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Abstract. In the present article, a time fractional diffusion problem is for-
mulated with special boundary conditions, specifically the nonlocal bound-

ary conditions. This new problem is then solved by utilizing the Laplace

transform method coupled to the well-known Adomian decomposition method
after employing the modified version of Beilin’s lemma featuring fractional

derivative in time. The Caputo fractional derivative is used. Some test

problems are included.
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1. Introduction

Heat conduction problems frequently occur in many industrial processes thereby
necessitating much attention from researchers. Of recent, these problems tend
to be modelled with fractional order derivatives in either time or space variables
or both. In light of this, the study of fractional differential equations [1, 2, 3]
becomes vital in this regards. Moreover, many methods have been employed by
many researchers to tackle varieties of heat conduction problems ranging from
analytical down to approximate methods such that the novel series method for
fractional diffusion equation by Yan et al. [4], an approximate decomposition
method solution for a fractional diffusion-wave equation by Al-Khaled and Mo-
mani [5], the Adomian decomposition method for a fractional diffusion equation,
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nonlinear heat equation, heat equation with nonlocal boundary conditions and
nonlinear diffusion equations, respectively [6, 7, 8, 9, 10]. Other methods in-
clude, the symmetry method for classifications of (2+1)-nonlinear heat equation
by Ahmad et al. [11], the Sumudu Homotopy Perturbation Method (SHPM) for
fractional KdV equations [12], the computational approach based on ADM [13],
the Laplace transform method for fractional fluid flow and oscillatory process
equations [14] and lastly the Wiener-Hopf method [15, 16, 17] for semi-infinite
heat problems among others.
However, in the present article, a time fractional diffusion problem is formulated
with special boundary conditions, specifically, the nonlocal boundary conditions.
This new problem is aimed to be solved through utilizing the well-known Laplace
transform method [18] alongside employing the Adomian decomposition method
[7] in what is termed as the Laplace decomposition method, [19, 20, 21, 23].
Further, in order to achieve this, a modification to Beilin’s lemma [24] to feature
fractional derivative in time variable will be given.
The paper is organized as follows: In Section 2, we present some basics about
the fractional calculus. Section 3 gives the formulation of the problem under
consideration. In Section 4, we give the analysis of the methodology and in
Section 5, we present some application and results, and finally, Section 6 gives
the conclusion.

2. Fractional Calculus and Some Definitions

In this section, we give some preliminary definitions of fractional calculus theory
which will be used later on as follows:

Definition 2.1 (Caputo Fractional Derivative). The Caputo derivative of a
casual function u(t) (u(t) = 0, t < 0) with α > 0 is defined by [19]

Dα
t u(t) =

1

Γ(m− α)

∫ ∞
0

(t− s)m−α−1um(s)ds, (m− 1 < α 6 m). (1)

Where Γ(.) is the well-known gamma function defined by

(x− 1)! = Γ(x) =

∫ ∞
0

e−ttx−1dt.

Some useful properties of the Caputo derivative are given below:

(1) Dα
t t
r = Γ(1+r)

Γ(1+r−α) t
r−α,

(2) Dα
t [cu(t)] = cDα

t u(t), c constant,
(3) Dα

t c = 0, c constant,
(4) Dα

t [cu(t) + kv(t)] = cDα
t [u(t)] + kDα

t [v(t)] ,
(5) Dα

t [u(t)v(t)] = v(t)Dα
t [u(t)] + u(t)Dα

t [v(t)] .

For more, see [1, 2, 3].
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Definition 2.2 (Laplace Transform for Caputo Fractional Derivative). The
Laplace transform for Caputo fractional derivative is given by

L{uα(t)} = sαL{u(t)} −
m−1∑
k=0

sα−k−1uk(0), (m− 1 < α 6 m). (2)

Definition 2.3 (Mittag-Leffler Function). The one parameter Mittag-Leffler
function is given by [2]

Eα(t) =

∞∑
m=0

tm

Γ(αm+ 1)
, α > 0, t ∈ C. (3)

Definition 2.4 (Formulation of the Problem). We consider the time-fractional
2-dimensional heat diffusion equation of the form

∂αu

∂tα
=
∂2u

∂x2
+
∂2u

∂y2
, 0 < α ≤ 1, (4)

subject to the initial condition

u(x, y, 0) = g(x, y), x, y ∈ [0, l], 0 < t ≤ T, (5)

and the nonlocal boundary conditions∫ 1

0

u(x, y, t)dx = 0, y = 0 (6)∫ 1

0

u(x, y, t)dy = 0, x = 0. (7)

Furthermore, the function g(x, y) is assumed to satisfy the comparability condi-
tions; that is

g(0, 0) = 0,∫ 1

0

g(x, y)dx = 0, y = 0∫ 1

0

g(x, y)dy = 0, x = 0.

Here, we give the following lemma by virtue of the modified Beilin’s lemma
[23] in Caputo fractional derivative sense to transform problem (4)-(7) to an
equivalent boundary value problem with classical boundary conditions

Lemma 2.5. Problem (4)-(7) is equivalent to the following problem
∂αu
∂tα = ∂2u

∂x2 + ∂2u
∂y2 ,

u(x, y, 0) = g(x, y),
u(0, 0, t) = 0,

uxy(l, 0, t) + uxy(0, l, t)
−2uxy(0, 0, t) = 0.

(8)
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Proof. Let u(x, t, t) be a solution of (4)-(7). Integrating (4) w.r.t ‘x’ and ‘y’ over
(0, l) respectively alongside utilizing (6)-(7), we get

ux(l, y, t)− ux(0, y, t) = 0, y = 0, (9)

and

uy(x, l, t)− uy(y, 0, t) = 0, x = 0. (10)

Differentiating (9) w.r.t ‘y’ at y = 0 and (10) w.r.t ‘x’ at x = 0 and thereafter
add them, we get

uxy(l, 0, t) + uxy(0, l, t)− 2uxy(0, 0, t) = 0. (11)

Now let u(x, t, t) be a solution of problem (8), the we show the following∫ 1

0

u(x, y, t)dx = 0, ∀t ∈ (0, T ), (12)

and ∫ 1

0

u(x, y, t)dy = 0, ∀t ∈ (0, T ). (13)

To show this, we integrate (4) w.r.t ‘x’ and yields

∂

∂t

∫ 1

0

u(x, y, t)dx− ∂2

∂x2

∫ 1

0

u(x, y, t)dx− ∂2

∂y2

∫ 1

0

u(x, y, t)dx = 0.

Thus, by virtue of the compatibility conditions, we get∫ 1

0

u(x, y, t)dx = 0, ∀t ∈ (0, T ).

Similarly, ∫ 1

0

u(x, y, t)dy = 0, ∀t ∈ (0, T ).

�

3. Analysis of the Method

To illustrate the basic idea of the method, we consider a general nonlinear non-
homogeneous time-fractional partial differential equation with initial conditions
of the following form:

uαt (x, t) = L (u(x, t)) +N (u(x, t)) + f(x, t), α > 0, (14)

subject to the initial condition

Dk
0u(x, 0) = gk(x), (k = 0, 1, 2, ...n− 1),

Dn
0 u(x, 0) = 0, n = [α],

(15)

where uαt is the Caputo derivative of order α, and f(x, t) is the source function; L
represents a linear fractional differential operator and N is the general nonlinear
fractional differential operator.
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The method first starts by taking the Laplace transform of equation (14) in t,
subject to the prescribed initial conditions given in equation (15), we obtain

sαL{u(x, t)} =

m−1∑
k=0

sα−k−1gk(x) + L (L (u(x, t)) +N (u(x, t)) + f(x, t)) , (16)

L{u(x, t)} =

m−1∑
k=0

s−k−1gk(x) +
1

sα
L (L (u(x, t)) +N (u(x, t))) +

1

sα
(L(f(x, t))) .

(17)
Now, taking the inverse Laplace transform of equation (17) and attaching the
nonhomogeneous term with the initial conditions, yields

u(x, t) =

m−1∑
k=0

tk

Γ(k + 1)
gk(x) + L−1

(
1

sα
(L(f(x, t)))

)
+L−1

(
1

sα
L (L (u(x, t)) +N (u(x, t)))

)
.

(18)

Now, from equation (18), we assume the unknown function u(x, t) to have the
series solution and the nonlinear term N (u(x, t)) by the Adomian polynomials
[7];

u(x, t) =

∞∑
m=0

um(x, t), N (u(x, t)) =

∞∑
m=0

Am, (19)

where Am’s are the Adomian polynomials, see [7]. Thus, equation (18) becomes

∞∑
m=0

um(x, t) =

m−1∑
k=0

tk

Γ(k + 1)
gk(x) + L−1

(
1

sα
(L(f(x, t)))

)

+

∞∑
m=0

L−1

(
1

sα
L (L (um(x, t)) +Am)

) (20)

Thus we identify u0(x, t) with the initial condition term and the term resulting
from the nonhomogeneous term; and the rest of the components um(x, t) are
determined recursively as shown below: u0(x, t) =

∑m−1
k=0

tk

Γ(k+1)gk(x) + L−1
(

1
sα (L(f(x, t)))

)
, m = 0.

um+1(x, t) = L−1
(

1
sαL (L (um(x, t)) +Am)

)
, m ≥ 0.

(21)

4. Applications and Results

In this section, we apply the proposed method to two different time-fractional
2-dimensional heat diffusion equations and later illustrated the solutions graph-
ically in figures 1a, 1b, 1c, 2a 2b and 2c with the aid of Mathematica software
as follows:
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Example 4.1. Consider the time-fractional 2-dimensional heat diffusion equa-
tion equation

uαt (x, t) = uxx(x, t) + uyy(x, t), (22)

with the initial condition

u(x, y, 0) = sin(x) sin(y), (23)

and the boundary conditions∫ 1

0

u(x, y, t)dx = 0, y = 0∫ 1

0

u(x, y, t)dy = 0, x = 0.

(24)

First, we transform our system (22)-(24) using Lemma 2.5 to obtain a system
solvable by the Laplace decomposition method as follows:

∂αu

∂tα
=
∂2u

∂x2
+
∂2u

∂y2
, (25)

subject to the new conditions
u(x, y, 0) = sin(x) sin(y),

u(0, 0, t) = 0,
uxy(l, 0, t) + uxy(0, l, t)

−2uxy(0, 0, t) = 0.

Then, on taking the Laplace transform of both sides of equation (25) subject to
the initial condition, we obtain

sαL{u(x, y, t)} = sα−1 sin(x) sin(y) + L{uxx + uyy}, (26)

L{u(x, y, t)} =
1

s
sin(x) sin(y) +

1

sα
L{uxx + uyy}. (27)

Taking the inverse Laplace transform of equation (27), we get

u(x, y, t) = sin(x) sin(y) + L−1{ 1

sα
L{uxx + uyy}. (28)

Now, from equation (28), we assume the unknown function u(x, y, t) to have the
series solution

u(x, y, t) =

∞∑
m=0

um(x, y, t), (29)

Thus, equation (28) becomes

∞∑
m=0

um(x, y, t) = sin(x) sin(y) + L−1{ 1

sα
L{

∞∑
m=0

umxx + umyy}}. (30)
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Thus we identify u0(x, y, t) with the initial condition term that originate from
the initial condition; and the rest of the components um(x, y, t) are determined
recursively by: u0(x, y, t) = sin(x) sin(y), m = 0,

um+1(x, y, t) = L−1{ 1
sαL{umxx + umyy}}, m ≥ 0.

(31)

We now obtain some few terms from equation (31) as follows

u0(x, y, t) = sin(x) sin(y), (32)

u1(x, y, t) = L−1{ 1

sα
L{u0xx + u0yy}},

= L−1{ 1

sα
L{−2 sin(x) sin(y)}}, ,

= L−1{ −2

sα+1
sin(x) sin(y)},

=
−2tα

Γ(α+ 1)
sin(x) sin(y),

(33)

u2(x, y, t) = L−1{ 1

sα
L{u1xx + u1yy}},

= L−1{ 1

sα
L{ 4tα

Γ(α+ 1)
sin(x) sin(y)}},

= L−1{ 4

s2α+1
sin(x) sin(y)},

=
4t2α

Γ(2α+ 1)
sin(x) sin(y),

(34)

u3(x, y, t) = L−1{ 1

sα
L{u2xx + u2yy}},

= L−1{ 1

sα
L{ −8t2α

Γ(2α+ 1)
sin(x) sin(y)}},

= L−1{ −8

s3α+1
sin(x) sin(y)},

=
−8t3α

Γ(3α+ 1)
sin(x) sin(y),

(35)

and so on. We therefore sum up the above iterations to get

u(x, y, t) =

∞∑
m=0

um(x, t)

=

(
1− 2tα

Γ(α+ 1)
+

4t2α

Γ(2α+ 1)
− 8t3α

Γ(3α+ 1)
+ ...

)
sin(x) sin(y),

(36)
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which leads to the exact solution

u(x, y, t) =

∞∑
m=0

(−2t)m

Γ(αm+ 1)
sin(x) sin(y) = Eα(−2t) sin(x) sin(y).

(37)
The graph of the solution of equation (37) is shown in Figure 1a, 1b and 1c as
follows;

Figure 1a: Solution of equation (37) with at α = 0.5 x, y ∈ (−5, 5)

Figure 1b: Approxiamte Solution (only 3 terms) of equation(37) at α = 0.5,
x, y ∈ (−5, 5)
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Figure 1c: Solution of equation (37) at y = 1, t = 2 with various α′s

Example 4.2. Consider the time-fractional 2-dimensional heat diffusion equa-
tion equation

uαt (x, t) = uxx(x, t) + uyy(x, t), (38)

with the initial condition

u(x, y, 0) = sin(x+ y), (39)

and the boundary conditions∫ 1

0

u(x, y, t)dx = 0, y = 0∫ 1

0

u(x, y, t)dy = 0, x = 0.

(40)

Proceeding as above after obtaining the solvable system with the help of Lemma
3.1, we get the solutions recursively as: u0(x, y, t) = sin(x+ y), m = 0

um+1(x, y, t) = L−1{ 1
sαL{umxx + umyy}}, m ≥ 0.

(41)

Some few terms from equation (41) are as follows

u0(x, y, t) = sin(x+ y), (42)
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u1(x, y, t) = L−1{ 1

sα
L{u0xx + u0yy}},

= L−1{ 1

sα
L{−2 sin(x+ y)}}, ,

= L−1{ −2

sα+1
sin(x+ y)},

=
−2tα

Γ(α+ 1)
sin(x+ y),

(43)

u2(x, y, t) = L−1{ 1

sα
L{u1xx + u1yy}},

= L−1{ 1

sα
L{ 4tα

Γ(α+ 1)
sin(x+ y)}},

= L−1{ 4

s2α+1
sin(x+ y)},

=
4t2α

Γ(2α+ 1)
sin(x+ y),

(44)

u3(x, y, t) = L−1{ 1

sα
L{u2xx + u2yy}},

= L−1{ 1

sα
L{ −8t2α

Γ(2α+ 1)
sin(x+ y)}},

= L−1{ −8

s3α+1
sin(x+ y)},

=
−8t3α

Γ(3α+ 1)
sin(x+ y),

(45)

and so on. We therefore sum up the above iterations to get

u(x, y, t) =

∞∑
m=0

um(x, t) =

(
1− 2tα

Γ(α+ 1)
+

4t2α

Γ(2α+ 1)
− 8t3α

Γ(3α+ 1)
+ ...

)
sin(x+y),

(46)
which leads to the exact solution

u(x, y, t) =

∞∑
m=0

(−2t)m

Γ(αm+ 1)
sin(x+y) = Eα(−2t) sin(x+y). (47)

The graph of the solution of equation (47) is shown in Figure 2a, 2b and 2c as
follows;
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Figure 2a: Solution of equation (47) with at α = 0.5 x,∈ (−5, 5), y ∈ (−3, 3)

Figure 2b: Approxiamte Solution (only 3 terms) of equation(37) at α = 0.5,
x,∈ (−5, 5), y ∈ (−3, 3)
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Figure 2c: Solution of equation (47) at y = 1, t = 2 with various α′s

5. Conclusion

In conclusion, a time fractional diffusion problem is formulated with nonlocal
boundary conditions. This new problem is then solved through utilizing the
Laplace transform method coupled to the well-known Adomian decomposition
method after employing the modified version of Beilin’s lemma featuring frac-
tional derivative in time. Some test problems are solved and presented graphi-
cally with the aid of Mathematica software.
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