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DISTANCE-BASED INDICES COMPUTATION OF SYMMETRY

MOLECULAR STRUCTURES
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Abstract. Most of molecular structures have symmetrical characteristics.

It inspires us to calculate the topological indices by means of group the-
ory. In this paper, we present the formulations for computing the several

distance-based topological indices using group theory. We solve some ex-

amples as applications of our results.
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1. Introduction

In early years, many chemical experiments showed the evidence that the bio-
chemical properties of chemical compounds, materials and drugs are closely re-
lated to their molecular structures. As a result, topological indices are introduced
as numerical parameters of molecular graph, which play a vital role in under-
standing the properties of chemical compounds and are applied in disciplines
such as chemistry, physics and medicine science.
In chemical graph theory, a molecular structure is expressed as a molecular
graph G in which atoms are taken as vertices and chemical bonds are taken as
edges. A topological index can be considered as a function f : G → R+. In
the past 40 years, scholars introduced many topological indices, such as Wiener
index, Zagreb index, harmonic index, sum connectivity index, etc which reflect
certain structural characteristics of organic molecules. There were many works
contributing to report these distance-based or degree-based indices of special
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molecular structures (See Farahani et al. [1], Jamil et al. [2], Gao and Farahani
[3], Gao et al. [4, 5, 6] and Gao and Wang [7, 8, 9] for details). The notation
and terminology that were used but were undefined in this paper can be found
in [10].
One of oldest indices, the Wiener index was defined as the sum of distance for
all pair of vertices,

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

The modified Wiener index was introduced by Nikolić et al. [11] as the extension
of the Wiener index which was defined as

Wλ(G) =
∑

{u,v}⊆V (G)

dλ(u, v).

Several conclusions on modified Wiener index can be referred to Vukićević and
Źerovnik [12], Vukićević and Gutman [13], Lim [14], Gorse and Źerovnik [15],
Vukićević and Graovac [16], and Gutman et al. [17].
Moreover, the hyper-Wiener index and λ-modified hyper-Wiener index are de-
fined as

WW (G) =
∑

{u,v}⊆V (G)

1

2
(d(u, v) + d2(u, v))

and

WWλ(G) =
∑

{u,v}⊆V (G)

1

2
(dλ(u, v) + d2λ(u, v)),

respectively. Some important contributions on hyper-Wiener index can be found
in Gutman [18], Gutman and Furtula [19], Eliasi and Taeri [20, 21], Iranmanesh
et al. [22], Yazdani and Bahrami [23], Behtoei et al. [24], Mansour and Schork
[25], Heydari [26], Ashrafi et al. [27], and Heydari [28].
The Harary index was introduced independently by Plavšić et al. [29] and Ivan-
ciuc et al. [30] in 1993, as

H(G) =
∑

{u,v}⊆V (G)

1

d(u, v)
.

Its corresponding Harary polynomial can be defined as

H(G, x) =
∑

{u,v}⊆V (G)

1

d(u, v)
xd(u,v).

The second and third Harary indices are defined as

H1(G) =
∑

{u,v}⊆V (G)

1

d(u, v) + 1
,

H2(G) =
∑

{u,v}⊆V (G)

1

d(u, v) + 2
.
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More generally, the generalized Harary index was introduced by Das et al. [31]
which is defined as

Ht(G) =
∑

{u,v}⊆V (G)

1

d(u, v) + t
,

where t ∈ N is a non-negative integer. Hence, Harary index is a special case of
generalized Harary index when t = 0.
One topological index related to Wiener index is the reciprocal complementary
Wiener (RCW) index which is defined by Zhou et al. [32] and can be defined as

RCW (G) =
∑

{u,v}⊆V (G)

1

D(G) + 1− d(u, v)
,

where D(G) is the diameter of molecular graph G. In what follows, we always
denote D(G) as the diameter of molecular graph G.
Furthermore, the multiplicative version of the Wiener index was defined by Gut-
man et al. [33, 34] as

π(G) =
∏

{u,v}⊆V (G)

d(u, v).

The logarithm of multiplicative Wiener index was defined as

Π(G) = ln

√
2

∏
{u,v}⊆V (G)

d(u, v).

So far, many mathematical approaches are given to calculate different topological
indices and received good results. Since most of the chemical compounds have
symmetric structures. It inspires us to consider the computation of topological
indices by using group theory. We use the automorphism groups and its orbits
to simplify the computation of molecular graphs for some distance-based indices.

2. Main results and proofs

To discuss the symmetry molecular structures, we should first introduce sym-
metry operations which are defined as operations that move a fixed molecule
structure from a previous condition to another, and any two states can’t be
differentiated from each other. Obviously, all the symmetry operations on a
molecular structure constitute a group which is called the point group of the
molecular structure.
When an element p of point group P (i.e., a symmetry operation on the molec-
ular structure) operates on the molecular graph, it provides the vertices of the
molecular graph a permutation. We denote p(v) as the image of vertex v under
the operation p. If there exists a p ∈ P that satisfies p(v) = u for two vertices
v and u, then we define an equivalence binary relation denoted by v ∼ u. By
means of this equivalent relation, the vertex set is divided into several equiva-
lence classes: Θ1, · · · ,Θr. Each Θi can be called an orbit of point group P , and
the number of vertices of each orbit |Θi| is called the length of the orbit Θi. By
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the knowledge of group theory, we know that if v ∈ Θi then |Θi| = |P |
|Pv| , where

Pv = {p|p ∈ P, p(v) = v}. The group called transitive if it has only one orbit,
and it is called intransitive otherwise. Moreover, we can define the orbits of
subgroup H in similar way which could also be either transitive or intransitive.
Set

• Wλ(v,G) =
∑
u∈V (G) d

λ(u, v),

• WW (v,G) = 1
2

∑
u∈V (G)(d(u, v) + d2(u, v)),

• WWλ(v,G) = 1
2

∑
u∈V (G)(d

λ(u, v) + d2λ(u, v)),

• H(v,G) =
∑
u∈V (G)

1
d(u,v) ,

• H(v,G, x) =
∑
u∈V (G)

1
d(u,v)x

d(u,v),

• H1(v,G) =
∑
u∈V (G)

1
d(u,v)+1 ,

• H2(v,G) =
∑
u∈V (G)

1
d(u,v)+2 ,

• Ht(v,G) =
∑
u∈V (G)

1
d(u,v)+t ,

• RCW (v,G) =
∑
u∈V (G)

1
D(G)+1−d(u,v) ,

• π(v,G) =
∏
u∈V (G) d(u, v).

Hence, we have

• Wλ(G) = 1
2

∑
v∈V (G)Wλ(v,G), (1)

• WW (G) = 1
2

∑
v∈V (G)WW (v,G),

• WWλ(G) = 1
2

∑
v∈V (G)WWλ(v,G),

• H(G) = 1
2

∑
v∈V (G)H(v,G),

• H(G, x) = 1
2

∑
v∈V (G)H(v,G, x),

• H1(G) = 1
2

∑
v∈V (G)H1(v,G),

• H2(G) = 1
2

∑
v∈V (G)H2(v,G),

• Ht(G) = 1
2

∑
v∈V (G)Ht(v,G),

• RCW (G) = 1
2

∑
v∈V (G)RCW (v,G),

• π(G) =
√∏

v∈V (G) π(v,G),

• Π(G) = ln

√
2
√∏

v∈V (G) π(v,G).

Following theorem is about the calculation of different topological indices when
the point group is not necessarily transitive.

Theorem 2.1. Let H E PG be a subgroup of PG, and Θ1,Θ2, · · · ,Θr are the
orbits of H and ui ∈ Θi, i = 1, 2, · · · , r. Then, we have

(1) Wλ(G) =
∑r
i=1

∑r
j=i+1 |Θi|

∑
u∈Θj

dλ(u, ui) + 1
2

∑r
i=1 |Θi|

∑
v∈Θi

dλ(v,

ui),
(2) WW (G) = 1

2

∑r
i=1

∑r
j=i+1 |Θi|

∑
u∈Θj

(d(u, ui)+d
2(u, ui))+

1
2

∑r
i=1 |Θi|∑

v∈Θi
(d(v, ui) + d2(v, ui)),
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(3) WWλ(G) = 1
2

∑r
i=1

∑r
j=i+1 |Θi|

∑
u∈Θj

(dλ(u, ui)+d2λ(u, ui))+ 1
2

∑r
i=1

|Θi|
∑
v∈Θi

(dλ(v, ui) + d2λ(v, ui)),

(4) H(G) =
∑r
i=1

∑r
j=i+1 |Θi|

∑
u∈Θj

1
d(u,ui)

+ 1
2

∑r
i=1 |Θi|

∑
v∈Θi

1
d(v,ui)

,

(5) H(G, x) =
∑r
i=1

∑r
j=i+1 |Θi|

∑
u∈Θj

1
d(u,ui)

xd(u,ui)+ 1
2

∑r
i=1 |Θi|

∑
v∈Θi

1
d(v,ui)

xd(v,ui),

(6) Ht(G) =
∑r
i=1

∑r
j=i+1 |Θi|

∑
u∈Θj

1
d(u,ui)+t

+ 1
2

∑r
i=1 |Θi|

∑
v∈Θi

1
d(v,ui)+t

,

(7) RCW (G) =
∑r
i=1

∑r
j=i+1 |Θi|

∑
u∈Θj

1
D(G)+1−d(u,ui)

+ 1
2

∑r
i=1 |Θi|

∑
v∈Θi

1
D(G)+1−d(v,ui)

,

(8) π(G) =
∏r
i=1

∏r
j=i+1

∏
u∈Θj

d|Θi|(u, ui)×
√∏r

i=1

∏
v∈Θi

d|Θi|(v, ui),

(9) Π(G) = ln

√
2
∏r
i=1

∏r
j=i+1

∏
u∈Θj

d|Θi|(u, ui)×
√∏r

i=1

∏
v∈Θi

d|Θi|(v, ui).

Proof. We only prove for Wλ(G). The remaining cases can be proved in similar
fashion.
Since Wλ(u,G) is equal to the sum of all vertices in the same orbit, we infer∑
w∈V (G)

Wλ(w,G) =

r∑
i=1

∑
w∈Θi

Wλ(w,G)

=

r∑
i=1

|Θi|Wλ(ui, G)

=

r∑
i=1

|Θi|
r∑
j=1

∑
y∈Θi

dλ(ui, y)

=

r∑
i=1

r∑
j=1

|Θi|
∑
y∈Θi

dλ(ui, y)

= 2

r∑
i=1

r∑
j=i+1

|Θi|
∑
y∈Θi

dλ(y, ui) +

r∑
i=1

|Θi|
∑
z∈Θi

dλ(z, ui).

Hence, in terms of (1),

Wλ(G) =
1

2

∑
w∈V (G)

Wλ(w,G)

=

r∑
i=1

r∑
j=i+1

|Θi|
∑
u∈Θj

dλ(u, ui) +
1

2

r∑
i=1

|Θi|
∑
v∈Θi

dλ(v, ui).

Hence, the desired result is obtained. �

The next result is about the computation of topological indices when the point
group of the molecular graph is transitive.
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Lemma 2.2. If the point group PG of the molecular graph is transitive. Then
for any v ∈ V (G), we have

(1) Wλ(G) = |V (G)|
2 Wλ(v,G),

(2) WW (G) = |V (G)|
4 WW (v,G),

(3) WWλ(G) = |V (G)|
4 WWλ(v,G),

(4) H(G) = |V (G)|
2 H(v,G),

(5) H(G, x) = |V (G)|
2 H(v,G, x),

(6) Ht(G) = |V (G)|
2 Ht(v,G),

(7) RCW (G) = |V (G)|
2 RCW (v,G),

(8) π(G) =
√
π|V (G)|(v,G),

(9) Π(G) = ln

√
2
√
π|V (G)|(v,G).

In terms of Lemma 2.2, to calculate the distance-based topological indices of
the molecular graph with transitive point group, we only need to choose any
vertex v ∈ V (G) and calculate the distances between v and u ∈ V (G) − {v}.
Take a subgroup H of PG, which is not necessarily transitive even if PG is
transitive. Now, the vertex set V (G) can be divided into orbits of H such that
Θ1,Θ2, · · · ,Θr with |Θ1| ≤ |Θ2| ≤ · · · |Θr|.

Theorem 2.3. Let vi ∈ Θi, i = 1, 2, · · · , r. Then,

(1) Wλ(v1, G) = 1
|Θ1|

∑
u∈Θ1

∑r
i=1 |Θi|dλ(u, vi),

(2) WW (v1, G) = 1
|Θ1|

∑
u∈Θ1

∑r
i=1

|Θi|
2 (d(u, vi) + d2(u, vi)),

(3) WWλ(v1, G) = 1
|Θ1|

∑
u∈Θ1

∑r
i=1

|Θi|
2 (dλ(u, vi) + d2λ(u, vi)),

(4) H(v1, G) = 1
|Θ1|

∑
u∈Θ1

∑r
i=1

|Θi|
d(u,vi)

,

(5) H(v1, G, x) = 1
|Θ1|

∑
u∈Θ1

∑r
i=1

|Θi|
d(u,vi)

xd(u,vi),

(6) Ht(v1, G) = 1
|Θ1|

∑
u∈Θ1

∑r
i=1

|Θi|
d(u,vi)+t

,

(7) RCW (v1, G) = 1
|Θ1|

∑
u∈Θ1

∑r
i=1

|Θi|
D(G)+1−d(u,vi)

.

Proof. Since PG is transitive, we get

Wλ(v1, G) =
1

|Θ1|
∑
u∈Θ1

∑
z∈V (G)

dλ(u, z)

=
1

|Θ1|
∑
u∈Θ1

r∑
i=1

∑
z∈Θi

dλ(u, z)

=
1

|Θ1|

r∑
i=1

∑
z∈Θi

∑
u∈Θ1

dλ(u, z).

For any i and any z ∈ Θi, there exist hi ∈ H satisfying hi(z) = vi. Therefore,∑
z∈Θi

∑
u∈Θ1

dλ(u, z) =
∑
z∈Θi

∑
u∈Θ1

dλ(hi(u), hi(z))
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=
∑
z∈Θi

∑
hi(u)∈Θ1

dλ(hi(u), vi)

= |Θi|
∑

hi(u)∈Θ1

dλ(hi(u), vi)

= |Θi|
∑
v∈Θ1

dλ(v, vi).

Consequently, we yield

Wλ(v1, G) =
1

|Θ1|

r∑
i=1

∑
u∈Θ1

∑
z∈Θi

dλ(u, z)

=
1

|Θ1|

r∑
i=1

|Θi|
∑
v∈Θ1

dλ(v, vi)

=
1

|Θ1|
∑
v∈Θ1

r∑
i=1

|Θi|dλ(v, vi).

The remaining parts follows similarly, hence, we complete the proof. �

In theorem 2.3, we can see that for a vertex v1 ∈ Θ1, we do not need to compute
all distances between v1 and V (G)−{v1}. It is enough to select one vertex from
Θi. In real practice, we select a subgroup H so that Θ1 is as small as possible
in order to simplify the calculation. Specially, if |Θ1| = 1 (H fixes v1), we only
count r − 1 times. Hence, we can give the following corollary.

Corollary 2.4. Let vi ∈ Θi, i = 1, 2, · · · , r. Assume that |Θ1| = 1. We get

(1) Wλ(v1, G) =
∑r
i=2 |Θi|dλ(v1, vi),

(2) WW (v1, G) =
∑r
i=2 |Θi|d(v1,vi)+d

2(v1,vi)
2 ,

(3) WWλ(v1, G) =
∑r
i=2 |Θi|d

λ(v1,vi)+d
2λ(v1,vi)

2 ,

(4) H(v1, G) =
∑r
i=2 |Θi| 1

d(v1,vi)
,

(5) H(v1, G, x) =
∑r
i=2 |Θi| 1

d(v1,vi)
xd(v1,vi),

(6) Ht(v1, G) =
∑r
i=2 |Θi| 1

d(v1,vi)+t
,

(7) RCW (v1, G) =
∑r
i=2 |Θi| 1

D(G)+1−d(v1,vi)
,

(8) π(v1, G) =
∏r
i=2 d

|Θi|(v1, vi),

(9) Π(v1, G) = ln
√

2
∏r
i=2 d

|Θi|(v1, vi).

In order to reduce the computation steps of the distance-based topological in-
dices, note that a large number of the molecular structures have the layered
structure such that the different orbits have consecutive distances from a fixed
vertex. In such a situation, we have following theorem.

Theorem 2.5. Assume that PG is transitive and H E PG is a subgroup with
orbits Θ1,Θ2, · · · ,Θr such that |Θi| = 1. Let vi ∈ Θi for i = 1, 2, · · · , r. Then
we have
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(1) Wλ(G) = n
2

∑r
j=2 |Θkj |(j − 1)λ,

(2) WW (G) = n
2

∑r
j=2 |Θkj |

j2−j
2 ,

(3) WWλ(G) = n
2

∑r
j=2 |Θkj |

(j−1)λ+(j−1)2λ

2 ,

(4) H(G) = n
2

∑r
j=2 |Θkj | 1

j−1 ,

(5) H(G, x) = n
2

∑r
j=2 |Θkj | 1

j−1x
j−1,

(6) Ht(G) = n
2

∑r
j=2 |Θkj | 1

j+t−1 ,

(7) RCW (G) = n
2

∑r
j=2 |Θkj | 1

D(G)+2−j ,

(8) π(G) = (
∏r
j=2(j − 1)|Θkj |)

n
2 ,

(9) Π(G) = ln
√

(
∏r
j=2(j − 1)|Θkj |)

n
2 .

Proof. Science the molecular graphs are connected and all the elements in the
same orbit have equal distances from v1, the orbits saturate the vacancy between
Θ1 and Θk by means of their distances from v1. Since only r − 1 orbits differ-
ent from Θ1 and d(v1, vk) ≥ r − 1, we infer that the orbits run consecutively
between Θ1 and Θk, which reveals that the vertices v1, v2, · · · , vr can be per-
muted into vk1 , vk2 , · · · , vkr with k1 = 1 and kr = k satisfies d(v1, vkj ) = j − 1,
j = 1, 2, · · · , r. Therefore,

Wλ(G) =
n

2
Wλ(v1, G)

=
n

2

r∑
i=2

|Θi|dλ(v1, vi)

=
n

2

r∑
j=2

|Θkj |dλ(v1, vkj )

=
n

2

r∑
j=2

|Θkj |(j − 1)λ.

The remaining cases can be easily proved in similar fashion. �

3. Computation Examples

In this section, we give five illustrative examples to explain our method. In the
following contexts, we always assume that n is the number of vertex in molecular
graph G and the regular polyhedrons meet the conditions of the theorem 2.5.

Example 3.1 (Computation on tetrahedron). The structure of tetrahedron
(denoted by G1) can refer to Figure 1. Let PG1 be its point group. We need
first determine the subgroup R E PG1 of all the rotation in PG1 . The elements
consisting of R are as follows: (1) the identity; (2) rotations through the angle
π about each of three axes joining the midpoints of opposite edges; (3) rotations
through angles of 2π

3 and 4π
3 on the each of four axes joining vertices with centers

of opposite faces. So, we have |R| = 12. Clearly, R and PG1
are transitive. Select
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Figure 1. The structure of tetrahedron G1

H as the identity plus the set of all rotations around the axis joining v1 with the
center of the opposite face through angles of 2π

3 and 4π
3 anticlockwise. We yield

two orbits with representatives v1, v2 as presented in the Figure 1. Applying

|Θi| = |P |
|Pv| , we infer |Θ1| = 1, |Θ2| = 3. According to theorem 2.5, we get

(1) Wλ(G1) = n
2

∑r
j=2 |Θkj |(j − 1)λ = 4

2 · 3 = 6,

(2) WW (G1) = n
2

∑r
j=2 |Θkj |

j2−j
2 = 4

2 · 3 ·
1
2 (1 + 12) = 6,

(3) WWλ(G1) = n
2

∑r
j=2 |Θkj |

(j−1)λ+(j−1)2λ

2 = 4
2 · 3 ·

1
2 (1λ + 12λ) = 6,

(4) H(G1) = n
2

∑r
j=2 |Θkj | 1

j−1 = 4
2 · 3 = 6,

(5) H(G1, x) = n
2

∑r
j=2 |Θkj | 1

j−1x
j−1 = 4

2 · 3 · x = 6x,

(6) Ht(G1) = n
2

∑r
j=2 |Θkj | 1

j+t−1 = 4
2 · 3 ·

1
1+t = 6

1+t ,

(7) RCW (G1) = n
2

∑r
j=2 |Θkj | 1

D(G)+2−j = 4
2 · 3 ·

1
1+1−1 = 6,

(8) π(G1) = (
∏r
j=2(j − 1)|Θkj |)

n
2 = 1,

(9) Π(G1) = ln
√

(
∏r
j=2(j − 1)|Θkj |)

n
2 = ln

√
2.

Example 3.2 (Computation on cube). The structure of cube (denoted as G2)
can refer to Figure 2. In this case, the subgroup R E PG2 of all the rotations
consists of the follows: (1) rotations through the angle π on each of six axes
joining midpoints of diagonally opposite edges; (2) rotations through angles of
π
2 and 3π

2 about each of four axes joining extreme opposite vertices; (3) rotations

through angles of π
2 , π, and 3π

2 about each of three axes joining the centers of
opposite faces. Thus, by simple computation, we get |R| = 24. Clearly, R and
PG2

are both transitive. H is selected as in the first instance but the rotations
are around the axis joining the two opposite vertices v1 and v3. We get four
orbits with representatives v1, v2, v3 and v4 as presented in the Figure 2. In

view of |Θi| = |P |
|Pv| , we yield |Θ1| = |Θ4| = 1, |Θ2| = |Θ3| = 3. Applying theorem

2.5, we get

(1) Wλ(G2) = n
2

∑r
j=2 |Θkj |(j−1)λ = 8

2 (3+3 ·2λ+3λ) = 12+12 ·2λ+4 ·3λ,
(2) WW (G2) = n

2

∑r
j=2 |Θkj |

j2−j
2 = 8

2 ( 3
2 (1 + 1) + 3

2 (2 + 4) + 3+9
2 ) = 72,
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Figure 2. The structure of cube G2

(3) WWλ(G2) = n
2

∑r
j=2 |Θkj |

(j−1)λ+(j−1)2λ

2 = 8
2 ( 3

2 (1 + 1) + 3
2 (2λ + 4λ) +

3λ+9λ

2 ) = 12 + 6(2λ + 4λ) + 2(3λ + 9λ),

(4) H(G2) = n
2

∑r
j=2 |Θkj | 1

j−1 = 8
2 (3 + 3

2 + 1
3 ) = 58

3 ,

(5) H(G2, x) = n
2

∑r
j=2 |Θkj | 1

j−1x
j−1 = 8

2 (3x + 3
2x

2 + 1
3x

3) = 12x + 6x2 +
4
3x

3,

(6) Ht(G2) = n
2

∑r
j=2 |Θkj | 1

j+t−1 = 4( 3
1+t + 3

2+t + 1
3+t ),

(7) RCW (G2) = n
2

∑r
j=2 |Θkj | 1

D(G)+2−j = 8
2 ( 3

3 + 3
2 + 1

1 ) = 14,

(8) π(G2) = (
∏r
j=2(j − 1)|Θkj |)

n
2 = (13 · 23 · 3)

8
2 = 331776,

(9) Π(G2) = ln
√

(
∏r
j=2(j − 1)|Θkj |)

n
2 = ln 576

√
2.

Example 3.3 (Computation on octahedron). The structure of octahedron (de-
noted by G3) can refer to Figure 3. Obviously, we can get the octahedron by
adding the midpoints of adjacent faces of the cube with edges. Form this point
of view, its point group is the same as that of the cube. Furthermore, PG3

is

Figure 3. The structure of octahedron G3

transitive, and all the rotations can be selected around the axis joining v1 and



Distance-based indices computation of symmetry molecular structures 333

v3 which keep the octahedron invariant. Three orbits are obtained with repre-
sentatives vi, i = 1, 2, 3 as depicted in the Figure 3 and |Θ1| = |Θ3| = 1 and
|Θ2| = 4. By theorem 2.5, we get

(1) Wλ(G3) = 12 + 3 · 2λ,
(2) WW (G3) = 21,
(3) WWλ(G3) = 12 + 3

2 (2λ + 4λ),

(4) H(G3) = 27
2 ,

(5) H(G3, x) = 12x+ 3x2,
(6) Ht(G3) = 12

1+t + 3
2+t ,

(7) RCW (G3) = 9,
(8) π(G3) = 8,
(9) Π(G3) = ln 4.

Example 3.4 (Computation on icosahedron). The structure of icosahedron
(denoted by G4) can refer to Figure 4. The rotation subgroup R of the point
group consists: (1)the identity; (2) rotations through the angle π about each of
fifteen axes joining midpoints of opposite edges; (3) rotations through angles of
2π
3 and 4π

3 about each of ten axes joining centers of opposite faces; (4) rotations

through angles of 2π
5 ,

4π
5 ,

6π
5 , and 8π

5 about each of six axes joining extreme
opposite vertices. Therefore, we have |R| = 60. Furthermore, R and PG4

are

Figure 4. The structure of icosahedron G4

transitive. H can be selected as the group generated by the 2π
5 -rotation around

the axis joining v1 and v4. There are four orbits with representatives as shown

in the Figure 4 and by |Θi| = |P |
|Pv| we get |Θ1| = |Θ4| = 1, |Θ2| = |Θ3| = 5.

Applying theorem 2.5, we get

(1) Wλ(G4) = n
2

∑r
j=2 |Θkj |(j−1)λ = 12

2 (5+5 ·2λ+3λ) = 30+30·2λ+6·3λ,
(2) WW (G4) = n

2

∑r
j=2 |Θkj |

j2−j
2 = 12

2 ( 5
2 (1 + 1) + 5

2 (2 + 4) + 3+9
2 ) = 156,

(3) WWλ(G4) = n
2

∑r
j=2 |Θkj |

(j−1)λ+(j−1)2λ

2 = 12
2 ( 5

2 (1 + 1) + 5
2 (2λ + 4λ) +

3λ+9λ

2 ) = 30 + 15(2λ + 4λ) + 3(3λ + 9λ),
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(4) H(G4) = n
2

∑r
j=2 |Θkj | 1

j−1 = 12
2 (5 + 5

2 + 1
3 ) = 47,

(5) H(G4, x) = n
2

∑r
j=2 |Θkj | 1

j−1x
j−1 = 12

2 (5x+ 5
2x

2 + 1
3x

3) = 30x+ 15x2 +

2x3,
(6) Ht(G4) = n

2

∑r
j=2 |Θkj | 1

j+t−1 = 6( 5
1+t + 5

2+t + 1
3+t ),

(7) RCW (G4) = n
2

∑r
j=2 |Θkj | 1

D(G)+2−j = 12
2 ( 5

3 + 5
2 + 1

1 ) = 31,

(8) π(G4) = (
∏r
j=2(j − 1)|Θkj |)

n
2 = (15 · 25 · 3)

12
2 = 966,

(9) Π(G4) = ln
√

(
∏r
j=2(j − 1)|Θkj |)

n
2 = ln 963

√
2.

Example 3.5 (Computation on dodecahedron). The structure of dodecahedron
(denoted by G5) can refer to Figure 5. Similar as we discussed in the above
examples, one can see that the dodecahedron and icosahedron have the same
point group. Hence, H can be selected to be the group generated by the 2π

3 -
rotation around the axis joining v1 and v6, and the reflection with respect to
the plane containing v1, v2 and v6. There are six orbits with representatives

Figure 5. The structure of dodecahedron G5

vi, i = 1, 2, · · · , 6 as shown in the Figure 5. By simple computation, we get
|Θ1| = |Θ6| = 1, |Θ2| = |Θ5| = 3 and |Θ3| = |Θ4| = 6. Thus, in terms of
Theorem 2.5, we get

(1) Wλ(G5) = n
2

∑r
j=2 |Θkj |(j − 1)λ = 20

2 (3 + 6 · 2λ + 6 · 3λ + 3 · 4λ + 5λ) =

30 + 60 · 2λ + 60 · 3λ + 30 · 4λ + 10 · 5λ,
(2) WW (G5) = n

2

∑r
j=2 |Θkj |

j2−j
2 = 20

2 ( 3
2 (1 + 1) + 3(2 + 4) + 3(3 + 9) +

3
2 (4 + 16) + 1

2 (5 + 25)) = 1020,

(3) WWλ(G5) = n
2

∑r
j=2 |Θkj |

(j−1)λ+(j−1)2λ

2 = 20
2 ( 3

2 (1 + 1) + 3(2λ + 4λ) +

3(3λ + 9λ) + 3
2 (4λ + 16λ) + 1

2 (5λ + 25λ)) = 30 + 30(2λ + 4λ) + 30(3λ +

9λ) + 15(4λ + 16λ) + 5(5λ + 25λ),
(4) H(G5) = n

2

∑r
j=2 |Θkj | 1

j−1 = 20
2 (3 + 6

2 + 6
3 + 3

4 + 1
5 ) = 179

2 ,

(5) H(G5, x) = n
2

∑r
j=2 |Θkj | 1

j−1x
j−1 = 20

2 (3x+ 6
2x

2 + 6
3x

3 + 3
4x

4 + 1
5x

5) =

30x+ 30x2 + 20x3 + 15
2 x

4 + 2x5,

(6) Ht(G5) = n
2

∑r
j=2 |Θkj | 1

j+t−1 = 20
2 ( 3

1+t + 6
2+t + 6

3+t + 3
4+t + 1

5+t ) =
30

1+t + 60
2+t + 60

3+t + 30
4+t + 10

5+t ,

(7) RCW (G5) = n
2

∑r
j=2 |Θkj | 1

D(G)+2−j = 20
2 ( 3

5 + 6
4 + 6

3 + 3
2 + 1

1 ) = 66,
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(8) π(G5) = (
∏r
j=2(j − 1)|Θkj |)

n
2 = (2636435)10,

(9) Π(G5) = ln
√

(
∏r
j=2(j − 1)|Θkj |)

n
2 = ln

√
261360430510.

4. Conclusion

In this paper, we mainly report the approach on how to use group theory to de-
termine the distance-based topological indices for certain important symmetry
chemical structures. Since these Wiener related and other distance-based topo-
logical indices are widely applied in the analysis of both the boiling point and
melting point of chemical compounds and QSPR/QSAR study, the promising
prospects of their application for the chemical, medical and pharmacy engineer-
ing will be illustrated in the theoretical conclusion that is obtained in this article.
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