.

This proves that r is a fuzzy zero divisor over µ which is a contradiction. Hence,
s = 0. By definition, r is µ-regular. �

Definition 4.6. Let µ ∈ FSM(M) and r1, . . . , rn ∈ R \ {0}, then r1, . . . , rn is
called a weak µ-regular sequence (or weak fuzzy regular sequence over µ), if the
following conditions hold:

(1) r1 is a µ-regular,
(2) ri is a an ξi-regular element, for all i ≥ 2.

Here, ξi is the quotient fuzzy submodule of the R-module M/
∑i−1
k=1 rkM induced

by µ.

Note that there may exist an infinite weak fuzzy regular sequence. Let R = Z,
x = 2 and µ is any fuzzy ideal of R such that x is fuzzy regular over µ. Then
we claim that x, x2, x3, . . . is an infinite weak µ-regular sequence. Let ri = xi,
for all i ∈ N, then one can see that:

i∑
k=1

rkR =

i−1∑
k=1

rkR = 2R, for all i ≥ 2.

It implies that ri ∈
∑i
k=1 rkR =

∑i−1
k=1 rkR, for all i ≥ 2. Hence, rix ∈∑i−1

k=1 rkM , for all x ∈ R and i ≥ 2. This proves that:

ri(x+

i−1∑
k=1

rkR) = rix+

i−1∑
k=1

rkR =

i−1∑
k=1

rkR,

for all x ∈ R and i ≥ 2. Hence, ri is an ξi-regular element, for all i ≥ 2. Here,
ξi is same as in Definition 4.6.

Definition 4.7. Let µ ∈ FSM(M) and r1, . . . , rn ∈ R \ {0}, then r1, . . . , rn is
called a µ-regular sequence (or fuzzy regular sequence over µ), if the following
conditions hold:

(1) r1, . . . , rn is a weak µ-regular sequence,
(2) For any i ∈ {2, 3, . . . , n}, we have:

i∑
k=1

rkM 6= r1M+r2M+· · ·+rj−1M+r̂jM+rj+1M+· · ·+riM, for all j ∈ 1, 2, . . . , i,

where r̂jM means that the term rjM does not appear.
(3) M 6=

∑n
k=1 rkM .
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In the following Remark 4.2, it is shown that the length of any fuzzy regular
sequence is finite. Note that M is a Noetherian R-module, if every strictly
increasing sequence of R-submodules of M is stationary.

Remark 4.2. If M is a Noetherian module over R and µ ∈ FSM(M), then the
length of any fuzzy regular sequence over µ is finite. Suppose on contrary that
r1, r2, · · · ∈ R \{0} is an infinite fuzzy regular sequence over µ. By condition (2)

in Definition 4.7, we have
∑i
k=1 rkM 6=

∑i−1
k=1 rkM , for all i ≥ 2. It follows that

the following sequence is a strictly increasing sequence of R-submodules of M :

r1M ⊂ r1M + r2M ⊂ · · · ⊂
i−1∑
k=1

rkM ⊂
i∑

k=1

rkM ⊂ . . .

which is a contradiction to the fact that M is Noetherian.

Example 4.8. (1) If R = Q[x] and µ is a fuzzy ideal of R such that µ∗ = {0}.
Let n ∈ N be any fixed natural number and ri = 2n+1−i, for all 1 ≤ i ≤ n.
Suppose that ξ1 = µ and ξi is the quotient fuzzy submodule of the R-module

M/
∑i−1
k=1 rkM induced by µ, for all 2 ≤ i ≤ n. Then we have:

(ξi)∗ = {0}, for all 2 ≤ i ≤ n.

By Remark 4.1(1), it follows that ri is an ξi-regular element, for all 1 ≤ i ≤ n.
By Definition 4.6, it follows that r1, ..., rn is a weak µ-regular sequence for any
n ∈ N. Note that for any i ∈ {2, 3, . . . , n}, the following equality hold:

i∑
k=1

rkR = riR.

Hence, this proves that r1, ..., rn is not a µ-regular sequence for any n ≥ 2.
(2) Let R = Z[x, y] denote the polynomial ring in two variables x, y and

µ ∈ FSM(R) such that µ∗ = {θ}. Let r1 = x, r2 = y and r3 = p, where p is
a fixed prime integer. Suppose that N = r1R + r2R and ξ2 (resp. ξ3) is the
quotient fuzzy submodule of the R-module R/r1R (resp. R/N) induced by µ.
Then we have:

(ξ2)∗ = {r1R} and (ξ3)∗ = {N}.
By Remark 4.1(1), it follows that r1 is µ-regular, r2 is ξ2-regular and r3 is ξ3-
regular. Note that the conditions (2) and (3) of Definition 4.7 also hold. Hence,
r1, r2, r3 ∈ R is a µ-regular sequence.
We claim that r1, r2, r3 is a µ-regular sequence of maximal length. Let I =<
r1, r2, r3 >, then it is well-known that I is a maximal ideal of R. Suppose that
r4 ∈ R is an arbitrary element. Then it follows that:

< r1, r2, r3, r4 >=

{
R, if r4 /∈ I;
I, if r4 ∈ I.

From Definition 4.7, we conclude that r1, r2, r3 ∈ R is a µ-regular sequence of
maximal length. This proves the claim.
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Proposition 4.9. Fix the notation of Definition 4.7. If r1, . . . , rn ∈ R \ {0}
is a µ-regular sequence. Then ri, . . . , rn is an ξi-regular sequence, for any i ∈
{2, 3, . . . , n}.

Proof. Note that it suffices to prove the result for i = 2 and n = 3. By definition,
ξ2 is a quotient fuzzy submodule of the R-module M = M/r1M induced by µ.
Denote the element x+ r1M ∈M by x.

Clearly, r2 is ξ2-regular. Let N = r2M , then it is an R-submodule of M . Let
η3 be the quotient fuzzy submodule of the R-module M/N induced by ξ2. We
need to prove the following claims:

(i) r3 is η3-regular,
(ii) r2M + r3M 6= riM , for all i = 2, 3, and

(iii) M 6= r2M + r3M .

First of all, we show that r2M + r3M is not equal to r2M . Suppose on contrary
that r2M + r3M = r2M . Let r3x ∈ r3M where x ∈M . Then, we have:

r3x+ r1M = r3(x+ r1M) ∈ r3M ⊆ r2M + r3M = r2M.

It implies that r3x+ r1M = r2(y2 + r1M) = r2y2 + r1M with y2 ∈M . Then we
conclude that r3x− r2y2 ∈ r1M and hence

r3x = r2y2 + r1z for some z ∈M .

This proves that r3M ⊆ r1M + r2M . So, we have r1M + r2M + r3M = r1M +
r2M which is a contradiction since r1, . . . , rn is a µ-regular sequence. Hence,
r2M + r3M 6= r2M . Similarly, one can prove that r2M + r3M 6= r3M and
M 6= r2M + r3M . This completes the proof of the claims in (ii) and (iii).
Finally to prove the claim in (i), let ξ3 be the quotient fuzzy submodule of the
R-module M/M1 induced by µ, where M1 = r1M + r2M . We firstly show that
η3(x+N) ≤ ξ3(x+M1), for all x ∈M . Let y ∈ x+N be the element such that

η3(x+N) = ξ2(y). (1)

Note that y ∈ x+N if and only if

y = x+ r2z2 = x+ r1M + r2(z2 + r1M) = (x+ r2z2) + r1M

with z2 ∈ M . It implies that ξ2(y) = ξ2((x + r2z2) + r1M). So, let u ∈
(x+ r2z2) + r1M be the element such that

ξ2(y) = ξ2((x+ r2z2) + r1M) = µ(u). (2)

Note that we can write u = (x+ r2z2) + r1z1 ∈ x+ r1M + r2M = x+M1 ,where
z1 ∈M and hence:

ξ3(x+M1) = sup{µ(t) : t ∈ x+M1} ≥ µ(u). (3)

From the Equations (1), (2) and (3), we conclude that η3(x+N) is less than or
equal to ξ3(x+M1), for all x ∈M .
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Now, we show that r3 is η3-regular. Suppose that η3(r3(x+N)) = η3(r3x+N) =
1, for some x ∈M . By the above remark, we have:

ξ3(r3(x+M1)) = ξ3(r3x+M1) = 1.

By the hypothesis, r3 is ξ3-regular. It follows that r3x + M1 = M1. Then we
can write it as r3x = r1w1 + r2w2, where wk ∈ M for all k = 1, 2. Note that
r1w1 + r1M = r1M , then:

r3x = r3x+ r1M = r2w2 + r1M = r2w2.

Hence, r3x + N = N and this shows that r3 is η3-regular. This completes the
proof of Proposition. �

It is well known that any positive power of a regular sequence over a module
is again a regular sequence (see [21, Corollary 17.8]). We will prove that the
similar result is true for fuzzy regular sequences.

Theorem 4.10. Let µ ∈ FSM(M) and r1, . . . , rn ∈ R\{0} a µ-regular sequence
such that ri is a non-zero divisor over R, for all i = 1, . . . , n. Then ra11 , . . . , rann
is also a µ-regular sequence, where ai’s are any positive integers.

Proof. Firstly, we will prove by induction that ra11 is µ-regular, for any positive
integer a1. Note that if a1 = 1, then we are true. So let a1 > 1, then note that
rb1 6= 0, for any positive integer b since r1 is a non-zero divisor over R. Suppose
that µ(ra11 m) = 1 for some θ 6= m ∈M . Then it follows that µ(ra1−11 (r1m)) = 1.

Then r1m = θ, since ra1−11 6= 0 and ra1−11 is µ-regular. It follows that ra11 m = θ.
So ra11 is µ-regular for any positive integer a1.
Next, we show that ra11 , r2, . . . , rn is a µ-regular sequence, for any positive integer
a1. Let a1 = 1, then by the hypothesis we are true. Now assume that a1 > 1
and ra1−11 , r2, . . . , rn is a µ-regular sequence. Note that ra11 is µ-regular.

Let i ∈ {2, . . . , n} be fixed, N := ra11 M +
∑i−1
k=2 rkM and ξi be the quotient

fuzzy submodule of the R-module M/N induced by µ. To prove the result, we
have to prove the following claims:

(i) ri is ξi-regular.

(ii) ra11 M +
∑i
k=2 rkM 6= ra11 M +r2M + · · ·+rj−1M + r̂jM +rj+1M + · · ·+

riM , for all j ∈ 1, 2, . . . , i.
(iii) M 6= ra11 M +

∑n
k=1 rkM .

Note that it is enough to prove the claim in (ii) for j = i. Assume that

ra11 M +
∑i
k=2 rkM = N , then riM ⊆ N ⊆ ra1−11 M +

∑i−1
k=2 rkM . It follows

that ra1−11 M +
∑i
k=2 rkM = ra1−11 M +

∑i−1
k=2 rkM which is not possible since

ra1−11 , . . . , rn is a µ-regular sequence. Hence, N 6= ra11 M +
∑i
k=2 rkM . This

proves the claim in (ii). Similarly, we can prove the claim in (iii).
Now we show that the claim in (i) is true. Suppose that ξi(ri(x + N)) =
ξi(rix + N) = 1, for some x ∈ M . By definition of ξi, there exists y ∈ rix + N
such that µ(y) = 1.
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Suppose that T = ra1−11 M +
∑i−1
k=2 rkM and ηi is the quotient fuzzy submodule

of the R-module M/T induced by µ. Note that we can write:

y = rix+ ra1−11 (r1x1) +

i−1∑
k=2

rkxk, (4)

where xk ∈ M , for all k = 1, . . . , i− 1. It implies that y + T = rix+ T . So, we
have:

ηi(ri(x+ T )) = ηi(rix+ T ) = ∨{µ(u) : u ∈ rix+ T} = µ(y) = 1.

By induction hypothesis, the sequence ra1−11 , r2, . . . , rn is a µ-regular sequence.
In particular, ri is ηi-regular, so we have ri(x+ T ) = T . i.e. rix ∈ T . It implies

that rix = ra1−11 w1 +
∑i−1
k=2 rkwk with wk ∈M , for all k = 1, . . . , i− 1 and

y = rix+ ra11 x1 +

i−1∑
k=2

rkxk = ra1−11 (w1 + r1x1) +

i−1∑
k=2

rk(xk + wk). (5)

(see Equation (4)). Let ηi−1 be the quotient fuzzy submodule of the R-module

M/S induced by µ, where S = ra1−11 M +
∑i−2
k=2 rkM . Then y+S = ri−1(xi−1 +

wi−1) + S. It implies that:
ηi−1(ri−1((xi−1 + wi−1) + S)) = ηi−1(ri−1(xi−1 + wi−1) + S)

= sup{µ(u) : u ∈ ri−1(xi−1 + wi−1) + S}
= µ(y) = 1.

By induction, ra1−11 , r2, . . . , rn is a µ-regular sequence, so ri−1 is ηi−1-regular.
Then it follows that ri−1(xi−1 + wi−1) + S = S. Then, ri−1(xi−1 + wi−1) =

ra1−11 z1 +
∑i−2
k=2 rkzk, where zk ∈M for all k = 1, . . . , i− 2. From Equation (5),

we conclude that:

y = ra1−11 (w1+r1x1)+

i−1∑
k=2

rk(xk+wk) = ra1−11 (r1x1+w1+z1)+

i−2∑
k=2

rk(xk+wk+zk).

Continuing in the same way, we can get that y = ra1−11 (r1x1 + w1 + z1 + u1 +
· · ·+ v1), where w1, x1, z1, u1, . . . , v1 ∈M . Then,

1 = µ(y) = µ(ra1−11 (r1x1 + w1 + z1 + u1 + · · ·+ v1)).

Hence, y = ra1−11 (r1x1 +w1 + z1 + u1 + · · ·+ v1) = θ since ra1−11 is µ-regular. It
follows that rix+N = y+N = N . Hence, ri is ξi-regular. This proves the claim
in (i). Therefore, by induction, we conclude that ra11 , r2, . . . , rn is a µ-regular
sequence for any positive integer a1.
By Proposition 4.9, it follows that r2, . . . , rn is an ξ2-regular sequence. By the
above same arguments, we can prove that ra22 , . . . , rn is an ξ2-regular sequence,
for any positive integer a2. Continuing in this way, we get that ra11 , . . . , rann is a
µ-regular sequence, where ai’s are any positive integers. �
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If R is a Noetherian local ring, then by [21, Corollary 17.2], every permutation of
a regular sequence over a finitely generated R-module is again a regular sequence.
Here, we are succeeded to prove this result in case of fuzzy regular sequences.

Theorem 4.11. If r1, . . . , rn ∈ R \ {0} is a µ-regular sequence. Then any
permutation of r1, . . . , rn is again a µ-regular sequence.

Proof. Since every permutation can be written as a product of transpositions of
adjacent elements. It suffices to prove that r1, . . . , ri+1, ri, . . . , rn is a µ-regular
sequence. By Proposition 4.9, it is enough to prove the result for i = 1.
Let r1, r2 ∈ R be a µ-regular sequence. Let µ(r2x) = 1, for some x ∈ M and ξ
be the quotient fuzzy submodule of the R-module M/r1M induced by µ.
By definition of ξ, it follows that ξ(r2(x+ r1M)) = ξ(r2x+ r1M) ≥ µ(r2x) = 1.
Then we have r2x + r1M = r1M since r2 is ξ-regular. Write r2x = r1m, for
some m ∈M . It implies that:

µ(r1m) = µ(r2x) = 1.

So, we have r2x = r1m = θ because of r1 is µ-regular. Hence, r2 is µ-regular.
Note that r1R + r2R 6= riR, for all i = 1, 2. Now let η be the quotient fuzzy
submodule of the R-module M/r2M which is defined as:

η(m+ r2M) = sup{µ(y) : y ∈ m+ r2M}, for all m ∈M.

Let η(r1(x + r2M)) = 1, where x ∈ M . It implies that µ(y) = 1 for some
y + r2M = r1x + r2M . Then y = r1x + r2m with m ∈ M . Note that y ∈
r2(m+ r1M), it follows that:

ξ(r2(m+ r1M)) ≥ µ(y) = 1.

Since r2 is ξ-regular, then we have r2m+ r1M = r1M . Let us write r2m = r1z
for some z ∈M. Then,

y = r1x+ r2m = r1x+ r1z = r1(x+ z).

It implies that µ(r1(x + z)) = µ(y) = 1. But r1 is µ-regular, so we have y =
r1(x + z) = θ. This proves that r1x + r2M = r2M and hence r1 is η-regular.
Therefore, r2, r1 is a µ-regular sequence. �

5. Fuzzy homomorphisms and fuzzy exact sequences

In this section, by µX we mean that a fuzzy subset of an R-module X. A fuzzy

homomorphism f̃ : µM → νN between the fuzzy submodules is an R-module
homomorphism f : M → N such that ν(f(x)) ≥ µ(x), for all x ∈ M (see [14,

Definition 1.1]). Moreover, f̃ is called injective (resp. surjective), if f is injective

(resp. surjective). Also, define ker(f̃) := µ|ker(f) and im(f̃) := ν|im(f).

Definition 5.1. ([22, Definition 3.1]) The sequence µM
f̃→ νN

g̃→ υT is called a

fuzzy exact sequence of fuzzy submodules, if im(f̃) = ker(g̃).
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It is clear, from the definition, that if µM
f̃→ νN

g̃→ υT is a fuzzy exact sequence,

then the sequence M
f→N

g→T is an exact sequence of R-modules, i.e. im(f) =
ker(g).

Definition 5.2. ([22, Definition 3.1]) The sequence 1→ µM
f̃→ νN

g̃→ υT → 1 is

called a fuzzy short exact sequence of fuzzy submodules, if f̃ is injective, g̃ is

surjective and im(f̃) = ker(g̃). In particular, the sequence 0→M
f→N

g→T → 0
is a short exact sequence of R-modules.

Remark 5.1. If 0→ M
f→N

g→T → 0 is a short exact sequence of R-modules

such that µM
f̃→ νN and νN

g̃→ υT are fuzzy homomorphisms. Then the sequence

1→ µM
f̃→ νN

g̃→ υT → 1 is a fuzzy short exact sequence.

Lemma 5.3. Let f̃ : µM→ νN be a fuzzy homomorphism between fuzzy submod-
ules. Suppose that M1 and N1 are submodules of M and N respectively such that
f(M1) ⊆ N1. Let ξ and γ be the quotient fuzzy submodules of the R-modules

M/M1 and N/N1 induced by µM and νN respectively. Then f̃ induces a fuzzy
homomorphism:

f̃1 : ξ → γ, m+M1 7→ f(m) +N1 ,

for all m ∈M .

Proof. Suppose that ξ and γ are the quotient fuzzy submodules of the R-modules
M/M1 and N/N1 induced by µM and νN respectively. Since f is an R-module
homomorphism and f(M1) ⊆ N1, then f induces the following R-module homo-
morphism:

f1 : M/M1 → N/N1, m+M1 7→ f(m) +N1,

for all m ∈ M . We only need to show that γ(f1(x + M1)) ≥ ξ(x + M1), for all
x + M1 ∈ M/M1. Let x + M1 ∈ M/M1 be an arbitrary element. Suppose that
m ∈M such that:

m ∈ x+M1 and ξ(x+M1) = µ(m). (6)

Then m + M1 = x + M1 and it follows that f(m) + N1 = f(x) + N1. Since

f̃ : µM→ νN is a fuzzy R-module homomorphism. Then by Equation (6), we
have:

γ(f1(x+M1)) = γ(f(x) +N1) ≥ ν(f(m)) ≥ µ(m) = ξ(x+M1).

This proves that f̃1 : ξ→ γ is a fuzzy homomorphism. �

Corollary 5.4. Let µM
f̃→ νN

g̃→ υT → 1 be a fuzzy exact sequence of fuzzy
submodules. Suppose that M1, N1 and T1 are submodules of M , N and T re-
spectively such that f(M1) ⊆ N1 and g(N1) ⊆ T1. Let ξ, γ and η be the quotient
fuzzy submodules of the R-modules M/M1, N/N1 and T/T1 induced by µM , νN
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and υT respectively. Then the following sequence is a fuzzy exact sequence of
fuzzy submodules:

ξ
f̃1→ γ

g̃1→ η → 1.

Here, f1 and g1 are the maps induced by f and g respectively. In addition, if f
is injective and γ(x+N1) 6= 1, for all non-zero elements x ∈ im(f). Then f1 is
injective.

Proof. Since f(M1) ⊆ N1 and g(N1) ⊆ T1. By Lemma 5.3, the maps f̃1 : ξ → γ
and g̃1 : γ → η are the fuzzy homomorphisms induced by f and g respectively.

Moreover, the sequence M
f→N

g→T → 0 is an exact sequence of R-modules. It
is well-known that, it induces the following exact sequence of R-modules:

M/M1
f1→N/N1

g1→T/T1 → 0.

Hence, the result follows from Remark 5.1.
Now, we prove the injectivity of f1. Suppose that f is injective and γ(x+N1) 6= 1,
for all non-zero elements x ∈ im(f). Let f1(m + M1) = f(m) + N1 = N1 for
some m ∈ M . Then we have γ(f(m) + N1) = 1. It implies that f(m) = θ and
hence m = θ. This proves that m+M1 = M1 and hence ker(f1) is zero. �

Lemma 5.5. Let f̃ : µM→ νN be a fuzzy homomorphism of fuzzy submodules.
Suppose that the following conditions hold:

(i) r1 ∈ R \ {0} is fuzzy regular over νN and
(ii) µ(x) 6= 1, for all non-zero elements x ∈ ker(f).

Then r1 is also fuzzy regular over µM . In particular, if f is injective, then every
ν-regular element is also a µ-regular element.

Proof. Suppose that µ(r1x) = 1, for some x ∈ M . We claim that r1x ∈ ker(f).
Since ν(r1f(x)) = ν(f(r1x)) ≥ µ(r1x) = 1. It implies that ν(r1f(x)) = 1. By
the assumption in (i), we have:

f(r1x) = r1f(x) = θ.

It follows that r1x ∈ ker(f). This completes the proof of the claim. Hence, by
the assumption in (ii), we conclude that r1x = θ. Recall that µ(r1x) = 1. This
proves that r1 is µ-regular. �

In the next Example, we will prove that the assumption of Lemma 5.5(ii) is

necessary. Moreover, if f̃ : µM→ νN is an onto fuzzy homomorphism of fuzzy
submodules. Then a ν-regular element is not necessarily a µ-regular element.
Also, in Example 5.8(below), it is shown that a µ-regular element is not neces-
sarily a ν-regular element even f is injective.

Example 5.6. Let R = Z, N = Z2 and M = Z2 × Z2. Then M
f→N is an

onto R-module homomorphism with f(s, r) = s, for all r, s ∈ N . Define fuzzy
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submodules µM and νN as:

µ(r) =

{
1, if r = (0, 0) or (0, 1);
0.1, if r = (1, 0) or (1, 1).

and ν(r) =

{
1, if r = 0;
0.1, if r = 1.

for all r ∈ N . Now, we show that f̃ is a fuzzy homomorphism. To do this note
that:

ν(f((r1, r2))) = ν(r1) =

{
1 = µ((r1, r2)), if r1 = 0;
0.1 = µ((r1, r2)), if r1 = 1.

for all r1, r2 ∈ N . This proves that f̃ is a fuzzy homomorphism. Since ν∗ = {0},
then every non-zero integer is a ν-regular element (see Remark 4.1(1)).
Note that (0, 1) ∈ ker(f) is non-zero and µ((0, 1)) = 1. Hence, the assumption
of (ii) in Lemma 5.5 does not hold.
Now let r1 = 3 and m = (0, 1) ∈ M , then r1m 6= (0, 0) and µ(r1m) = 1. This
proves that r1 = 3 is not a fuzzy regular over µ. One can see that every odd
integer is not a fuzzy regular over µ.

Corollary 5.7. Let M1 be a submodule of M . Let µ ∈ FSM(M) and γ be the
quotient fuzzy submodule of the R-module M/M1 induced by µ. Suppose that the
following conditions hold:

(i) r1 ∈ R \ {0} is fuzzy regular over γ.
(ii) µ(x) 6= 1, for all non-zero elements x ∈M1.

Then r1 is also fuzzy regular over µ.

Proof. First of all note that there is an R-module homomorphism:

M
π→M/M1, x 7→ x+M1,

for all x ∈ M . Since γ(π(x)) = γ(x + M1) ≥ µ(x), for all x ∈ M . This proves
that π̃ : µ → γ is a fuzzy homomorphism. Note that by assumption in (ii),
we have µ(x) 6= 1, for all non-zero elements x ∈ M1 = ker(π). Then the result
follows from Lemma 5.5. �

Let f̃ : µM→ νN be a fuzzy homomorphism of fuzzy submodules. Suppose
that γ is the quotient fuzzy submodule of the R-module coker(f) := N/ im(f)
induced by νN and ν(x) 6= 1, for all non-zero elements x ∈ im(f). By Corollary
5.7 (for N1 = im(f)), every fuzzy regular element over γ is also a fuzzy regular
element over νN .

It is well know that if 0→M
f→N

g→T → 0 is an exact sequence of R-modules
such that r1, . . . , rn ∈ R \ {0} is a regular sequence over M and T . Then it is
also a regular sequence over N . In the next Example, we will prove that this
result is not true in case of fuzzy submodules.
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Example 5.8. Let R = Z, M = Z2, N = Z2×Z2 and M
f→N be the morphism

with f(u) = (0, u), for all u ∈ M . Then f is an injective R-module homomor-
phism. Suppose that T = coker(f) = {im(f), (1, 0)+im(f)}. Then the following
sequence is exact:

0→M
f→N

g→T → 0,

where g((u,w)) = (u,w) + im(f), for all u,w ∈M . Define µM , νN and υT as:

µ(r) =

{
1, if r = 0;
0.1, if r = 1.

ν((u,w)) =

{
1, if (u,w) = (0, 0) or (0, 1);
0.1, if (u,w) = (1, 0) or (1, 1).

υ((u,w) + im(f)) = ∨{ν((y, z)) : (y, z) + im(f) = (u,w) + im(f)},
for all r, u, w ∈ M . Clearly, µ and ν are fuzzy submodules of M and N respec-
tively. It implies that υT is a fuzzy submodule of T (see [19, Theorem 4.2.1]).

By Example 5.6, it follows that f̃ is a fuzzy homomorphism. Also, by definition
of υT , g̃ is a fuzzy homomorphism. By Remark 5.1, the following sequence is a
fuzzy short exact sequence of fuzzy submodules:

1→ µM
f̃→ νN

g̃→ υT → 1

On the other hand ,we have:

υ((1, 0) + im(f)) = ν((1, 0)) ∨ ν((1, 1)) = 0.1 6= 1

This proves that υ∗ = {im(f)} and hence every non-zero integer is an υ-regular
element (see Remark 4.1(1)). From Example 5.6, every non-zero integer is a
µ-regular element and every odd integer is not a fuzzy regular over ν.

Note that if 1 → µM
f̃→ νN

g̃→ υT → 1 is a fuzzy short exact sequence of fuzzy
submodules. By Lemma 5.5, every νN -regular element is also µM -regular ele-
ment. But in the next Example, it is shown that a νN -regular element is not
necessarily an υT -regular element.

Example 5.9. Let R = Z[x], N = R × R and R
f→N be the morphism with

f(u) = (0, u), for all u ∈ R. Let g : N → R be defined as g((u,w)) = u, for all
u,w ∈ R. Then the following sequence is exact:

0→ R
f→N

g→R→ 0.

Let us define the fuzzy submodules µR, νN and υR as follows:

µ(u) =

{
1, if u = 0;
0.5, if u = 0.

ν((u,w)) =

{
1, if (u,w) = (0, 0) ;
0.5, if (u,w) 6= (0, 0).
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υ(u) =

{
1, if u ∈< x >;
0.5, if u /∈< x >.

where u,w ∈ R. By following the same lines as in proof of Example 5.6, it can

be proved that f̃ and g̃ are fuzzy homomorphisms. Then the following sequence
is a fuzzy short exact sequence of fuzzy submodules:

1→ µR
f̃→ νN

g̃→ υR → 1

Let r ∈ R \ {0} be an arbitrary element. Since µ∗ = {0} and ν∗ = {(0, 0)}, then
it follows that r is fuzzy regular over µR and νN (see Remark 4.1(1)).
Since < x > is an ideal of R. Then ru ∈< x >, for all u ∈< x >. It implies that
υ(ru) = 1, for all u ∈< x > \{0}. Also, we have ru 6= 0, for all u ∈< x > \{0}
since R is an integral domain. Hence, r is not fuzzy regular over υR, for all
r ∈ R \ {0}.

Theorem 5.10. Let g̃ : νN→ υT be an onto fuzzy homomorphism between fuzzy
submodules. Suppose that r1, r2 ∈ R \ {0} satisfy the following conditions:

(i) r1, r2 is a fuzzy regular sequence over υT .
(ii) If N2 = r1N and γ2 is the quotient fuzzy submodule of the R-module

N/N2 induced by νN . Assume that γ2(x + N2) 6= 1, for all non-zero
elements x ∈ ker(g).

Then r1, r2 is also a fuzzy regular sequence over νN .

Proof. First of all, we show that ν(x) 6= 1, for all non-zero elements x ∈ ker(g).
Suppose that ν(x) = 1, for some x ∈ ker(g). Then it implies that

γ2(x+N2) ≥ ν(x) = 1.

By assumption in (ii), we have x = θ. Then r1 is νN -regular (see Lemma 5.5).
Now we show that r1N 6= r1N + r2N . Suppose that r1N = r1N + r2N , then we
have r2N ⊆ r1N . Since g is onto. Then g(N) = T and it follows that:

r2T = r2g(N) = g(r2N) ⊆ g(r1N) = r1g(N) = r1T.

Hence, we have r1T = r1T +r2T which is a contradiction since r1, r2 is a regular
sequence over υT . So, we conclude that r1N 6= r1N + r2N . Similarly, we can
prove that:

r2N 6= r1N + r2N and N 6= r1N + r2N.

Finally, we prove that r2 is γ2-regular. Assume that γ2(r2x+N2) = 1, for some
x ∈ N . Let us fix the following notations:

M2 = r1M,T2 = r1T and µM = ν|M ,
where M = ker(g) and ν|M is the restriction of ν over M . Suppose that ξ2
and η2 are the quotient fuzzy submodules of the R-modules M/M2 and T/T2
induced by µM and υT respectively.

Now, let f : M → N be the inclusion map. Then the sequence M
f→N

g→T → 0

is an exact sequence of R-modules and f̃ : µM → νN is a fuzzy homomorphism.
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By Remark 5.1, it follows that the following sequence is a fuzzy exact sequence
of fuzzy submodules:

µM
f̃→ νN

g̃→ υT → 1

Note that f(M2) ⊆ N2 and g(N2) ⊆ T2. By Corollary 5.4, it induces the
following fuzzy exact sequence of fuzzy submodules:

ξ2
f̃1→ γ2

g̃1→ η2 → 1,

where f1(m+M2) = f(m) +N2 = m+M2 and g1(a+N2) = g(a) + T2, for all
m ∈M and a ∈ N . Note that:

η2(r2g1(x+N2)) = η2(g1(r2x+N2)) ≥ γ2(r2x+N2) = 1

But r2 is η2-regular, it follows that g1(r2x + N2) = r2g1(x + N2) = T2. Then
r2x+N2 ∈ ker(g1) = im(f1). There exists m+M2 ∈M/M2 such that:

f1(m+M2) = m+N2 = r2x+N2 and γ2(f1(m+M2)) = γ2(m+N2) = γ2(r2(x+N2)) = 1

Since m ∈ im(f) = ker(g), then by the assumption in (ii), we have m = θ.
Hence, r2x + N2 = N2. This proves that r2 is γ2-regular. This completes the
proof of Theorem. �

In the following Corollary, we will generalize the result of Theorem 5.10.

Corollary 5.11. Let g̃ : νN→ υT be an onto fuzzy homomorphism between fuzzy
submodules. Suppose that r1, . . . , rn ∈ R \ {0} satisfy the following conditions:

(i) r1, . . . , rn is a fuzzy regular sequence over υT and

(ii) If j ∈ {2, ..., . . . n} is fixed, Nj =
∑j−1
k=1 rkN and γj is the quotient

fuzzy submodule of the R-module N/Nj induced by νN . Assume that
γj(x+Nj) 6= 1, for all non-zero elements x ∈ ker(g).

Then, r1, . . . , rj is also a fuzzy regular sequence over νN .

Proof. Suppose that j ∈ {2, ..., . . . n} is fixed, Nj =
∑j−1
k=1 rkN and γj is the

quotient fuzzy submodule of the R-module N/Nj induced by νN . We claim that
the assumption in (ii) implies that:

γt(x+Nt) 6= 1,

for all 2 ≤ t ≤ j and non-zero elements x ∈ ker(g). Here, γt is the quotient

fuzzy submodule of the R-module N/Nt induced by νN and Nt =
∑t−1
k=1 rkN .

To prove this, let γt(x+Nt) = 1 for some x ∈ ker(g). Then, there exists y ∈ N
such that

x+Nt = y +Nt and ν(y) = 1.

It implies that x − y ∈ Nt ⊆ Nj since t ≤ j. Hence, x + Nj = y + Nj and
γj(x + Nj) = ν(y) = 1. By the assumption in (ii), it implies that x = θ. This
proves the claim. With the similar arguments, Theorem 5.10, one can prove that
r1, . . . , rj is a fuzzy regular sequence over νN . �



200 S. Ayub, W. Mahmood

6. Conclusions

Fuzzy sets mathematically represent uncertainty and imprecision. It is a tech-
nical tool for dealing with the vagueness inherent in something that is supposed
to be precise measurement. It has been successfully applied to many real life
problems. The structure of integral domains play an important role in which
many of the physical and real world problems are modeled. On the other hand,
regular sequences are successfully applied to elimination theory. Elimination
theory has an importance in applied and computational mathematics. In this
paper, we have given an innovative concept of fuzzy zero-divisors, fuzzy integral
domains and fuzzy regular sequences which is the fuzzification of the usual zero-
divisors, integral domains and regular sequences in crisp sets. Moreover, some
of the interesting and significant results of these notions are proved. We believe
that this new idea will be helpful to generate other classical algebraic systems
to the fuzzy algebraic systems.
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