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BLOCK DIGRAPH OF A DIRECTED GRAPH

H. M. NAGESH1, M. C. MAHESH KUMAR

Abstract. Let D be a connected digraph of order n (n ≥ 3) and let

B(D) = {B1, B2, . . . , BN} be a set of blocks of D. The block digraph

Q = B(D) has vertex set V (Q) = B(D) and arc set A(Q) = BiBj : Bi, Bj ∈
V (Q), Bi, Bj have a cut-vertex of D in common and every vertex of Bj

is reachable from every other vertex of Bi. We study the properties of

B(D) and present the characterization of digraphs whose B(D) are planar;
outerplanar; maximal outerplanar; minimally nonouterplanar; Eulerian;

and Hamiltonian.
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1. Introduction

For digraph theoretical terminologies and notations in this paper we follow the
books [1, 2]. There are many (di)graph operators (or (di)graph valued functions)
with which one can construct a new (di)graph from a given (di)graph, such
as the line (di)graph, the total (di)graph, and their generalizations. One such
generalization is the block graph concept whose properties and characterizations
were considered in [3]. It is the object of this paper to extend the concept of
block graph in a similar and natural way to the directed case and to develop
some of the properties of the “block digraph”. Let G be a graph of order n
(n ≥ 3). The block graph B(G) of G is that graph whose vertices are the blocks
B1, B2, . . . , BN of G and whose edges are determined by taking two vertices Bi

and Bj as adjacent if and only if they contain a cut-vertex of G in common. See
Figure 1 for an example of a graph G and its block graph B(G).
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Figure 1

2. Preliminaries

A directed graph (or just digraph) D consists of a finite non-empty set V (D)
of elements called vertices and a finite set A(D) of ordered pairs of distinct
vertices called arcs. Here V (D) is the vertex set and A(D) is the arc set of D.
For an arc (u, v) or uv in D, the first vertex u is its tail and the second vertex
v is its head. A digraph without any arcs is said to be totally disconnected.
A digraph D = (V,A) is symmetric if xy ∈ A implies yx ∈ A. A complete
symmetric digraph is one which is both complete and symmetric. A complete

symmetric digraph is denoted by
←→
Kp, where p is the number of vertices in the

digraph. A digraph D is strongly connected (or strong, for short) if for any two
vertices u and v of D, there are a directed path from u to v and a directed path
from v to u. It follows that every complete symmetric digraph is strong, but not
every strong digraph is complete symmetric. A cut-set of a digraph D is defined
as a minimal set of vertices whose removal increases the number of connected
components of D. A cut-set of size one is called a cut-vertex. By a subgraph of a
digraph D we mean a digraph whose vertices and arcs are vertices and arcs of D.
A subgraph with a certain special property is said to be maximal with respect to
that property if no larger subgraph (i.e., with more vertices or arcs) contains it
as a subgraph and has the property. For more details on maximal with respect
to other special properties see the book [2].
A block B of a digraph D is a maximal weak subgraph of D, which has no vertex
v such that B − v is disconnected. An entire digraph is called a block if it has
only one block.

Definition 2.1. Let D be a digraph with n vertices v1, v2, . . . , vn and m arcs,
and L(D) its associated line digraph with n

′
vertices and m

′
arcs. We have
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n
′

= m and m
′

=

n∑
i=1

d−(vi) ·d+(vi). Furthermore, the in-degree and out-degree

of a vertex v
′

= (vi, vj) in L(D) are d−(v
′
) = d−(vi) and d+(v

′
) = d+(vj),

respectively.

Definition 2.2. Let D be a connected digraph of order n (n ≥ 3) and let
B(D) = {B1, B2, . . . , BN} be a set of blocks of D. The block digraph Q =
B(D) has vertex set V (Q) = B(D) and arc set A(Q) = {BiBj : Bi, Bj ∈
V (Q);Bi, Bj have a cut-vertex of D in common and every vertex of Bj is reach
-able from every other vertex of Bi}.

Note that B(D) is defined only for digraphs which have at least two blocks.
Furthermore, the block digraph B(D) of a digraph D is symmetric if D is strong
with at least one cut-vertex (or at least two blocks). In Figure 2, three different
digraphs on the left and their corresponding block digraphs B(D) on the right
are shown.
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3. Properties of B(D)

Property 3.1. If D is strong and the number of cut-vertices is at least two,
then the size of B(D) equals the twice the number of cut-vertices of D (see the
third example of Figure 2).

Property 3.2. If D is strong with a unique cut-vertex, then B(D) ∼=
←→
Kp (see

the first example of Figure 2).

Property 3.3. If D is a directed path of order n (n ≥ 3), then B(D) ∼= L(D),
where L(D) is the line digraph of D (see the second example of Figure 2).

4. Characterization of B(D)

Theorem 4.1. The block digraph B(D) of a digraph D is complete symmetric
if and only if D is strong with a unique cut-vertex.

Proof. Suppose B(D) is complete symmetric. Assume that D is strong. Let C1

and C2 be the cut-vertices of D; and let B1, B2, B3 be the blocks of D such that
B1 and B2 contain C1 in common; B2 and B3 contain C2 in common. Then
the block vertex B1 is neither adjacent to nor adjacent from B3 in B(D), which
contradicts the assumption that B(D) complete symmetric.
Conversely, suppose that D is strong with a unique cut-vertex, say C. Let
B1, B2, . . . , BN be blocks of D. Clearly, every block of D contain C in common.
By definition, every pair of vertices of B(D) are joined by two arcs, one in each
direction. Thus B(D) is complete symmetric (for example, see the first example
of Figure 2). This completes the proof. �

Note that since every complete symmetric digraph is a block, by Theorem 4.1,
the block digraph B(D) of a digraph D is a block if D is strong with a unique
cut-vertex.

Definition 4.2. A digraph D is said to be Eulerian if it contains a closed walk
which traverses every arc of D exactly once. Such a walk is called an Euler walk.

The following result characterizes Eulerian digraphs.

Theorem 4.3. (Gutin [1]): A directed graph D = (V,A) is Eulerian if and only
if D is connected and d−(u) = d+(u) for all u ∈ V (D).

Theorem 4.4. The block digraph B(D) of a digraph D is Eulerian if and only
if every block of D is strong.

Proof. Suppose B(D) is Eulerian. Assume that there is a non-strong block B
of D. Let B1 be a block of D which shares a cut-vertex C with B. Then there
exists a vertex in B, which is not reachable from C. By definition, B(D) contains
two isolated vertices with no arcs, i.e., B(D) is disconnected of order two, which
contradicts the assumption that B(D) is Eulerian.
Conversely, suppose that every block of D is strong. We consider the following
two cases.
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Case 1: Assume that the number of cut-vertices of D is exactly one. By

property 3.2, B(D) is isomorphic to
←→
Kp, which is complete symmetric. Clearly,

the in-degree of each vertex equals its out-degree in B(D). By Theorem 4.3,
B(D) is Eulerian.
Case 2: Assume that the number of cut-vertices of D is at least two. Then
B(D) is symmetric. Therefore, the in-degree of each vertex equals its out-degree
in B(D). By Theorem 4.3, B(D) is Eulerian. This completes the proof. �

Definition 4.5. A spanning directed path of a digraph is called a Hamilton-
ian path and a spanning cycle a Hamiltonian cycle. A digraph containing a
Hamiltonian cycle is said to be Hamiltonian.

Theorem 4.6. (Gutin [1]): Every strong connected tournament has a Hamil-
tonian cycle.

Theorem 4.7. The block digraph B(D) of a digraph D is Hamiltonian if D is
strong with a unique cut-vertex.

Proof. Suppose that D is strong with a unique cut-vertex. By Theorem 4.1, the
block digraph B(D) is complete symmetric. Furthermore, since every complete
symmetric digraph is strong, Theorem 4.6 implies that B(D) contains a Hamil-
tonian cycle. Therefore, B(D) is Hamiltonian. This completes the proof. �

Definition 4.8. The least number of edge crossings of a graph G, among all
planar embeddings of G, is called the crossing number of G and is denoted by
cr(G). A graph is planar if it has a drawing without crossings. A graph that is
not planar is called nonplanar.

Kulli [4] introduced the the concept of non-zero inner vertex number of a planar
graph.

Definition 4.9. A positive integer r such that any plane embedding of a planar
graph G has at least r vertices in the interior region of G is called the inner
vertex number of G and is denoted by i(G).

In general, the planar graphs having i(G) = r, r > 0 are called r-nonouterplanar
graphs. In particular, zero-nonouterplanar graphs are called outerplanar graphs
and one-nonouterplanar graphs are called minimally nonouterplanar graphs.
That is, a graph G is said to be outerplanar if i(G) = 0 and minimally nonouter-
planar if i(G) = 1. An outerplanar graph G is maximal outerplanar if no edge
can be added without losing outerplanarity. Digraphs that can be drawn with-
out crossings between arcs (except at end vertices) are called planar digraphs.
Clearly this property does not depend on the orientation of the arcs and hence
we ignore the orientation while defining the planarity; outerplanarity; maximal
outerplanarity; and minimally nonouterplanarity of a digraph.
Furthermore, since most of the results and definitions of undirected graphs are
valid for planar digraphs as far as their underlying graphs are concerned, the
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following definitions hold good for planar digraphs. A digraph D is said to be
outerplanar if i(D) = 0 and minimally nonouterplanar if i(D) = 1.
Finally, the following Theorem can be used to check the maximal outerplanar
property of a digraph.

Theorem 4.10. (F. Harary [5]): Every maximal outerplanar graph G with n
vertices has 2n− 3 edges.

We now assume that D is “strongly connected” in order to study the planarity;
outer planarity; and minimally nonouterplanarity properties of B(D). We fur-
ther assume that ψ(D) is the number of blocks of D containing a cut-vertex of
D in common. For example, ψ(D) = 3 for the first example; ψ(D) = 0 for both
second and third examples of Figure 2. Furthermore, it should be noted that
ψ(D) must be at least two in order to study the properties mentioned above.

Theorem 4.11. The block digraph B(D) of D is planar if and only if ψ(D) is
at most four.

Proof. Suppose B(D) is planar. Assume that ψ(D) ≥ 5. If ψ(D) = 5, then

B(D) =
←→
K5. Hence cr(B(D)) > 0, which contradicts the assumption that B(D)

is planar.
Conversely, suppose that ψ(D) is at most four. For ψ(D) = 2, 3, and 4, B(D) is
←→
K2,
←→
K3, and

←→
K4, respectively. Clearly, cr(B(D)) = 0. Hence B(D) is planar. �

Theorem 4.12. The block digraph B(D) of D is outerplanar if and only if ψ(D)
is at most three.

Proof. Suppose B(D) is outerplanar. Assume that ψ(D) ≥ 4. If ψ(D) = 4, then

B(D) =
←→
K4. Hence i(B(D)) = 1, which contradicts the assumption that B(D)

is outerplanar.
Conversely, suppose that ψ(D) is at most three. For ψ(D) = 2 and 3, B(D) is
←→
K2 and

←→
K3, respectively. Clearly, i(B(D)) = 0. Hence B(D) is outerplanar. �

Theorem 4.13. The block digraph B(D) of D is minimally nonouterplanar if
and only if ψ(D) is exactly four.

Proof. Suppose B(D) is minimally nonouterplanar. Assume that ψ(D) ≥ 5. By
Theorem 4.11, B(D) is nonplanar, a contradiction. On the other hand, suppose
that ψ(D) is either two or three. By Theorem 4.12, B(D) is outerplanar, again
a contradiction.
Conversely, suppose that ψ(D) is exactly four. By necessity of Theorem 4.12, the
inner vertex number of B(D) is one, i.e., i(B(D)) = 1. Hence B(D) is minimally
nonouterplanar. �

We now investigate the maximal outerplanar property of B(D). Here D need
not be strongly connected.

Theorem 4.14. The block digraph B(D) of D is maximal outerplanar if and

only if D = ~P3, i.e., a directed path of order three.
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Proof. Suppose B(D) is maximal outerplanar. Assume that D is a directed path
~Pn, n ≥ 4. By Property 3.3, B(D) ∼= L(D) ∼= ~Pn, n ≥ 3. Clearly the order and

size of ~Pn, n ≥ 3, are α + 2 and α + 1, respectively, where α = (n − 3), n ≥ 4.
But α + 1 < 2α + 1 = 2(α + 2) − 3. Since B(D) has α + 1 arcs, Theorem 4.10
implies that B(D) is not maximal outerplanar, a contradiction.

Conversely, suppose that D = ~P3. By definition, B(D) = ~P2. By Theorem 4.10,
B(D) is maximal outerplanar. This completes the proof. �
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