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Abstract. This article presents, effects of fractional order derivative and
magnetic field on double convection flow of viscous fluid over a moving

vertical plate with constant temperature and general concentration. The
model is fractionalized by using Caputo-Fabrizio derivative operator. Closed
form solutions of the fluid velocity, concentration and temperature are
obtained by means of the Laplace transform. Numerical computations
and graphical illustrations are used in order to study the effects of the
Caputo-Fabrizio time-fractional parameter , magnetic parameter , Prandtl
and Grashof numbers on velocity field.
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1. Introduction

The enthusiasm in fluid mechanics is really meaningful in the presence of “trans-
port phenomena, which is a significant feature in thermal, chemical, and mechan-
ical engineering science. Several physical mechanism exists which can be used
to transport thermal energy and chemical species through a phase and across
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boundaries of the phase. The three mechanisms for the heat transfer are diffu-
sion, convection and radiation. Convection of heat transfer is further classified
into three subsequent branches, namely; natural (free), forced, and mixed con-
vection, depending upon the physical system initiating the motion of the fluid.
Free convection flows resulting from the heat and mass transfer driven by the
combined buoyancy effect due to temperature and concentration variations have
been extensively studied, due to their various applications in geosciences, chemi-
cal engineering, and industrial activities as food processing and polymer produc-
tion. Other multiple areas of applications such as: heat transfer from transmis-
sion lines and pipes, heat conduction from electrical devices, heat debauchery
from the spiral refrigerator element to surrounding air, heat transfer from a
heater, heat transfer in nuclear energy poles, extrusion and wiredrawing, at-
mospheric and oceanic circulation, etc., have been studied by Jaluria [1]. Free
convection problems are usually formulated under different situations like con-
stant surface temperature, ramped temperature at the wall or surface heat flux
[2].
Generally, the mass transfer due to the concentration differences affects the rate
of heat transfer. The driving force for the free convection is buoyancy so its
effects cannot be neglected when the fluid velocity is small and temperature dif-
ference between the surface and ambient fluid is large enough [3-5].
Electrically conducting fluids also have received much attention from the re-
searchers due to their large scale applications in industrial appliances. The
magneto hydrodynamics (MHD) has its own practical applications, such as the
cooling of nuclear reactors by liquid sodium and induction flow meter, which
depends on the potential difference in the fluid in the direction perpendicular to
the motion and to the magnetic field [6].
The influence of magnetic field on the free convection flow is significant in liquid
metals, electrolytes and ionized gases. The work of Soundalgekar et al. [7] is
seemed to be the first on mass transfer and magnetic effects. The study of MHD
in the free convection has attracted the interest of many researchers in view of
its applications in geophysics and astrophysics [8].
The role of ”Fractional Calculus” which is now a day’s called calculus of 21th
century in modern sciences and engineering is very significant. The tools devised
in the subject is used in past few decades to provide solutions to hundreds of
real world problems. Researchers are interested to solve scientific problems using
the techniques developed in fractional calculus. In the recent times, fractional
calculus has been extended to several directions for instance fractional-order
multipoles in the electromagnetism, electrochemistry, models in mathematical
biology, finance, fluid flows tracers, signal processing in engineering, applied
mathematics, bio-engineering and fluid dynamics [9]. Many researchers in fluid
dynamics widely used fractional derivative models to study the viscoelastic ma-
terials such as polymers in glass transition. It is vital to bring in light the fact
that fractional derivative generalizations of one dimensional viscoelastic models
have seen to be more useful in modeling the response linear regime [10]. This
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generalization is in good agreement with the second law of thermodynamics.
The fractional derivative operators used up till now, are Riemann-Liouville frac-
tional derivative and Caputo fractional derivative operator [11]. It is observed
by many researchers that application of these operators exhibit difficulties, such
as Riemann-Liouville fractional derivative of constant functions is not zero, and
its Laplace transform contain terms without physical significance. Caputo frac-
tional derivative has eliminated these difficulties, but the kernel in its definition
is a singular function. The results that are been found using these operators are
expressed in complicated forms involving some generalized functions.
Recently, Caputo and Fabrizio gave a new expression for fractional derivative
operator with an exponential kernel without singularities. The Caputo-Fabrizio
temporal-fractional derivative is suitable in the use of the Laplace transform.
Shah et al. [12]applied the idea of the Caputo-Fabrizio fractional derivatives
to generalize the starting flow of second grade fluid over a vertical plate and
obtained the exact solutions using the Laplace transform technique. Some other
recent studies can be found in [13-17] and the references therein.

2. Mathematical formulation of the problem

The unsteady magneto-hydrodynamic flow of viscous incompressible fluid past
an infinite vertical plate and constant temperature and variable mass diffusion
has been studied. Initially, the plate and the fluid are at the same temperature
T∞ in the stationary condition with concentration level C∞ at all the points. At
time t = 0+, the plate is moving with a velocity U0f(t) in its own plane and the
temperature of the plate is constant Tw as well species concentration is raised or
lowered to the value C∞+Cwg(t) with time. U0 is a constants with dimension of
velocity while the dimensionless functions f(·) and g(·) are piecewise continuous
of exponential order at infinity and f(0) = g(0) = 0 . We made the following
assumptions:

• All fluid physical properties are considered to be constant except the
influence of the body force terms.

• Applied magnetic field of uniform strength B0 is normal to the plate.
• The fluids conducting property is supposed to be slight and hence the
magnetic Reynolds number is lesser than unity, the induced magnetic
field is small in comparison with the transverse magnetic field.

• It is further supposed that there is no applied voltage, as the electric
field is absent.

• Viscous dissipation and Joule heating in energy equation are neglected.

According to Boussinesq’s approximation, the unsteady flow is governed by the
following set of equations:

∂u

∂t
= ν

∂2u

∂y2
+ gβT (T − T∞) + gβC(C − C∞)− σB2

0

ρ
u, (1)
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ρcp
∂T

∂t
= k

∂2T

∂y2
−Q(T − T∞), (2)

∂C

∂t
= D

∂2C

∂y2
−Kr(C − C∞), (3)

with initial and boundary conditions

u = 0, T = T∞, C = C∞; t = 0, y > 0, (4)

u = U0f(t), T = Tw, C(y, t) = C∞ + (Cw − C∞)g(t); t > 0, y = 0, (5)

u −→ 0, T −→ T∞, C −→ C∞; y −→ ∞, t > 0. (6)

Introducing the following dimensionless variables and parameters

y∗ =
U0y

ν
, u∗ =

u

U0
, t∗ =

tU2
0

ν
, T ∗ =

T − T∞

Tw − T∞
, C∗ =

C − C∞

Cw − C∞

,

Gr =
gβrν(Tw − T∞)

U3
0

, Gm =
gβcν(Cw − C∞)

U3
0

,M =
σB2

0ν

ρU2
0

,

P r =
µcρ

k
, Sc =

ν

D
, S =

Qν2

kU2
0

, λ =
Krν

2

DU2
0

(7)

into Eqs. (1)-(6) and dropping the star notation, we have the following initial-
boundary problem

∂u(y, t)

∂t
=
∂2u(y, t)

∂y2
+GrT (y, t) +GmC(y, t)−Mu(y, t), (8)

∂T (y, t)

∂t
=

1

Pr

∂2T (y, t)

∂y2
− S

Pr
T (y, t), (9)

∂C(y, t)

∂t
=

1

Sc

∂2C(y, t)

∂y2
− λ

Sc
C(y, t), (10)

with dimensionless initial and boundary conditions

u(y, t) = 0, T (y, 0) = 0, C(y, 0) = 0; y > 0, (11)

u(0, t) = f(t), T (0, t) = 1, C(0, t) = g(t); t > 0, (12)

u(y, t) −→ 0, T (y, t) −→ 0, C(y, t) −→ 0; y −→ 0. (13)

Here, we have to developed fractional model, replacing the time derivative in
Eqs. (8), (9) and (10), with time-fractional derivatives, we obtain the following
fractional differential equations

Dα
t u(y, t) =

∂2u(y, t)

∂y2
+GrT (y, t) +GmC(y, t)−Mu(y, t), (14)

Dα
t T (y, t) =

1

Pr

∂2T (y, t)

∂y2
− S

Pr
T (y, t), (15)

Dα
t c(y, t) =

1

Sc

∂2C(y, t)

∂y2
− λ

Sc
C(y, t), (16)
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whereDα
t u(y, t) represent the Caputo-Fabrizio time-fractional derivative of u(y, t),

defined as [17]

Dα
t u(y, t) =

1

1− α

∫ t

0

u′(y, τ) exp

(

−α(t− τ)

1− α

)

dτ, 0 < α < 1. (17)

3. Solution of the problem

3.1. Calculation for temperature. Taking Laplace transform of Eqs. (15),
(12)2, (13)2 and using initial condition Eq. (11)2 , we obtain

γq

q + αγ
T (y, q) =

1

Pr

∂2T (y, q)

∂y2
− S

Pr
T (y, q), (18)

T (0, q) =
1

q
, T (y, q) → 0 as y → ∞, (19)

where γ = 1
1−α

, T (y, q) , is the Laplace transform of T (y, t) and q is the transform

variable. The solution of the partial differential equation (18) by using conditions
in equation (19), we obtain

T (y, q) =
1

q
exp

(

−y
√

Prγq

q + αγ
+ S

)

=
1

q
exp

(

−y
√

(Prγ + S)q + Sαγ

q + αγ

)

=
1

q
exp






−y

√

√

√

√

(Prγ+S)q
αγ

+ S

1
αγ
q + 1







= F1

(

y, q,
1

αγ
, S,

Prγ + S

αγ

)

, (20)

with inverse Laplace transform

T (y, t) = f1

(

y, t,
1

αγ
, S,

Prγ + S

αγ

)

, (21)

where F1(y, q, a, b, c) and f1(y, t, a, b, c) are defined in Appendix.

3.2. Calculation for concentration. Taking Laplace transform of Eqs. (16),
(12)3, (13)3 and using initial condition Eq. (11)3, we obtain

γq

q + αγ
C(y, q) =

1

Sc

∂2C(y, q)

∂y2
− λ

Sc
C(y, q), (22)

C(0, q) = G(q), C(y, q) −→ 0 as y −→ ∞, (23)

where 1
1−α

,C(y, q) and G(q) are the Laplace transform of C(y, t) respectively

g(t) and q is the transform variable.
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The solution of the partial differential equation (22) by using conditions in equa-
tion (23), we obtain

C(y, q) = G(q) exp

(

−y
√

Scγq

q + αγ
+ λ

)

. (24)

Eq. (24) can be written in equivalent form as

C(y, q) = qG(q)
1

q
exp






−y

√

√

√

√

(Scγ+λ)q
αγ

+ λ

1
αγ
q + 1







= qG(q)F1

(

y, q,
1

αγ
, λ,

Scγ + λ

αγ

)

. (25)

Inverting Laplace transform we obtain the temperature distribution as

C(y, t) = g′(t) ∗ f1
(

y, t,
1

αγ
, λ,

Scγ + λ

αγ

)

(26)

where g′(t) = L−1{qG(q)} , “∗” represent the convolution product and F1(y, q, a, b, c),
f1(y, t, a, b, c) are defined in Appendix.

3.3. Calculation for velocity. Taking Laplace transform of Eqs. (14), (12)1,
(13)1, using initial condition Eq. (11)1, by introducing Eqs. (20) and (24), we
obtain

(

γq

q + αγ
+M

)

u(y, q) =
∂2u(y, q)

∂y2
+Gr

1

q
exp

(

−y
√

Prγq

q + αγ
+ S

)

+GmG(q) exp

(

−y
√

Prγq

q + αγ
+ λ

)

, (27)

u(0, q) = F (q), u(y, q) −→ 0, as y −→ ∞, (28)

where F (q) is the Laplace transform of f(t) .
The solution of the partial differential equation (27) subject to conditions in
equation (28) can be written in the following suitable form as

u(y, q) = qF (q)F1

(

y, q,
1

αγ
,M,

γ +M

αγ

)

+ u1(y, q) + u2(y, q), (29)

where

u1(y, q) =
Gra3

a1

[

1 +
a5

q + a4

]

[

F1

(

y, q,
1

αγ
, S,

Prγ + S

αγ

)

−F1

(

y, q,
1

αγ
,M,

γ +M

αγ

)

]

, (30)
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u1(y, q) =
Gma3

b2
qG(q)

[

1 +
b4

q + b3

]

[

F1

(

y, q,
1

αγ
, λ,

Scγ + λ

αγ

)

−F1

(

y, q,
1

αγ
,M,

γ +M

αγ

)

]

, (31)

where a1 = M − S, a2 = a3[(1 − Pr)γ + a1], a3 =
1

αγ
, a4 =

a2

a1
, a5 = a1−a2a3

a1a3
,

b1 =M −λ, a2 = a3[(1− Sc)γ+ b1], b3 =
b1

b2
, b4 =

b2 − a3b1

a3b2
and F1(y, q, a, b, c)

is defined in the Appendix.
Taking inverse Laplace transform of Eqs. (29), (30) and (31), we obtain

u(y, t) = f ′(t) ∗ f1
(

y, t,
1

αγ
,M,

γ +M

αγ

)

+ u1(y, t) + u2(y, t), (32)

where

u1(y, t) =
Gra3

a1

[

H(t) + a5e
−a4t

]

∗
[

f1

(

y, t,
1

αγ
, S,

Prγ + S

αγ

)

−F1

(

y, t,
1

αγ
,M,

γ +M

αγ

)

]

, (33)

u2(y, t) =
Gma3

b2
g′(t) ∗

[

H(t) + b4e
−b3t

]

∗
[

f1

(

y, t,
1

αγ
, λ,

Scγ + λ

αγ

)

−f1
(

y, t,
1

αγ
,M,

γ +M

αγ

)

]

, (34)

and f1(y, t, a, b, c), is defined in Appendix and “∗” represent the convolution
product.

4. Numerical results and discussions

In order to obtain some information on the fluid flow parameters, we have made
several numerical simulations using Mathcad software. Obtained results are
presented in the graphs from Figures.1- 6. All the parameters and profiles are
dimensionless.
We were interested, to analyze the influence of the fractional parameter α with
different values of time t , magnetic parameter M , Prandtl number Pr and
Grashof number Gr on velocity field in order to study the flow behavior.
In Figure 1, we present the influence of the fractional parameter α with small
time t on velocity profile. It is observe that by increasing the value of the
fractional parameter the velocity is decreases with small values of time and by
increasing the time the velocity increase.
In Figure 2, we present the influence of the fractional parameter α with large time
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Figure 1. Profile of dimensionless velocity versus y for α variation with
Pr = 0.7, S = 5, Sc = 0.8, λ = 4, Gr = 3, Gm = 0.9,M = 0.4 and different small

values of time t.

Figure 2. Profile of dimensionless velocity versus y for α variation with
Pr = 0.7, S = 5, Sc = 0.8, λ = 4, Gr = 3, Gm = 0.9,M = 0.4 and different large

values of time t.

t on velocity profile. It is observe that by increasing the value of the fractional
parameter the velocity is increases with large values of time and by increasing
the time the velocity increase.
The effect of magnetic field for small and large values of time on velocity profile
is presented in Figure 3, respectively Figure 4. It is observe that by increasing
the magnetic field the velocity is decreases as which is expected for small as well
as for large time.
The effect of Prandtl number Pr and Grashof number Gr are presented in Figs.
5 and 6, respectively. It is observe that the velocity decrease by increasing the
Prandtl”number Pr and increase by increasing the values of Gr.
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Figure 3. Profile of dimensionless velocity versus y for α variation with
Pr = 0.7, S = 5, Sc = 0.8, λ = 4, Gr = 3, Gm = 0.9, and different values of M

for small time.

Figure 4. Profile of dimensionless velocity versus y for α variation with
Pr = 0.7, S = 5, Sc = 0.8, λ = 4, Gr = 3, Gm = 0.9, and different values of M

for large time.

5. Conclusions

This aim of this article presents, the effects of fractional order derivative and
magnetic field on double convection flow of viscous fluid over a moving vertical
plate with constant temperature and general concentration. Numerical compu-
tations and graphical illustrations are used in order to study the effects of the
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Figure 5. Profile of dimensionless velocity versus y for α variation with
M = 0.4, S = 5, Sc = 0.8, λ = 4, Gr = 3, Gm = 0.9, and different values of Pr.

Figure 6. Profile of dimensionless velocity versus y for α variation with
Pr = 0.7, S = 5, Sc = 0.8, λ = 4, Gm = 0.9,M = 0.4 and different values of Gr.

Caputo-Fabrizio time-fractional parameter α, magnetic parameter M , Prandtl
and Grashof number on velocity field. The follow important points are observed

• By increasing the value of the fractional parameter the velocity is de-
creases with small values of time and by increasing the time the velocity
increase.

• By increasing the value of the fractional parameter the velocity is in-
creases with large values of time and by increasing the time the velocity
increase.

• By increasing the magnetic field the velocity is decreases.
• The velocity decrease by increasing the Prandtl number Pr.
• The velocity increase by increasing the values of Gr.
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6. Appendix

F1(y, q, a, b, c) =
1

q
exp

(

−y
√

cq + b

aq + 1

)

(A1)

f1(y, t; a, b, c) = L−1{F1(y, q, a, b, c)} =

=























c

a
e−

t

a

∫ t

0

erfc

(

y

2
√
u

)

e−
cu

a I0

(

2

a

√

(c− ab)ut

)

du

+
b

a

∫ ∞

0

∫ t

0

erfc

(

y

2
√
u

)

e−
cu+τ

a I0

(

2

a

√

(c− ab)uτ

)

dτdu, 0 < α < 1, (A2)

ψ(y, t, a, b), α = 1.
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Nomenclature
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B0 Uniform Applied Magnetic field,

Cw Concentration on the plate,

C∞ Concentration of the fluid far away from the plate,

cp Specific heat at constant pressure,

D Solute mass diffusivity

g Acceleration due to gravity,

Gr Grashof number for heat transfer

Gm Grashof number for mass transfer,

Kr Dimensional Chemical reaction parameter

λ Dimensionless Chemical reaction parameter,

M Magnetic field parameter

Pr Prandtl number

Q Dimensional Heat absorption parameter,

S Non-Dimensional Heat absorption parameter,

Sc Schmidt number,

Re Reynolds number

Tw Temperature of the plate,

T∞ Temperature of the fluid far away from the plate

K Thermal conductivity of the fluid,

βT Thermal expansion coefficient,

βC Volumetric coefficient of expansion with species concentration,

ν Kinematic viscosity,

ρ Density of the fluid,

σ Electric conductivity


