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Abstract. In this paper, we establish viscosity rule for common fixed
points of two nonexpansive mappings in the framework of CAT(0) spaces.

The strong convergence theorems of the proposed technique is proved under

certain assumptions imposed on the sequence of parameters. The results
presented in this work extend and improve some recent announced in the

literature.
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1. Introduction

The study of spaces of nonpositive curvature originated with the discovery of
hyperbolic spaces, and flourished by pioneering works of J. Hadamard and E.
Cartan in the first decades of the twentieth century. The idea of nonpositive cur-
vature geodesic metric spaces could be traced back to the work of H. Busemann
and A. D. Alexandrov in the 50’s. Later on M. Gromov restated some features
of global Riemannian geometry solely based on the so-called CAT(0) inequality
(here the letters C, A and T stand for Cartan, Alexandrov and Toponogov, re-
spectively). For through discussion of CAT(0) spaces and of fundamental role,
they play in geometry, we refer the reader to Bridson and Haefliger [1].
As we know, iterative methods for finding fixed points of nonexpansive mappings
have received vast investigations due to its extensive applications in a variety
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of applied areas of inverse problem, partial differential equations, image recov-
ery, and signal processing; see [2, 3, 4, 5, 6, 7, 8, 9] and the references therein.
One of the difficulties in carrying out results from Banach space to complete
CAT(0) space setting lies in the heavy use of the linear structure of the Banach
spaces. Berg and Nikolaev [10] introduce the notion of an inner product-like no-
tion (quasi-linearization) in complete CAT(0) spaces to resolve these difficulties.
Fixed-point theory in CAT(0) spaces was first studied by Kirk [11, 12]. He
showed that every nonexpansive (singlevalued) mapping defined on a bounded
closed convex subset of a complete CAT(0) space always has a fixed point.
Since then, the fixed-point theory for single-valued and multivalued mappings in
CAT(0) spaces has been rapidly developed. In 2000, Moudaf’s [13] introduced
viscosity approximation methods as following

Theorem 1.1. [13] Let C be a nonempty closed convex subset of the real Hilbert
space X. Let T be a nonexpansive mapping of C into itself such that Fix(T ) is
nonempty. Let f be a contraction of C into itself with coefficient θ ∈ [0, 1). Pick
any x0 ∈ [0, 1), let {xn} be a sequence generated by

xn+1 =
γn

1 + γn
f(xn) +

1

1 + γn
T (xn), n ≥ 0

where {γn} is a sequence in (0, 1) satisfying the following conditions:

(1) lim
n→∞

γn = 0,

(2)
∞∑
n=0

γn =∞,

(3)
∑∞
n=0 |

1
γn+1

− 1
γn
| = 0.

Then {xn} converges strongly to a fixed point x∗ of the mapping T , which is also
the unique solution of the variational inequality

〈x− f(x), x− y〉 ≥ 0, ∀ y ∈ Fix(T ),

in other words, x∗ is the unique fixed point of the contraction PFix(T )f , that is
PFix(T )f(x∗) = x∗.

Shi and Chen [14] studied the convergence theorems of the following Moudaf’s
viscosity iterations for a nonexpansive mapping in CAT(0) spaces.

xn+1 = tf(xn)⊕ (1− t)T (xn) (1)

xn+1 = αnf(xn)⊕ (1− αn)T (xn) (2)

They proved that {xn} defined by (1) and {xn} defined by (2) converged strongly
to a fixed point of T in the framework of CAT(0) space. In 2017, Zhao et al.
[15] applied viscosity approximation methods for the implicit midpoint rule for
non-expansive mappings

xn+1 = αnf(xn)⊕ (1− αn)T

(
xn ⊕ xn+1

2

)
,∀n ≥ 0.
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Motivated and inspired by the idea of Naqvi et al. [16], in this paper, we establish
viscosity rule for common fixed points of two nonexpansive mappings in the
framework of CAT(0) spaces

xn+1 = αnf(xn)⊕ βnS
(
xn+1 ⊕ xn

2

)
+ γnT

(
xn+1 ⊕ xn

2

)
(3)

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X
such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In
particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic
(or metric) segment joining x and y. When it is unique, this geodesic segment
is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two
points ofX are joined by a geodesic, and X is said to be uniquely geodesic if there
is exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊂ X is said
to be convex if Y includes every geodesic segment joining any two of its points. A
geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points x1, x2,and x3 in X (the vertices of 4) and a geodesic segment between
each pair of vertices (the edges of 4). A comparison triangle for the geodesic
triangle 4(x1, x2, x3 in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the
Euclidean plane E2 such that dE2d(xi, xj) = d(xi, xj)for i, j = 1, 2, 3.
A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom.
Let 4 be a geodesic triangle in X, and let 4 be a comparison triangle for 4.
Then, 4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and all
comparison points x, y ∈ 4,

d(x, y) = dE2(x, y) (4)

Let x, y ∈ X and by the Lemma 2.1(iv) of [17] for each t ∈ [0, 1], there exists a
unique point z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y). (5)

From now on, we will use the notation (1− t)x⊕ ty for the unique fixed point z
satisfying the above equation.
We now collect some elementary facts about CAT(0) spaces which will be used
in the proofs of our main results.

Lemma 2.1. [17] Let X be a CAT(0) spaces.

• For any x, y, z ∈ X and t ∈ [0, 1],

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z) (6)

• For any x, y, z ∈ X and t ∈ [0, 1],

d2((1− t)x⊕ ty, z) ≤ (1− t)2d(x, z) + td2(y, z)− t(1− t)d2(x, y) (7)
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Complete CAT(0) spaces are often called Hadamard spaces (see [1]). If x, y1, y2

are points of a CAT(0) spaces and y0 is the midpoint of the segment [y1, y2],
which we will denoted by y1⊕y2

2 , then the CAT(0) inequality implies

d2

(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)− 1

4
d2(y1, y2). (8)

This inequality is the (CN) inequality of Bruhat and Tits [18]. In fact, a geodesic
metric space is a CAT(0) space if and only if it satisfes the (CN) inequality (cf.
[1], page 163).

Definition 2.2. Let X be a CAT(0) space and T : X → X be a mapping. Then
T is called nonexpensive if

d(T (x), T (y)) ≤ d(x, y), x, y ∈ C.

Definition 2.3. Let X be a CAT(0) space and T : X → X be a mapping. Then
T is called contraction if

d(T (x), T (y)) ≤ θd(x, y), x, y ∈ C θ ∈ [0, 1).

Berg and Nikolaev [10] introduce the concept of quasilinearization as follow:

Let us denote the pair (a, b) ∈ X × X by the
−→
ab and call it a vector. Then,

quasilinearization is defined as a map

〈., .〉 : (X ×X)× (X ×X) −→ R
defined as

〈
−→
ab,
−→
cd〉 =

1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)). (9)

It is easy to see that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉 +

〈
−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 for all a, b, c, d ∈ X. We say that X satisfies the Cauchy-

Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(a, c)

for all a, b, c, d ∈ X. It is well-known [10] that a geodesically connected metric
space is a CAT(0) space of and only if it satisfy the Cauchy-Schwarz inequality.
Let C be a non-empty closed convex subset of a complete CAT(0) space X. The
metric projection Pc : X → C is defined by

u = Pc(x)⇐⇒ inf{d(y, x) : y ∈ C}, ∀x ∈ X.

Definition 2.4. Let Pc : X → C is called the metric projection if for every
x ∈ X there exist a unique nearest point in C, denoted by Pcx, such that

d(x, Pcx) ≤ d(x, y), y ∈ C.

The following theorem gives you the conditions for a projection mapping to be
non-expensive.

Theorem 2.5. Let C be a non-empty closed convex subset of a real CAT(0)
space X and Pc : X → X a metric projection. Then
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(1) d(Pcx, Pcy) ≤ 〈−→xy,
−−−−→
PcxPcy〉 for all x, y ∈ X,

(2) Pc is non-expensive mapping , that is, d(x, pcx) ≤ d(x, y) for all y ∈ C,
(3) 〈

−−−→
xPcx,

−−→
yPcy〉 ≤ 0 for all x ∈ X and y ∈ C.

Further if, in addition, C is bounded, then F (T ) is nonempty. The following
Lemmas are very useful for proving our main results:

Lemma 2.6. (The demiclosedness principle) Let C be a nonempty closed convex
subset of the real CAT(0) space X and T : C → C such that

xn ⇀ x∗ ∈ C and (I − T )xn → 0.

Then x∗ = Tx∗. (Here → (respectively ⇀) denotes strong (respectively weak)
convergence.)

Moreover, the following result gives the conditions for the convergence of a non-
negative real sequences.

Lemma 2.7. Assume that {an} is a sequence of nonnegative real numbers such
that an+1 ≤ (1−βn)an+δn,∀n ≥ 0, where {βn} is a sequence in (0, 1) and {δn}
is a sequence with

(1)
∑∞
n=0 βn =∞,

(2) limn→∞ sup δn
βn
≤ 0 or

∑∞
n=0 |δn| <∞,

Then lim
n→∞

an → 0.

3. Main Result

Theorem 3.1. Let C be a nonempty closed convex subset of the real CAT(0)
spaces X. Let S : C → C and T : C → C be two nonexpansive mappings with
U := F (T )∩F (S) 6= φ and f : C → C be a contraction with coefficient θ ∈ [0, 1).
Let {xn} be a sequence in C generated by

xn+1 = αnf(xn)⊕ βnS
(
xn+1 ⊕ xn

2

)
+ γnT

(
xn+1 ⊕ xn

2

)
,

where {αn}, {βn}, {γn} ⊂ (0, 1), satisfying the following conditions:

(1) αn + βn + γn = 1 and lim
n→∞

γn = 1;

(2)
∞∑
n=0
|αn+1 − αn| <∞ and

∞∑
n=0
|βn+1 − βn| <∞;

(3)
∞∑
n=0

αn =∞;

(4) lim
n→∞

T
(
xn+1⊕xn

2

)
− S

(
xn+1⊕xn

2

)
= 0 and lim

n→∞
αn = lim

n→∞
βn = 0.

Then {xn} converges strongly to a common fixed point x∗ of the nonexpansive
mappings T and S which is also the unique solution of the variational inequality

〈
−−−→
xf(x),−→yx〉 ∀y ∈ U.

In other words, x∗ is the unique fixed point of the contraction PUf .
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Proof. We will prove this theorem into the following five steps:

Step 1. First, we show that the sequence {xn} is bounded. Indeed, take p ∈ U
arbitrarily, we have

d(xn+1, p) = d

(
αnf(xn)⊕ βnS

(
xn+1 ⊕ xn

2

)
⊕ γnT

(
xn+1 ⊕ xn

2

)
, p

)
= d

(
αnf(xn)⊕ βnS

(
xn+1 ⊕ xn

2

)
+γnT

(
xn+1 ⊕ xn

2

)
, (αn + βn + γn)p

)

d(xn+1, p) ≤ αnd(f(xn), p) + βnd

(
S

(
xn+1 ⊕ xn

2

)
, p

)
+γnd

(
T

(
xn+1 ⊕ xn

2

)
, p

)
≤ αnd(f(xn), f(p)) + αnd(f(p), p) + βnd(

(
xn+1 ⊕ xn

2
, p

)
+γnd

(
xn+1 ⊕ xn

2
, p

)
≤ θαnd(xn, p) + αnd(f(p), p) + (βn + γn)d

(
xn+1 ⊕ xn

2
, p

)
= θαnd(xn, p) + αnd(f(p), p) + (1− αn)d

(
xn+1 ⊕ xn

2
, p

)
≤ θαnd(xn, p) + αnd(f(p), p) +

1− αn
2

d(xn+1, p)

+
1− αn

2
d(xn, p),

this is equivalent to(
1− 1− αn

2

)
d(xn+1, p) ≤

(
1− αn

2
+ αnθ

)
d(xn, p) + αnd(f(p), p)

⇒
(1 + αn)d(xn+1, p) ≤ (1− αn + 2αnθ)d(xn, p) + 2αnd(f(p), p)

⇒

d(xn+1, p) ≤ 1 + αn − 2αn + 2αnθ

1 + αn
d(xn, p) +

2αn
1 + αn

d(f(p), p)

=

(
1− 2αn(1− θ)

1 + αn

)
d(xn, p)
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+
2αn(1− θ)

1 + αn

(
1

1− θ
d(f(p), p)

)

Thus,

d(xn+1, p) ≤ max

{
d(xn, p),

1

1− θ
d(f(p), p)

}
.

Similarly,

d(xn, p) ≤ max

{
d(xn−1, p),

(
1

1− θ
d(f(p), p)

)}
.

From this, we obtain,

d(xn+1, p) ≤ max

{
d(xn, p),

1

1− θ
d(f(p), p)

}
≤ max

{
d(xn−1, p),

1

1− θ
d(f(p), p)

}
.

.

.

.

≤ max

{
d(x0, p),

1

1− θ
d(f(p), p)

}
.

Hence, we concluded that {xn} is a bounded sequence. Consequently, {f(xn)},{
S
(xn+1⊕xn

2

)}
and

{
T
(xn+1⊕xn

2

)}
are bounded.

Step 2. Now, we prove that lim
n→∞

d(xn+1, xn) = 0.

d(xn+1, xn)

= d

(
αnf(xn)⊕ βnS

(
xn+1 ⊕ xn

2

)
+ γnT

(
xn+1 ⊕ xn

2

)
, αn−1f(xn−1)⊕ βn−1S

(
xn ⊕ xn−1

2

)
+ γn−1T

(
xn ⊕ xn−1

2

))
≤ αnd

(
f(xn), f(xn−1)

)
+ |αn − αn−1|d

(
f(xn−1), T

(
xn ⊕ xn−1

2

))
+βnd

(
S

(
xn+1 ⊕ xn

2

)
, S

(
xn ⊕ xn−1

2

))
+|βn − βn−1|d

(
S

(
xn ⊕ xn−1

2

)
, T

(
xn ⊕ xn−1

2

))
+γnd

(
T

(
xn+1 ⊕ xn

2

)
, T

(
xn ⊕ xn−1

2

))
.
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Let M2 be a number such that M2 ≥ max

{
sup
n≥0

d(S
(
xn+1⊕xn

2

)
, T
(
xn+1⊕xn

2

)
),

sup
n≥0

d(f(xn), T
(
xn+1⊕xn

2

)
)

}
. Thus, the above is equivalent to

‖xn+1 − xn‖

≤ αnθd(xn, xn−1) + βnd(
xn+1, xn

2
,
xn + xn−1

2
)

+γnd

(
xn+1 + xn

2
,
xn + xn−1

2

)
+ |αn − αn−1|+ |βn − βn−1|M2

≤ αnθd(xn, xn−1) +
βn
2
d(xn+1, xn) +

βn
2
d(xn, xn−1) +

γn
2
d(xn+1, xn)

+
γn
2
d(xn, xn−1) + |αn − αn−1|+ |βn − βn−1|M2

=

(
αnθ +

βn
2

+
γn
2

)
d(xn, xn−1) +

(
βn
2

+
γn
2

)
d(xn+1, xn)

+(|αn − αn−1|+ |βn − βn−1|)M2

=

(
αnθ +

1− αn
2

)
d(xn, xn−1) +

1− αn
2

d(xn+1, xn)

+(|αn − αn−1|+ |βn − βn−1|)M2.

Combining the common terms from left and right hand sides, we get,(
1− 1− αn

2

)
d(xn+1, xn) ≤

(
αnθ +

1− αn
2

)
d(xn, xn−1)

+(|αn − αn−1|+ |βn − βn−1|)M2

This implies that

d(xn+1, xn)

≤ 1 + αn − 2αn + 2αnθ

1 + αn
d(xn, xn−1) +

2(|αn − αn−1|+ |βn − βn−1|)
1 + αn

M2

=

(
1− 2αn(1− θ)

1 + αn

)
d(xn, xn−1) +

2(|αn − αn−1|+ |βn − βn−1|)
1 + αn

M2

Note that
∞∑
n=0

αn = ∞,
∞∑
n=0
|αn+1 − αn| < ∞ and

∞∑
n=0
|βn+1 − βn| < ∞. Using

Lemma 2.7, we have d(xn+1, xn)→ 0 as n→∞.

Step 3. Now, we will show that lim
n→∞

d(xn, Sxn) = 0 and lim
n→∞

d(xn, Txn) = 0.

Consider

d(xn, S(xn))

≤ d(xn, xn+1) + d

(
xn+1, T

(
xn+1 ⊕ xn

2

))
+ d

(
T

(
xn+1 + xn

2

)
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, S

(
xn+1 ⊕ xn

2

))
+ d

(
S

(
xn+1 ⊕ xn

2

)
, S(xn)

)
≤ d(xn, xn+1) + d

(
αnf(xn)⊕ βnS

(
xn+1 ⊕ xn

2

)
⊕ γnT

(
xn+1 ⊕ xn

2

)
, T

(
xn+1 ⊕ xn

2

))
+ d(

xn+1 ⊕ xn
2

, xn)

+d

(
T

(
xn+1 ⊕ xn

2

)
, S

(
xn+1 ⊕ xn

2

))
≤ d(xn, xn+1) + αnd

(
f(xn), T

(
xn+1 ⊕ xn

2

))
+βnd

(
S

(
xn+1 ⊕ xn

2

)
, T

(
xn+1 ⊕ xn

2

))
+

1

2
d(xn+1, xn)

+d

(
S

(
xn+1 ⊕ xn

2

)
, T

(
xn+1 ⊕ xn

2

))
≤ 3

2
d(xn, xn+1) + αnd

(
f(xn), T

(
xn+1 ⊕ xn

2

))
+(1 + βn)d

(
S

(
xn+1 ⊕ xn

2

)
, T

(
xn+1 ⊕ xn

2

))
Since, lim

n→∞
αn = lim

n→∞
d
(
T
(
xn+1⊕xn

2

)
, S
(
xn+1⊕xn

2

))
= 0 and lim

n→∞
d(xn+1, xn)→

0, we get d(xn, S(xn))→ 0 as n→∞.

Moreover, we have

d

(
S

(
xn+1 ⊕ xn

2

)
, xn

)
≤ d

(
S

(
xn+1 ⊕ xn

2

)
, S(xn)

)
+ d (S(xn), xn)

≤ d

(
xn+1 ⊕ xn

2
, xn

)
+ d (S(xn), xn)

=
1

2
d(xn+1, xn) + d(S(xn), xn)

→ 0 as (n→∞)

Now, consider

d(xn, T (xn))

≤ d(xn, xn+1) + d

(
xn+1, S

(
xn+1 ⊕ xn

2

))
+ d

(
T

(
xn+1 ⊕ xn

2

)
, T (xn)

)
+d

(
S

(
xn+1 ⊕ xn

2

)
, T

(
xn+1 ⊕ xn

2

))
≤ d(xn, xn+1) + d

(
T

(
xn+1 ⊕ xn

2

)
, S

(
xn+1 ⊕ xn

2

))
+
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αnf(xn)⊕ βnS

(
xn+1 ⊕ xn

2

)
⊕ γnT

(
xn+1 ⊕ xn

2

)
, S

(
xn+1 ⊕ xn

2

))
+d

(
xn+1 ⊕ xn

2
, xn

)
≤ d(xn, xn+1) + αnd

(
f(xn), T

(
xn+1 ⊕ xn

2

))
+

1

2
d(xn+1, xn)

+γnd

(
S

(
xn+1 ⊕ xn

2

)
, T

(
xn+1 ⊕ xn

2

))
+d(S

(
xn+1 ⊕ xn

2

)
, T

(
xn+1 ⊕ xn

2

)
)

≤ 3

2
d(xn, xn+1) + αnd

(
f(xn), T

(
xn+1 + xn

2

))
+(1 + γn)d

(
S

(
xn+1 ⊕ xn

2

)
, T

(
xn+1 ⊕ xn

2

))
Since, lim

n→∞
αn = lim

n→∞
d
(
T
(
xn+1⊕xn

2

)
, S
(
xn+1⊕xn

2

))
= 0 and lim

n→∞
d(xn+1, xn)→

0, we get d(xn, Txn)→ 0 as n→∞.
Also,

d

(
T

(
xn+1 ⊕ xn

2

)
, xn

)
≤ d

(
T

(
xn+1 ⊕ xn

2

)
, T (xn)

)
+ d(T (xn), xn)

≤ d

(
xn+1 ⊕ xn

2
, xn

)
+ d(T (xn), xn)

=
1

2
d(xn+1, xn) + d(T (xn), xn)

→ 0 ( as n→∞)

Step 4. In this step, we will show that lim sup
n→∞

〈
−−−−−→
x∗f(x∗),

−−−→
x∗xn〉 ≤ 0, where,

x∗ = PUf(x∗).

Indeed, we take a subsequence, {xni
} of {xn}, which converges weakly to a fixed

point p ∈ U = F (T ) ∩ F (S). Without loss of generality, we may assume that
{xni
}⇀ p. From lim

n→∞
d(xn, S(xn)) = 0, lim

n→∞
d(xn, T (xn)) = 0 and Lemma 2.6,

we have p = S(p) and p = T (p). This together with the property of the metric
projection implies that

lim sup
n→∞

〈
−−−−−→
x∗f(x∗),

−−−→
x∗xn〉 = 〈

−−−−−→
x∗f(x∗),

−→
x∗p〉 ≤ 0
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Step 5. Finally, we show that xn → x∗ as n → ∞. Again, take x∗ ∈ U to be
the unique fixed point of the contraction PUf . Consider

d2(xn+1, xn)

= d2

(
αnf(xn)⊕ βnS

(
xn+1 ⊕ xn

2

)
+ γnT

(
xn+1 ⊕ xn

2

)
, x∗
)

= d2

(
αnf(xn)⊕ βnS

(
xn+1 ⊕ xn

2

)
+ γnT

(
xn+1 ⊕ xn

2

)
, (αn + βn + γn)x∗

)
= α2

nd
2(f(xn), x∗) + β2

nd
2

(
S

(
xn+1 ⊕ xn

2

)
, x∗
)

+γ2
nd

2

(
T

(
xn+1 ⊕ xn

2

)
, x∗
)

+2αnβn

〈
−−−−−→
f(xn)x∗,

−−−−−−−−−−−−−→
S

(
xn+1 ⊕ xn

2

)
x∗

〉

+2αnγn

〈
−−−−−→
f(xn)x∗,

−−−−−−−−−−−−−−→
T

(
xn+1 ⊕ xn

2

)
x∗

〉

+2βnγn

〈−−−−−−−−−−−−−→
S

(
xn+1 ⊕ xn

2

)
x∗,

−−−−−−−−−−−−−−→
T

(
xn+1 ⊕ xn

2

)
x∗

〉

≤ α2
nd

2(f(xn), x∗) + β2
nd

2

(
xn+1 ⊕ xn

2
, x∗
)

+ γ2
nd

2

(
xn+1 ⊕ xn

2
, x∗
)

+2αnβn

〈
−−−−−−−−→
f(xn)f(x∗),

−−−−−−−−−−−−−→
S

(
xn+1 ⊕ xn

2

)
x∗

〉

+2αnβn

〈
−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−→
S

(
xn+1 ⊕ xn

2

)
x∗

〉

+2αnγn

〈
−−−−−−−−→
f(xn)f(x∗),

−−−−−−−−−−−−−−→
T

(
xn+1 ⊕ xn

2

)
x∗

〉

+2αnγn

〈
−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−−→
T

(
xn+1 ⊕ xn

2

)
x∗

〉

+2βnγn

〈−−−−−−−−−−−−−→
S

(
xn+1 ⊕ xn

2

)
x∗,

−−−−−−−−−−−−−−→
T

(
xn+1 ⊕ xn

2

)
x∗

〉

≤ (β2
n + γ2

n)d2

(
xn+1 ⊕ xn

2
, x∗
)

+ 2αnβnd(f(xn), f(x∗))

×d
(
S

(
xn+1 ⊕ xn

2

)
, x∗
)

+ 2αnγnd(f(xn), f(x∗)).d

(
T

(
xn+1 ⊕ xn

2

)
, x∗
)



50 E. Bonyah, M. Ahmad, I. Ahmad

+2βnγnd

(
S

(
xn+1 ⊕ xn

2

)
, x∗
)
.d

(
T

(
xn+1 ⊕ xn

2

)
, x∗
)

+Kn

where

Kn = α2
nd

2(f(xn), x∗) + 2αnβn

〈
−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−→
S

(
xn+1 ⊕ xn

2

)
x∗

〉

+2αnγn

〈
−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−−→
T

(
xn+1 ⊕ xn

2

)
x∗

〉

This, implies that

d2(xn+1, xn)

≤ (β2
n + γ2

n)d2

(
xn+1 ⊕ xn

2
, x∗
)

+ 2αnβnθd(xn, x
∗).d

(
xn+1 ⊕ xn

2
, x∗
)

+2αnγnθd(xn, x
∗).d

(
xn+1 ⊕ xn

2
, x∗
)

+2βnγnd

(
xn+1 ⊕ xn

2
, x∗
)
.d

(
xn+1 ⊕ xn

2
, x∗
)

+Kn

= (β2
n + γ2

n + 2βnγn)d2

(
xn+1 ⊕ xn

2
, x∗
)

+2αnθ(βn + γn)d(xn, x
∗).d

(
xn+1 ⊕ xn

2
, x∗
)

+Kn

= (βn + γn)2d2

(
xn+1 ⊕ xn

2
, x∗
)

)

+2αnθ(βn + γn)d(xn, x
∗).d

(
xn+1 ⊕ xn

2
, x∗
)

+Kn

= (1− αn)2d2(
xn+1 ⊕ xn

2
, x∗)

+2αnθ(1− αn)d(xn, x
∗).d

(
xn+1 ⊕ xn

2
, x∗
)

+Kn

The above calculation shows that

0 ≤ 2αnθ(1− αn)d(xn, x
∗).d(

xn+1 ⊕ xn
2

− x∗)

+(1− αn)2d2

(
xn+1 ⊕ xn

2
− x∗

)
− d(xn+1, x

∗)2 +Kn,
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which is a quadratic inequality in d
(
xn+1⊕xn

2 , x∗
)

. Solving the above inequality

for d
(
xn+1⊕xn

2 , x∗
)

, we have

d

(
xn+1 + xn

2
, x∗
)

≥ −2θαn(1− αn)d(xn, x
∗)

2(1− αn)2

+

√
4θ2α2

n(1− αn)2d2(xn, x∗)− 4(1− αn)2(Kn − d2(xn+1, x∗))

2(1− αn)2

=
−θαnd(xn, x

∗) +
√
θ2α2

nd
2(xn, x∗)−Kn + d(xn+1, x∗)

1− αn
.

This will give

1

2
(d(xn+1, x

∗) + d(xn, x
∗))

≥
−θαnd(xn, x

∗) +
√
θ2α2

nd
2(xn, x∗)−Kn + d2(xn+1, x∗)

1− αn
⇒

1

2
((1− αn)d(xn+1, x

∗) + (1 + (2θ − 1)αn)d(xn, x
∗))

≥
√
θ2α2

nd
2(xn, x∗)−Kn + d2(xn+1, x∗)

⇒
1

4
((1− αn)d(xn+1, x

∗) + (1 + (2θ − 1)αn)d(xn, x
∗))

2

≥ θ2α2
nd

2(xn, x
∗)−Kn + d2(xn+1, x

∗),

which is reduced to

1

4
(1− αn)2d2(xn+1, x

∗) +
1

4
(1 + (2θ − 1)αn)2d2(xn, x

∗)

+
1

2
(1− αn)(1 + (2θ − 1)αn)d(xn+1, x

∗).d(xn, x
∗)

≥ θ2α2
nd(xn, x

∗)−Kn + d2(xn+1 − x∗).

This inequality is further reduced by using the elementary inequality

2d(xn+1, x
∗)d(xn, x

∗) ≤ d2(xn+1, x
∗) + d2(xn, x

∗)

to the following inequality

1

4
(1− αn)2d2(xn+1, x

∗) +
1

4
(1 + (2θ − 1)αn)2d2(xn, x

∗)

+
1

4
(1− αn)(1 + (2θ − 1)αn)(d2(xn+1, x

∗) + d2(xn, x
∗))

≥ θ2α2
nd

2(xn − x∗)−Kn + d2(xn+1, x
∗)
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This implies that(
1− 1

4
(1− αn)2 − 1

4
(1− αn)(1 + (2θ − 1)αn)

)
d2(xn+1, x

∗)

≤
(

1

4
(1 + (2θ − 1)αn)2 +

1

4
(1− αn)(1 + (2θ − 1)αn)− θ2α2

n

)
d2(xn, x

∗)

+Kn

or

d2(xn+1, x
∗) ≤

1
4 (1− αn)(1 + (2θ − 1)αn)− θ2α2

n

1− 1
4 (1− αn)2 − 1

4 (1− αn)(1 + (2θ − 1)αn)
d(xn, x

∗)

+
1
4 (1 + (2θ − 1)αn)2

1− 1
4 (1− αn)2 − 1

4 (1− αn)(1 + (2θ − 1)αn)
+K ′n,(10)

where

K ′n =
Kn

1− 1
4 (1− αn)2 − 1

4 (1− αn)(1 + (2θ − 1)αn)

Note that

1− 1

4
(1− αn)2 − 1

4
(1− αn)(1 + (2θ − 1)αn)

= 1− 1

4
(1− αn)(1− αn + 1 + (2θ − 1)αn)

= 1− 1

4
(1− αn)(1− αn + 1 + 2θαn − αn)

= 1− 1

4
(1− αn)(2− 2αn + 2θαn)

= 1− 1

2
(1− αn)(1− αn + θαn)

= 1− 1

2
(1− αn)(1− αn(1− θ))

and

1

4
(1 + (2θ − 1)αn)2 +

1

4
(1− αn)(1 + (2θ − 1)αn)− θ2α2

n

=
1

4
(1 + (2θ − 1)αn)(1 + (2θ − 1)αn + 1− αn)− θ2α2

n

=
1

4
(1 + (2θ − 1)αn)(2 + 2θαn − 2αn)− θ2α2

n

=
1

2
(1 + (2θ − 1)αn)(1 + θαn − αn)− θ2α2

n

=
1

2
(1 + (2θ − 1)αn)(1− (1− θ)αn)− θ2α2

n.
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Now from (10),

d2(xn+1, x
∗)

≤
1
2 (1 + (2θ − 1)αn)(1− (1− θ)αn)− θ2α2

n

1− 1
2 (1− αn)(1− αn(1− θ))

d2(xn, x
∗) +K ′n. (11)

Consider the following function, for t > 0.

g(t) :=
1

t

{
1−

1
2 (1 + (2θ − 1)t)(1− (1− θ)t)− θ2t2

1− 1
2 (1− t)(1− t(1− θ))

}

g(t) =
1

t

{
1− 1

2 (1− t)(1− t(1− θ))− 1
2 (1 + (2θ − 1)t)(1− (1− θ)t) + θ2t2

1− 1
2 (1− t)(1− t(1− θ))

}
=

1

t

{
1− 1

2 (1− t(1− θ))(1− t+ 1 + 2θt− t) + θ2t2

1− 1
2 (1− t)(1− t(1− θ))

}
=

1

t

{
1− 1

2 (1− t(1− θ))(2− 2t+ 2θt) + θ2t2

1− 1
2 (1− t)(1− t(1− θ))

}
=

1

t

{
1− (1− t+ θt))(1− t+ θt)) + θ2t2

1− 1
2 (1− t)(1− t(1− θ))

}
=

1

t

{
1− (1 + t2 + θ2t2 − 2t− 2θt2 + 2θt) + θ2t2

1− 1
2 (1− t)(1− t(1− θ))

}
=

1

t

{
1− 1− t2 − θ2t2 + 2t+ 2θt2 − 2θt+ θ2t2

1− 1
2 (1− t)(1− t(1− θ))

}
=

−t+ 2 + 2θt− 2θ

1− 1
2 (1− t)(1− t(1− θ))

.

By applying limit t→ 0, we have

lim
t→0

g(t) = 4(1− θ) > 0.

Let δ > 0 be such that for all 0 < t < δ, g(t) > ε := 4(1 − θ) > 0. This is
equivalent to

1

t

{
1−

1
2 (1 + (2θ − 1)t)(1− (1− θ)t)− θ2t2

1− 1
2 (1− t)(1− t(1− θ))

}
> ε

This implies,

1− tε >
1
2 (1 + (2θ − 1)t)(1− (1− θ)t)− θ2t2

1− 1
2 (1− t)(1− t(1− θ))

.

Since αn → 0 as n→∞, there exist some integer N , such that αn < δ, ∀ n ≥ N .
From (11), we have

d2(xn+1, x
∗) ≤ (1− αnε)d(xn, x

∗) +K ′n
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On the other hand, we have

lim sup
n→∞

Kn

αn
= lim sup

n→∞

{
2βn

〈
−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−→
S

(
xn+1 ⊕ xn

2

)
x∗

〉

+2γn

〈
−−−−−→
f(x∗)x∗,

−−−−−−−−−−−−−−→
T

(
xn+1 + xn

2

)
x∗

〉
+αnd

2(f(xn), x∗)
}

≤ 0

The above inequality implies that

lim sup
n→∞

K ′n
αn

≤ 0.

From the above two inequalities and Lemma 2.6 we have

lim
n→∞

d2(xn+1, x
∗) = 0,

which implies that xn → x∗ as n→∞. This completes the proof.
�
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