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Abstract. In this article, we compute closed forms of M-polynomials for
three general classes of convex polytopes. From the M-polynomials, we
derive degree-based topological indices such as first and second Zagreb
indices, modified second Zagreb index, Symmetric division index, etc.
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1. Introduction

A graph G(V,E) with vertex set V(G) and edge set E(G) are connected, if
there exists a connection between any pair of vertices in G. The degree of a
vertex is the number of vertices which are connected to that fixed vertex by the
edges. In a chemical graph, the degree of any vertex is at most 4. The distance
between two vertices u and v is denoted as d(u, v) = dG(u, v) and is the length of
shortest path between u and v in graph G. The number of vertices of G, adjacent
to a given vertex v, is the “degree” of this vertex, and will be denoted by dv.
The concept of degree in graph theory is closely related (but not identical) to
the concept of valence in chemistry. For details on basics of graph theory, any
standard text such as [1] can be of great help.
Several algebraic polynomials have useful applications in chemistry such as
Hosoya polynomial (also called Wiener polynomial) [2], which plays a vital role
in determining distance-based topological indices. Among other algebraic poly-
nomials, M-polynomial [3] introduced in 2015, plays the same role in determining
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closed form of many degree-based topological indices [4, 5, 6, 7, 8]. The main
advantage of M-polynomial is the wealth of information that it contains about
degree-based graph invariants.

Definition 1.1. [3] The M-polynomial of G is defined as:

M (G, x, y) =
∑

δ≤i≤j≤∆

mij (G)xiyj

where δ = Min{dv|v ∈ V (G)}, ∆ = Max{dv|v ∈ V (G)}, and mij(G) is the edge
vu ∈ E(G) such that {dv, du} = {i, j} .
The first topological index was introduced by Wiener [9] and it was named path
number, which is now known as Wiener index. In chemical graph theory, this
is the most studied molecular topological index due to its wide applications; see
for details in [10, 11]. Randić index, [12] denoted by R−1/2(G) and introduced
by Milan Randić in 1975 is also one of the oldest topological index. The Randić
index is defined as

R−1/2(G) =
∑

uv∈E(G)

1√
dudv

.

In 1998, working independently, Bollobs and Erds, [13] and Amic et al. [14]
proposed the generalized Randić index which has been studied extensively by
both chemists and mathematicians [15]. Many mathematical properties have
been discussed [16]. For a detailed survey we refer the book [17].
The general Randić index is defined as:

Rα(G) =
∑

uv∈E(G)

1

(dudv)α
,

and the inverse Randić index is defined as RRα(G) =
∑

uv∈E(G)(dudv)
α.

Obviously R−1/2(G) is the particular case of Rα(G) when α = − 1
2 .

The Randić index is the most popular most often applied and most studied
among all other topological indices. Many papers and books such as [18, 19, 20]
are written on this topological index. Randić himself wrote two reviews on
his Randić index [21, 22] and there are three more reviews [23, 24, 25]. The
suitability of the Randić index for drug design was immediately recognized,
and eventually the index was used for this purpose on countless occasions. The
physical reason for the success of such a simple graph invariant is still an enigma,
although several more-or-less plausible explanations were offered.
Gutman and Trinajstić introduced first Zagreb index and second Zagreb index,
which are defined as: M1(G) =

∑

uv∈E(G)(du+dv) andM2(G) =
∑

uv∈E(G)(du×
dv) respectively. The second modified Zagreb index is defined as:

mM2 (G) =
∑

uv∈E(G)

1

d(u)d(v)
.

For details about these indices we offer [26, 27, 28, 29, 30] for the readers.
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The Symmetric division index is defined as:

SDD (G) =
∑

uv∈E(G)

{

min(du, dv)

max(du, dv)
+

max(du, dv)

min(du, dv)

}

.

Another variant of Randić index is the harmonic index defined as:

H(G) =
∑

vu∈E(G)

2

du + dv
.

The Inverse sum index is defined as:

I(G) =
∑

vu∈E(G)

dudv

du + dv
.

The augmented Zagreb index is defined as:

A(G) =
∑

vu∈E(G)

{

dudv

du + dv − 2

}3

,

and it is useful for computing heat of formation of alkanes [31, 32].
The following Table 1 relates some well-known degree-based topological indices
with M-polynoimal [3].

Table 1 Derivation of some degree-based topological indices from
M-polynomial

Topological Index Derivation from M(G;x, y)
First Zagreb (Dx +Dy) (M(G;x, y))x=y=1

Second Zagreb (DxDy) (M(G;x, y))x=y=1

Second Modified Zagreb (SxSy) (M(G;x, y))x=y=1

Randić Index
(

Dα
xD

α
y

)

(M(G;x, y))x=y=1

Inverse Randić Index
(

Sα
xS

α
y

)

(M(G;x, y))x=y=1

Symmetric Division Index (DxSy + SxDy) (M(G;x, y))x=y=1

Harmonic Index 2SxJ(M(G;x, y))x=1

Inverse sum Index SxJDxDy(M(G;x, y))x=1

Augmented Zagreb Index S3
xQ−2JD

3
xD

3
y(M(G;x, y))x=1

where

Dx = x
∂(f(x,y)

∂x , Dy = y
∂(f(x,y)

∂y , Sx =
x

∫
0

f(t,y)
t dt, Sy =

y

∫
0

f(x,t)
t dt ,

J (f (x, y)) = f (x, x) , Qα (f (x, y)) = xαf (x, y) .

2. Main Results

In this section we give our main results.
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2.1. Computational aspects of Convex Polytopes Tn. The graph of con-
vex polytope Tn can be obtained from the graph of convex polytopeQn by adding
new edges. It consists of three-sided faces, five-sided faces and n-sided faces.
ai+1bi, i.e., V (Tn) = V (Qn)and V (Tn) = V (Qn) ∪ {ai+1bi : 1 ≤ i ≤ n}as
shown in figure 1.

Figure 1. Graph of Convex poltyope T6.

Theorem 2.1. Assume we have a convex polytope Tn, then the M-Polynomial
of Tn is

M (Tn;x, y) = 2nx3y3 + 2nx3y6 + nx4y4 + 2nx4y6 + nx6y6.

Proof. Let G = Tn be a convex polytope. It is easy to see form Figure 1 that

|V (Tn)| = 4n,

|E (Tn)| = 8n.

The vertex set of Sn has two partitions:

V1(Tn) = {u ∈ V (Tn) : du = 3} ,
V2(Tn) = {u ∈ V (Tn) : du = 4} ,
V4(Tn) = {u ∈ V (Tn) : du = 6} ,

such that

|V1(Tn)| = 2n, |V2(Tn)| = n, |V3(Tn)| = n,

The edge set of Tn has three partitions:

E1(Tn) = {e = uv ∈ E(Tn) : du = dv = 3} ,
E2(Tn) = {e = uv ∈ E(Tn) : du = 3, dv = 6} ,
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E3(Tn) = {e = uv ∈ E(Sn) : du = dv = 4} ,
E4(Tn) = {e = uv ∈ E(Tn) : du = 4, dv = 6} ,
E5(Tn) = {e = uv ∈ E(Tn) : du = dv = 6} ,

From Figure 1,

|E1(Tn)| = 2n, |E2(Tn)| = 2n, |E3(Tn)| = n, |E4(Tn)| = 2n, |E5(Tn)| = n,

From the definition of the M-polynomial

M (Tn;x , y) =
∑

i≤j

mij (Tn) x
iyj

=
∑

3≤3

m33 (Tn)x
3y3 +

∑

3≤6

m36 (Tn)x
3y6 +

∑

4≤4

m44 (Tn)x
4y4

+
∑

4≤6

m46 (Tn)x
4y6 +

∑

6≤6

m66 (Tn)x
6y6

=
∑

uv∈E1

m33 (Tn)x
3y3 +

∑

uv∈E2

m36 (Tn)x
3y6 +

∑

uv∈E3

m44 (Tn)x
4y4

+
∑

uv∈E4

m46 (Tn)x
4y6 +

∑

uv∈E5

m66 (Tn)x
6y6

= |E1|x3y3 + |E2|x3y6 + |E3|x4y4 + |E4|x4y6 + |E5|x6y6

= 2nx3y3 + 2nx3y6 + nx4y4 + 2nx4y6 + nx6y6.

�

Now we compute some degree-based topological indices of double antiprism from
this M-polynomial.

Proposition 2.2. Let Tn be the double antiprism, then

(1) M1(Tn) = 70n.
(2) M2(Tn) = 154n
(3) mM2(Tn) =

73
144n.

(4) Rα (Tn) = 2× 9αn+ 2× 18αn+ 16αn+ 2× 24αn+ 36αn.
(5) RRα (Tn) =

2n
9α + 2n

16α + n
16α + 2n

24α + n
36α .

(6) SSD(Tn) =
52
3 n.

(7) H (Tn) =
98
45n.

(8) I(Tn) =
84
5 n.

(9) A(Tn) == 6534785489
37044000 n.

Proof. Let

M (Tn;x, y) = f(x, y) = 2nx3y3 + 2nx3y6 + nx4y4 + 2nx4y6 + nx6y6

Then

Dx (f(x, y)) = 6nx3y3 + 6nx3y6 + 4nx4y4 + 8nx4y6 + 6nx6y6,



M-polynomials and degree-based topological indices of some families of convex polytopes 23

Dy (f(x, y)) = 6nx3y3 + 12nx3y6 + 4nx4y4 + 12nx4y6 + 6nx6y6,

(DyDx) (f(x, y)) = 18nx3y3 + 36nx3y6 + 16nx4y4 + 48nx4y6 + 36nx6y6,

SxSy(f(x, y)) =
2

9
nx3y3 +

1

9
nx3y6 +

1

16
nx4y4 +

1

12
nx4y6 +

1

36
nx6y6,

Dα
xD

α
y (f(x, y)) = 2×9αnx3y3+2×18αnx3y6+16αnx4y4+2×24αnx4y6+36αnx6y6,

Sα
xS

α
y (f(x, y)) =

2n

9α
x3y3 +

2n

16α
x3y6 +

n

16α
x4y4 +

2n

24α
x4y6 +

n

36α
x6y6,

SyDx (f(x, y)) = 2nx3y3 + nx3y6 + nx4y4 +
4n

3
x4y6 + nx6y6,

SxDy (f(x, y)) = 2nx3y3 + 4nx3y6 + nx4y4 + 3nx4y6 + nx6y6,

SxJf(x, y) =
n

3
x6 +

n

4
x8 +

2n

9
x9 +

n

5
x10 +

n

12
x12,

SxJDxDy (f(x, y)) == 3nx6 + 2nx8 + 4nx9 +
24

5
nx10 + 3nx12,

S3
xQ−2JD

3
xD

3
yf(x, y) =

1458

64
nx4+

4096

216
nx6+

11664

343
nx7+

27648

512
nx8+

46656

1000
nx10.

Now from Table 1

(1) M1 (Tn) = (Dx +Dy) (f(x, y))|x=y=1 = 70n.

(2) M2 (Tn) = DxDy(f(x, y))|x=y=1 = 154n.

(3) mM2 (Tn) = SxSy(f(x, y))|x=y=1 =
73
144n.

(4) Rα (Tn) = Dα
xD

α
y (f(x, y))

∣

∣

x=y=1
= 2 × 9αn + 2 × 18αn + 16αn + 2 ×

24αn+ 36αn.
(5) RRα (Tn) = Sα

xS
α
y (f(x, y))

∣

∣

x=y=1
= 2n

9α + 2n
16α + n

16α + 2n
24α + n

36α .

(6) SSD (Tn) = (SyDx + SxDy) (f(x, y))|x=y=1 = 52
3 n.

(7) H (Tn) = 2SxJ (f(x, y)) |x=1 = 98
45n.

(8) I (Tn) = SxJDxDy (f(x, y))x=1 = 84
5 n.

(9) A (Tn) = S3
xQ−2JD

3
xD

3
y (f(x, y))

∣

∣

x=1
= 6534785489

37044000 n.

�
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Figure 2. Graph of double antiprism A6.

2.2. Computational aspects of Convex Polytopes An. The graph of con-
vex polytope (double antiprism) An can be obtained from the graph of convex
polytope Rn Rn by adding new edges bi+1ci, i.e.,
V (An) = V (Rn)and V (An) = V (Rn)∪{bi+1ci : 1 ≤ i ≤ n} as shown in Figure
2.

Theorem 2.3. Let An be the double antiprism, then the M-Polynomial of An

is

M (An , x, y) = 2nx4y4 + 4nx4y6 + nx6y6

Proof. Let G = An is double antiprism. It is easy to see form figure 2 that

|V (An)| = 3n,

|E (An)| = 7n.

The vertex set of An has two partitions:

V1(An) = {u ∈ V (An) : du = 4} ,
V2(An) = {u ∈ V (An) : du = 6} ,

such that

|V1(An)| = 2n, |V2(An)| = n.

The edge set of An has three partitions:

E1(An) = {e = uv ∈ E(An) : du = dv = 4} ,
E2(An) = {e = uv ∈ E(An) : du = 4, dv = 6} ,
E3(An) = {e = uv ∈ E(An) : du = dv = 6} ,

From Figure 2,

|E1(An)| = 2n, |E2(An)| = 4n, |E3(An)| = n,
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Now from the definition of the M-polynomial

M (An, x , y) =
∑

i≤j

mij (An)x
iyj

=
∑

4≤4

m44 (An)x
4y4 +

∑

4≤6

m46 (An)x
4y6 +

∑

5≤5

m66 (An) x
6y6

=
∑

uv∈E1

m44 (An)x
4y4 +

∑

uv∈E2

m46 (An)x
4y6 +

∑

uv∈E3

m66 (An)x
6y6

= |E1|x4y4 + |E2|x4y6 + |E3|x6y6

= 2nx4y4 + 4nx4y6 + nx6y6.

�

Now we compute some degree-based topologcal indices of double antiprism from
this M-polynomial.

Proposition 2.4. Let An be the double antiprism, then

(1) M1(An) = 68n.
(2) M2(An) =

23
72n.

(3) mM2(An) =
23
72n.

(4) Rα (An) = n(4× 24α + 36α + 2× 16α).
(5) RRα (An) = n

(

2
16α + 4

24α + 1
36α

)

.

(6) SSD(An) =
44
3 n.

(7) H (An) =
11
15n.

(8) I(An) =
83
5 n.

(9) A(An) =
649964
3375 n.

2.3. Computational aspects of Convex Polytopes. Sn

The graph of convex polytope (double antiprism) Sn can be obtained from the
graph of convex polytopeQn by adding new edges cici+1, i.e.,
V (Sn) = V (Qn)and V (Sn) = V (Qn)∪{cici+1 : 1 ≤ i ≤ n} as shown in Figure
3.

Theorem 2.5. Let Sn be the double antiprism, then the M-Polynomial of Sn is

M (Sn; x, y) = 2nx3y3 + 2nx3y5 + 4nx5y5.

Proof. Let G = Sn be the double antiprism. It is easy to see form Figure 3 that

|V (Sn)| = 4n,

|E (Sn)| = 8n.

The vertex set of Sn has two partitions:

V1(Sn) = {u ∈ V (Sn) : du = 3} ,
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Figure 3. Graph of double antiprism S6.

V2(Sn) = {u ∈ V (Sn) : du = 5} ,
such that

|V1(Sn)| = 2n, |V2(Sn)| = 2n.

The edge set of An has three partitions:

E1(Sn) = {e = uv ∈ E(Sn) : du = dv = 3} ,
E2(Sn) = {e = uv ∈ E(Sn) : du = 3, dv = 5} ,
E3(Sn) = {e = uv ∈ E(Sn) : du = dv = 5} ,

From Figure 3,

|E1(Sn)| = 2n, |E2(Sn)| = 2n, |E3(Sn)| = 4n,

Now from the definition of the M-polynomial

M (Sn;x , y) =
∑

i≤j

mij (Sn)x
iyj

=
∑

uv∈E1

m33 (Sn)x
3y3 +

∑

uv∈E2

m35 (Sn)x
3y5 +

∑

uv∈E3

m55 (Sn) x
5y5

= |E1|x3y3 + |E2|x3y5 + |E3|x5y5

= 2nx3y3 + 2nx3y5 + 4nx5y5.

�

Now we compute some degree-based topologcal indices of double antiprism from
this M-polynomial.

Proposition 2.6. Let An be the double antiprism, then
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(1) M1(Sn) = 68n.
(2) M2(Sn) = 148n.
(3) mM2(Sn) =

116
225n.

(4) Rα (Sn) = 2n(9α + 15α + 2× 25α).
(5) RRα (Sn) = 2n

(

1
9α + 1

15α + 2
25α

)

.

(6) SSD(Sn) =
248
15 n.

(7) H (Sn) =
59
60n.

(8) I(Sn) =
67
4 n.

(9) A(Sn) =
22541
128 n.

3. Conclusions and Discussions

We computed closed forms of M-polynomial of three general classes of convex
polytopes at first. Then we derived as many as nine degree-based topological
indices such as first and second Zagreb indices, modified second Zagreb index,
Symmetric division index, Augmented Zagreb index, Inverse-sum index etc.
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