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Abstract. In this work, we developed homotopy perturbation double

Sumudu transform method (HPDSTM) which is obtained by combining
homotopy perturbation method, double Sumudu transform and He’s poly-

nomials. The method is applied to find the solution of linear fractional one

and two dimensional dispersive KdV and nonlinear fractional KdV equa-
tions to illustrate the reliability of the method. It is observed that the

solutions obtained by the method converge rapidly to the exact solutions.
This method is very powerful, and professional techniques for solving dif-

ferent kinds of linear and nonlinear fractional order differential equations.
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1. Introduction

Fractional calculus is a field of applied mathematics that deals with deriva-
tives and integrals of arbitrary orders. In recent years, considerable interest in
fractional differential equation has been stimulated due to their numerous ap-
plications in the areas of physics and engineering. Many important phenomena
in electromagnetics, acoustics, viscoelasticity, electrochemistry and material sci-
ence are well described by fractional differential equation. Fractional differential
equations are increasingly used to model problems in fluid mechanics, acoustics,
biology, electromagnetism, diffusion, signal processing, and many other physical
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processes [1, 2]. In the literature one can find a wide class of methods dealing
with the problem of approximate solutions to problems described by nonlinear
fractional differential equations, for instance, asymptotic methods and pertur-
bation methods.
A great deal of effort has been expended over the last 10 years or so in at-
tempting to and robust and stable numerical and analytical methods for solving
fractional partial differential equations of physical interest. Several numerical
methods have been introduced to solve differential equations, such as the homo-
topy perturbation method (HPM) [3, 4, 5], the Modified homotopy perturbation
method (MHPM) [6], the differential transform method (DTM) [7], the vari-
ational iteration method (VIM) [8, 9], the homotopy analysis method (HAM)
[10, 11], the Sumudu decomposition method [12], the Adomian decomposition
method [13, 14] and reproducing kernel method [15, 16, 17]. Among these meth-
ods, the HPM is a universal approach which can be used to solve FODEs and
FPDEs. On the other hand, various methods are combined with the homotopy
perturbation method, such as the variational homotopy perturbation method
[18]. Another such combination is the homotopy perturbation transformation
method [19]. Another such approach is the use of Homo-Separation of variables
for the solution of fractional partial differential equations [20, 21, 22]. There
are numerous integral transforms such as the Laplace, Sumudu, Fourier, Mellino
solve PDEs. Of these, the Laplace transformation and Sumudu transformation
are the most widely used. The Sumudu transformation method is one of the
most important transform method. Various methods are combined with the
Sumudu transformation method such as the homotopy analysis Sumudu trans-
form method (HASTM) [23]. Another example is the Sumudu decomposition
method (SDM) [24].
Singh et al. [25] have made used of studying the solutions of linear and nonlin-
ear partial differential equations by using the homotopy perturbation Sumudu
transform method. The nonlinear terms can be easily handled by the use of
He’s polynomial. The use of He’s polynomials in the nonlinear term was first
introduced by Ghorbani [26, 27]. There are some important applications and
work on fractional differential equation in literature [28, 29, 30].
In this paper, we applied homotopy perturbation double Sumudu transform
method to obtain the analytical exact and approximate solutions. The proposed
algorithm provides the solution in a rapid convergent series which may lead to
the solution in a closed form. The advantage of this method is its capability
of combining two powerful methods for obtaining exact solutions for nonlinear
equations. The HPDSTM is a combination of double Sumudu transform, HPM,
and He’s polynomials.
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2. Basic definitions and auxiliary theorems related to Sumudu
Transform and fractional calculus

The Sumudu transform is an integral transform similar to the Laplace transform,
introduced in the early 1990s by Watugala [31] to solve differential equations and
control engineering problems. Note that following theorems and definitions will
be used in the rest of the paper.

Definition 2.1. The Sumudu transform of a function f(t) defined for all real
number t ≥ 0 is the function Fs (u) defined by

St [f (t) , (u)] = Fs (u) =

∫ ∞
0

1

u
e

−t
u f (t) dt (1)

Many of special properties of the Sumudu transform are mentioned and tabulated
in [32, 33]. Some special properties of the Sumudu transform are as follows:

(1) St [1] = 1

(2) St

[
tn

Γ(n+1)

]
= un

(3) St [f (x)∓ g (x)] = S [f (x)]∓ S [g (x)]

Definition 2.2. The double Sumudu transform of a function f (x, t), defined
for all real numbers (x ≥ 0, t ≥ 0) is defined by

F (u, v) = Sxt [f (x, t) , (u, v)] =
1

uv

∫ ∫ ∞
0

e−( tv+ x
u )f (x, t) dxdt (2)

In the same line of ideas, the double Sumudu transform of second partial deriv-
ative with respect to x is of form [34].

Sxt

[
∂2f (x, t)

∂x2
; (u, v)

]
=

1

u2
F (u, v)− 1

u2
F (0, v)− 1

u

∂F (0, v)

∂x
(3)

Similarly, the double Sumudu transform of second partial derivative with respect
to t is of form [34]

Sxt

[
∂2f (x, t)

∂t2
; (u, v)

]
=

1

v2
F (u, v)− 1

v2
F (u, 0)− 1

v

∂F (u, 0)

∂t
(4)

Theorem 2.3. [32] Let G (u) be the Sumudu transform of f (t), such that

(1) G (1/s) /s, is a meromorphic function, with singularities having Re (s) ≤
γ and

(2) There exists a circular region G with radius R and positive constants, M
and k with |G (1/s) /s| < MR−k: then the function f (t) is given by

S−1 [G (s)] =
1

2Πι

∫ γ+ι∞

γ−ι∞
exp [st]G

(
1

s

)
ds

s
=
∑

residual

[
est

G
(

1
s

)
s

]
(5)
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Definition 2.4. The Riemann-Liouville fractional integral operator of order
α > 0, of a function f (t) ∈ Cµ,µ ≥ −1 is defined as

jαf (t) =
1

Γ (α)

∫ t

0

(t− τ)
α−1

f (τ) dτ (6)

Definition 2.5. [10, 27] The fractional derivative of f (t) in the caputo sense is
defined as

Dα
t f (t) = jm−αDnf (t)

=
1

Γ (n− α)

∫ t

0

(t− τ)
m−α−1

fmτd (τ) (7)

for m− 1 < α ≤ m,m ∈ N and t > 0 and Γ (α) is a Gamma function.

Lemma 2.6. If m− 1 < α ≤ m,m ∈ N and f ∈ Cmµ , and µ ≥ −1, then

jαDα
0 f (x) = f (x)−

m−1∑
k=0

fk
(
0+
) xk
k!
, x > 0 (8)

Definition 2.7. Assume that f (x) is a function of n variables xi, i = 1, · · · , n
also of class C on D ∈ Rn

a∂αx f =
1

Γ (m− α)

∫ xi

a

(xi − t)m−α−1
∂mxif (xj) dt (9)

where ∂mxi is the usual partial derivative of integer order m.

Theorem 2.8. Let ∂i+jf(x,t)
∂tj∂xi , i = 0, 1, · · · , n, j = 0, 1, · · · ,m be of exponen-

tial order; i.e
∣∣∣∂i+jf(x,t)

∂tj∂xi

∣∣∣ <Me
x
τ1

+ t
τ2 for some M, τ1, τ2 > 0, then the double

Sumudu transform of the Caputo fractional derivative with respect to x is defined
as follows

Sxt

[
∂nf (x, t)

∂xn

]
= u−nSxt [f (x, t)]−

n−1∑
i=1

ui−nSxt

[
∂if (0, t)

∂xi

]
(10)

The double Sumudu transform of the Caputo fractional derivative with respect
to t is defined as follows

Sxt

[
∂mf (x, t)

∂tm

]
= u−mSxt [f (x, t)]−

m−1∑
j=1

uj−mSxt

[
∂jf (x, 0)

∂tj

]
(11)

3. Solution by HPDSTM

We illustrate the basic idea of this method, by considering a general fractional
nonlinear non- homogeneous partial differential equation with the initial condi-
tion of the form of general form

Dα
t U (x, t) = L (U (x, t)) +N (U (x, t)) + f (x, t) , α > 0 (12)
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subject to initial condition

Dk
0U (x, 0) = gk, (k = 0, · · · , n− 1) (13)

Dn
0U (x, 0) = 0, where, Dα

t = ∂α

∂tα denotes without loss of generality the Caputo
fraction derivative operator, f is a known function, N is the general nonlinear
fractional differential operator, and L represents a linear fractional differential
operator. Applying the double Sumudu Transform on both sides of (12), we
obtain

Sxt [Dα
t U (x, t)] = Sxt [L(U (x, t))] + Sxt [N (U (x, t))] + Sxt [f (x, t)] (14)

Using the property of the double Sumudu transform, we have

Sxt [U (x, t)] = uαSxt [L (U (x, t))]+uαSxt [N (U (x, t))]+uαSxt [f (x, t)]+g (x, t)
(15)

Now applying the double Sumudu inverse on both sided of (15), we obtain

U (x, t) = S−1
xt [uαSxt [L (U (x, t))] + uαSxt [N (U (x, t))]] +G (x, t) (16)

where G (x, t) represents the term arising from the known function f (x, t) and
the initial condition [31]. Now apply the HPM

U (x, t) =

∞∑
n=0

PnUn (x, t) (17)

The nonlinear term can be decomposed into

NU (x, t) =

∞∑
n=0

pnHn (U) (x, t) (18)

Using the He’s polynomial [32] given as

Hn (U0, · · · , Un) =
1

n!

∂n

∂pn

N
 ∞∑
j=0

pjUj (x, t)

 (19)

Substituting (17) and (18) in (16)
∞∑
n=0

PnUn (x, t) = G (x, t) + P
[
S−1
xt

[
uαSxt

[
L
( ∞∑
n=0

PnUn (x, t)
)]

+uαSxt

[
N
( ∞∑
n=0

PnUn (x, t)
)]]]

(20)

which is the coupling of the double Sumudu transform and the HPM using He’s
polynomials [34]. Comparing the coefficients of like powers of P , the following
approximations are obtained:

P 0 : U0 (x, t) = G (x, t)

P 1 : U1 (x, t) = S−1
xt [uαSxt [L (U0 (x, t)) +H0 (U)]]

P 2 : U2 (x, t) = S−1
xt [uαSxt [L (U1 (x, t)) +H1 (U)]]
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P 3 : U3 (x, t) = S−1
xt [uαSxt [L (U2 (x, t)) +H2 (U)]]

...

Pn : Un (x, t) = S−1
xt [uαSxt [L (U2 (x, t)) +Hn−1 (U)]]

Finally, we approximate the analytical solution U (x, t) by truncated series [34]

U (x, t) = lim
N→∞

N∑
n=0

Un (x, t) (21)

The above series solutions generally converge very rapidly [34, 35, 36].

4. Applications

In this section, we apply this method for solving solution of one and two dimen-
sional linear fractional dispersive KdV and nonlinear fractional KdV equations
to illustrate the reliability of the method.

Example 4.1. Consider the linear one dimensional fractional dispersive KdV
equation [37]

uαt (x, t) = −2ux − uxxx, t > 0

u (x, 0) = sinx (22)

Following carefully the steps involved in the HPDSTM, we arrive at the following
series solutions

u0 (x, t) = sinx

u1 (x, t) = − tα

Γ (α+ 1)
cosx

u2 (x, t) = − t2α

Γ (2α+ 1)
sinx

u3 (x, t) =
t3α

Γ (3α+ 1)
cosx

...

we obtained solution in the following form

u (x, t) = sinx− tα

Γ (α+ 1)
cosx− t2α

Γ (2α+ 1)
sinx+

t3α

Γ (3α+ 1)
cosx+ ...

When α→ 1, we recover the following series approximation

u (x, t) = sinx− t cosx− t2

2!
sinx+

t3

3!
cosx+ ...

u (x, t) = sinx cos t− cosx sin t = sin (x− t)
Which is the exact solution of this problem.



Combination of HPM and double Sumudu transform to solve fractional KdV equations 35

Example 4.2. Consider the linear fractional two dimensional dispersive KdV
equation [37]

uαt (x, y, t) = −uxxx − uyyy, t > 0

u (x, y, 0) = cos (x+ y) (23)

Following carefully the steps involved in the HPDSTM, we arrive at the following
series solutions

u0 (x, y, t) = cos (x+ y)

u1 (x, y, t) = −2
tα

Γ (α+ 1)
sin (x+ y)

u2 (x, y, t) = −4
t2α

Γ (2α+ 1)
cos (x+ y)

u3 (x, y, t) = 8
t3α

Γ (3α+ 1)
sin (x+ y)

...

We obtained solution in the following form

u (x, y, t) = cos (x+ y)− 2
tα

Γ (α+ 1)
sin (x+ y)− 4

t2α

Γ (2α+ 1)
cos (x+ y)

+8
t3α

Γ (3α+ 1)
sin (x+ y) + ...

When α→ 1 we recover the following series approximation

u (x, y, t) = cos (x+ y)− 2t sin (x+ y)− 4
t2

2!
cos (x+ y) + 8

t3

3!
sin (x+ y) + ...

= sin (x+ y + 2t)

Which is the exact solution of this problem.

Example 4.3. We consider the following nonlinear time fractional KdV equa-
tion [38]

uαt (x, t) =
(
u2
)
x

+ [u (u)xx]
x
, t > 0, x > 0, 0 < α ≤ 1

u (x, 0) = sinh2
(x

2

)
Applying the double Sumudu transform on both sided, we obtained the following.

Sxt [u (x, t)] = Sxt

[
sinh2

(x
2

)]
+ uαSxt

[(
u2
)
x

+ [u (u)xx]
x

]
(24)

Applying the inverse double Sumudu transform, we obtain the following

u (x, t) = sinh2
(x

2

)
+ S−1

xt

[
uα
[
Sxt

[(
u2
)
x

+ [u (u)xx]x
]]]

(25)
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Now applying the homotopy perturbation tecnique on the above equation we
obtain the following

∞∑
n=0

Pnun (x, t) = sinh2
(x

2

)
+ P

[
S−1
xt

[
uα
[
Sxt

[ ∞∑
n=0

PnHn (u)

+

∞∑
n=0

PnH1
n (u)

]]]]
(26)

where Hn (u) and H1
n (u) are He’s polynomials that represent the nonlinear

terms.
By comparing the cofficients of like powers p, we have

P 0 : u0(x, t) = sinh2
(x

2

)
P 1 : u1 (x, t) = S−1

xt

[
uα
[
Sxt

[
H0 (u) +H1

0 (u)
]]]

= − tα

4Γ (α+ 1)
sinh (x)

P 2 : u2 (x, t) = S−1
xt

[
uα
[
Sxt

[
H1 (u) +H1

1 (u)
]]]

= +
t2α

8Γ (2α+ 1)
cosh (x)

...

Consequently the third term of the HPDST solution for example 4.3 is given by

u (x, t) = sinh2
(
x
2

)
− tα

4Γ(α+1) sinh (x) + t2α

8Γ(2α+1) cosh (x) .

5. Conclusion

The aim of this work was to make use of the properties of the double Sumudu
transform to solve linear and nonlinear fractional KdV problems. The basic
idea of the method combines double Sumudu transform and the HPM using
He’s polynomial. This combination builds a strong method called the homotopy
perturbation double Sumudu transform (HPDSTD). The HPDSTD is an ana-
lytical method and runs using the initial conditions only. HPDSTM is a very
powerful and efficient method to find approximate solutions as well as numerical
solutions.
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