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SUPER (a,d)-C3-ANTIMAGICNESS OF A CORONA GRAPH
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ABSTRACT. A simple graph G = (V(G), E(G)) admits an H-covering if
Vee€ E(GY = e € E(H') for some (H = H) C G. A graph G
with H covering is an (a,d)-H-antimagic if for bijection f : VU E —
{1,2,...,|V(G)| + |E(G)|}, the sum of labels of all the edges and vertices
belong to H' constitute an arithmetic progression {a,a+d,...,a+(t—1)d},
where ¢ is the number of subgraphs H’. For f(V) = {1,2,3,...,|V(G)|},
the graph G is said to be super (a, d)-H-antimagic and for d = 0 it is called
H-supermagic. In this paper, we investigate the existence of super (a,d)-
C3-antimagic labeling of a corona graph, for differences d =0,1,...,5.
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1. Introduction

Let G be a simple graph with vertex set V and edge set E. An edge-covering
of finite and simple graph G is a family of subgraphs H;, Hs, ..., H; such that
each edge of E(G) belongs to at least one of the subgraphs H;, i = 1,2,...,t.
In this case we say that G admits an (Hy, Ho, ..., Hi)-(edge) covering. If every
subgraph H; is isomorphic to a given graph H, then the graph G admits an H -
covering. A graph G admitting an H-covering is called (a,d)-H-antimagic if
there exists a total labeling f : V(G)U E(G) — {1,2,...,|V(G)|+|E(G)|} such
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that for each subgraph H' of G isomorphic to H, the H'-weights,

wip(H) = > fl)+ Y fle),
) )

veV (H' e€cE(H'

constitute an arithmetic progression a,a+d,a+2d,...,a+ (t —1)d, where a > 0
and d > 0 are two integers and t is the number of all subgraphs of G isomorphic
to H.

The (super) H-magic graph was first introduced by Gutiérrez and Lladé in [1].
The (a,d)-H-antimagic labeling was introduced by Inayah et al. [2].

In [3] Baca et al. investigated the super tree-antimagic total labelings of disjoint
union of graphs. Baca et al. [4] showed the constructions for H-antimagicness
of Cartesian product of graphs. In [5], authors proved the C,-antimagicness
of Fan graph for several difference depending on the length of the cycle. In
[6, 7, 8], Umar et al. proved the existence of super (a,1)-Tree-antimagicness
of Sun graphs, super (a,d)-Cp-antimagicness of Windmill graphs for several
differences and super (a,d)-Cs-antimagicness of Book graph and their disjoint
union.

In this paper, we study the existence of super (a,d)-Cs-antimagic labeling of a
special type of a corona graph.

2. Super Cycle-antimagic labeling of Corona graph

The join of two graphs H; and Hs, denoted by H; + Hs, is the graph where
V(H1) NV (Hz2) = 0 and each vertex of H; is adjacent to all vertices of Hy [9].
When H; = K, this is the corona graph K; ® Hs. In this paper, we consider a
special type of a corona graph.

Let K7 be a complete graph and S,, be a star on n+ 1 vertices. We consider the
corona graph G = K; ® S,,, where

V(G) :=={v1,v2, 21,22, ..., 2}
and
E(G) := {v1v2, 0121, V12, . . . , U1 Ty, V2T1, VX, . . ., V2Lp }

The corona graph G is covered by the cycles C’éi), 1 < i < nand the C’?Ei)—weights
under a labeling h is:

win(C) = > h)+ Y he)
vev(c{) ecE(C{)
= h(v1) + h(ve) + h(x;) + h(vive) + h(viz;) + h(vaw;) (1)

2.1. C3-Supermagic labeling.

Theorem 2.1. Let G := K; ® S, be a corona graph of K1 and S, and n > 2
be an integer then the graph G admits a Cs-supermagic labeing.
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Proof. When n =0 (mod 2)
The labeling hg is defined as:

ho (i) = g+2—1 ifi=1,2,...,5
3";6 1 ifi=3+1,5+2,...,n

n+2144) ifi=1,2,...,2

ho(vaz;) =
o(vazs) {m+1 ifi=241,242...,n

Clearly, the vertices assume least possible integers {1,2,...,n + 2} under the
labeling hg and edges receive the labels {n+3,n+4,...,3n+ 3}. Therefore hg
is a super total labeling.

Using equation (1)

win, (C5)) = 3" hw)+ > he)

vev(c§?) ecE(CSY)
™m In
s L
(3+9)+(3+7)
= 8n + 13. (2)
When n=1 (mod 2)
The labeling hq is defined as:
ho(vi) = 1,
h()('Ul’UQ) =n-+ 3,
ho(l‘i) =n+3—1.
For i =0 (mod 2)
n+3+4 ifj=1
h()(’l)j.’ll'i) = {5n~;7+i lfj —9
For i =1 (mod 2)
3(n+2)+1 e
) ifj=1
%@ﬂﬁ{hﬁ”i if j =2
Clearly, the vertices assume least possible integers {1,2,...,n + 2} under the

labeling hg and edges receive the labels {n+3,n+4,...,3n+ 3}. Therefore hg
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is a super total labeling.
Using equation (1)

win, (C5) = 3" h)+ Y he)

veV(c{?) ecE(C{)
™+ 13
= (2n+9—i)+ < n—; +z’)
11n 4 31
—=nts 3)
Equations (2, 3 ) shows wtp, (C’éi)) is independent of i. Hence the corona graph
G admits a Cs-supermagic labeling. This completes the proof. O

2.2. Super (a,d)-Cs-antimagic labeling.
Theorem 2.2. Let G := K; ® S, be a corona graph of K1 and S, and n > 2
be an integer then the graph G admits a super (a,1)-Cs-antimagic labeing.
Proof. The labeling h; is defined as:
hl(’l)i) = i,
hi (U1U2) =n+3,
hl(vgxi) =2n+3+1.

il 4 9 ifi=1 d 2
hl(ﬂﬁi):{ 5 T if 2 (mo )

[21+24+%  ifi=0 (mod 2)
dnt7—i ifi=1 d 2
hi(viz;) = 2 ; 1 Z (mod 2)
[P~ +n+4—3 if i =0 (mod 2)
Clearly, the vertices assume least possible integers {1,2,...,n + 2} under the
labeling hy and edges receive labels {n+3,n+4,...,3n+ 3}. Therefore h; is a

super total labeling.
Using equation (1)

win, (C5) = Y @)+ Y he)

veV(c{) ecE(C{)
=3(n+3)+i+(2n+6)
=5(n+3) +i. (4)

Equation (4) shows wtho(C’éi)) constitute an arithmetic progression with a =
5(n+3)+ 1 and d = 1. Hence the corona graph G admits a super (a,1)-Cs-

antimagic labeling. This completes the proof. O

Theorem 2.3. Let G := K; © S, be a corona graph of K1 and S, and n > 2
be an integer then the graph G admits a super (a,d)-Cs-antimagic labeing for
d=3,5.
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Proof. The labeling hy is defined as:
ha(vi)
ha(viva) =n
ha(z;) =2

i,
+3,
+i.
n+3+i ifj=1

ha(viz;) =
3(v5i) {n+3+i if j=2

n+2+2 ifj=1
hs (iji) = . [P

n+3+2 ifj=2
Clearly, the vertices assume least possible integers {1,2,...,n + 2} under the
labeling hg and edges receive labels {n+3,n+4,...,3n+ 3}. Therefore h, is a
super total labeling.

Using equation (1)
wn, (C5) = 37w+ > h(e)
veV(c{?) ecE(C{)

= (n+8+1)+ (3n + 6+ 2i)

= 2(2n+7) + 3. (5)
Equation (5) shows wthg(C’éi)) constitute an arithmetic progression with a =
2(2n+7) + 3 and d = 3. Hence the corona graph G admits a super (a, 3)-Cs-
antimagic labeling.
Now, for case d = 5, Using equation (1)

wing (G5 = 3" hw)+ Y he)

vev(cs?) ecE(CSY)
=(n+8+1i)+ (2n+ 5+ 4i)
= 3n + 13 + 5i. (6)

Equation (6) shows wths(C’s(,i)) constitute an arithmetic progression with a =
3(n+6) and d = 5. Hence the corona graph G admits a super (a, 5)-Cs-antimagic
labeling. This completes the proof. O

Theorem 2.4. Let G := K1 © S, be a corona graph of K1 and S, and n > 2
be an integer then the graph G admits a super (a,d)-Cs-antimagic labeing for
d=24.

Proof. The labeling hy is defined as:
hd(vi) =1

halas) = n+3—i ifd=2
AT Y9 4 ifd=4
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The edges are labeled as:
When n =0 (mod 2)

ha(vive) = 5 (g) +3

n+2+41 ifi=1,2,...,5+1
ha(viz:) =, . e n n
5"‘1“"22 1f2=§+2,§—|—3,...,n
34 2(1+1 ifi=1,2,...,2+1
ha(vswi) = 2—1—(—.&—2) 12 2,5+
2n+3 +1 ifi=5+2,5+3,...,n
Clearly, the vertices assume least possible integers {1,2,...,n + 2} under the

labeling hg and edges receive labels {n+3,n+4,...,3n+ 3}. Therefore hy is a
super total labeling.
Using equation (1)

win, (C5) = 3 B+ Y hle)

vev(c§?) ecE(C{)
7 5
= (2n +9—z‘) + (2n +4+3i>
= 6n + 13 + 2i. (7)

Equation (7) shows wthQ(C’éi)) constitute an arithmetic progression with a =
6n+15 and d = 2. Hence the corona graph G admits a super (a, 2)-Cs-antimagic
labeling. Using equation (1)

win, (C5) = 3" hw)+ > he)

vev(c§?) ecB(CSY)
5n . 5n .
= (7+8+z)+(7 + 4 + 31)
= 5n + 12 + 4i. (8)

Equation (8) shows wth4(C§i)) constitute an arithmetic progression with a =
5n+16 and d = 4. Hence the corona graph G admits a super (a, 4)-Cs-antimagic
labeling.

When n=1 (mod 2)

hd(’l)ll}g) =3n+3

ha(os) n+2+i ifi=1,2,...,28
v1T;) =
AL ol 4142 ifi=nE 410 49 n
n+1 ; s — ntl
P +n+ 142 ifi=1,2,..., 2=
hd(vgl'i):{ 2 ;

2(n+1)+i ifi=2H 41,28 42 . n
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Clearly, the vertices assume least possible integers {1,2,...,n + 2} under the
labeling hg and edges receive labels {n+3,n+4,...,3n+ 3}. Therefore hy is a
super total labeling.

Using equation (1)

Wip, (CZ§Z))

S b+ D h(e)

veV(Cc{?) ecE(C{)

5+ 7
:(4n+9—i)+< "; +3i)

130 + 25
= % +2i. 9)

Equation (9) shows wthQ(C’s(,l)) constitute an arithmetic progression with a =
w and d = 2. Hence the corona graph G admits a super (a, 2)-C3-antimagic
labeling.

Using equation (1)

wip, (C5)

S b+ D h(e)

veV(c{?) ecE(C{)

B+ 7
(3n+8+i)+<n2+ +3z’)

11n + 2
- %3 +4i. (10)

Equation (10) shows wth4(C§i)) constitute an arithmetic progression with a =
% and d = 4. Hence the corona graph G admits a super (a, 4)-Cs-antimagic
labeling. This completes the proof. O
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