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FIXED POINT RESULTS FOR THE COMPLEX FRACTAL

GENERATION IN THE S-ITERATION ORBIT WITH

s-CONVEXITY
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Abstract. Since the introduction of complex fractals by Mandelbrot they
gained much attention by the researchers. One of the most studied complex
fractals are Mandelbrot and Julia sets. In the literature one can find many
generalizations of those sets. One of such generalizations is the use of the
results from fixed point theory. In this paper we introduce in the generation
process of Mandelbrot and Julia sets a combination of the S-iteration,
known from the fixed point theory, and the s-convex combination. We
derive the escape criteria needed in the generation process of those fractals
and present some graphical examples.
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1. Introduction

Mandelbrot and Julia sets are some of the best known illustrations of a highly
complicated chaotic systems generated by a very simple mathematical process.
They were introduced by Benoit Mandelbrot in the late 1970’s [1], but Julia
sets were studied much earlier, namely in the early 20th century by French
mathematicians Pierre Fatou and Gaston Julia. Mandelbrot working at IBM
has studied their works and plotted the Julia sets for z2 + c and corresponding
to them the Mandelbrot set. He was surprised by the result that he obtained.
Since then many mathematicians have studied different properties of Mandelbrot
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and Julia sets and proposed various generalizations of those sets. The first and
the most obvious generalization was the use of zp + c function instead of the
quadratic one used by Mandelbrot [2, 3]. Then some other types of functions
were studied: rational [4], transcendental [5], elliptic [6], anti-polynomials [7]
etc. Another step in the studies on Mandelbrot and Julia sets was the extension
from complex numbers to other algebras, e.g., quaternions [8], octonions [9],
bicomplex numbers [10] etc.
Another interesting generalization of Mandelbrot and Julia sets is the use of
the results from fixed point theory. In the fixed point theory there exist many
approximate methods of finding fixed points of a given mapping, that are based
on the use of different feedback iteration processes. These methods can be used
in the generalization of Mandelbrot and Julia sets. In 2004, Rani and Kumar
[11, 12] introduced superior Julia and Mandelbrot sets using Mann iteration
scheme. Chauhan et al. in [13] introduced the relative superior Julia sets us-
ing Ishikawa iteration scheme. Also, relative superior Julia sets, Mandelbrot
sets and tricorn, multicorns by using the S-iteration scheme were presented in
[14, 15]. Recently, Ashish et al. in [16] introduced Julia and Mandelbrot sets
using the Noor iteration scheme, which is a three-step iterative procedure. The
junction of a s-convex combination [17] and various iteration schemes was stud-
ied in many papers. Mishra et al. [18, 19] developed fixed point results in relative
superior Julia sets, tricorn and multicorns by using the Ishikawa iteration with
s-convexity. In [20] Kang et al. introduced new fixed point results for frac-
tal generation using the implicit Jungck-Noor orbit with s-convexity, whereas
Nazeer et al. in [21] used the Jungck-Mann and Jungck-Ishikawa iterations with
s-convexity. The use of Noor iteration and s-convexity was shown in [22].
In this paper, we present some fixed point results for Julia and Mandelbrot sets
by using the S-iteration scheme with s-convexity. We derive the escape criteria
for quadratic, cubic and the (k + 1)th degree complex polynomial.
The remainder of this paper is outlined as follows. In Sec. 2 we present some
basic definitions used in the paper. Next, in Sec. 3, we present the main results of
this paper, namely we prove the escape criteria for the quadratic, cubic and the
(k + 1)th degree complex polynomial in the S-iteration with s-convexity. Some
graphical examples of complex fractals generated using the escape criteria are
presented in Sec. 4. The paper ends with some concluding remarks and future
work (Sec. 5).

2. Preliminaries

Definition 2.1 (see [23], Julia set). Let f : C → C be a polynomial of degree
≥ 2. Let Ff be the set of points in C whose orbits do not converge to the point
at infinity, i.e., Ff = {z ∈ C : {|fn(z)|}∞n=0 is bounded}. Ff is called as filled
Julia set of the polynomial f . The boundary points of Ff are called the points
of Julia set of the polynomial f or simply the Julia set.
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Definition 2.2 (see [24], Mandelbrot set). The Mandelbrot set M consists of
all parameters c for which the filled Julia set of Qc(z) = z2+ c is connected, i.e.,

M = {c ∈ C : FQc
is connected}. (1)

In fact, M contains an enormous amount of information about the structure of
Julia sets.
The Mandelbrot set M for the quadratic Qc(z) = z2 + c can be equivalently
defined in the following way:

M = {c ∈ C : {Qn
c (0)} does not tend to ∞ as n → ∞}, (2)

We choose the initial point 0, because 0 is the only critical point of Qc, i.e.,
Q′

c(0) = 0.

Definition 2.3. Let C ⊂ C be a non-empty set and f : C → C. For any point
z0 ∈ C the Picard orbit is defined as the set of iterates of the point z0, i.e.,

O(f, z0) = {zn : zn = f(zn−1), n = 1, 2, 3, . . .}, (3)

where the orbit O(f, z0) of f at the initial point z0 is the sequence {fn(z0)}
∞
n=1.

Definition 2.4 (see [25], S-iteration orbit). Consider a sequence {zn} of iterates
for initial point z0 ∈ C such that

{

zn+1 = (1− γn)f(zn) + γnf(wn),

wn = (1 − δn)zn + δnf(zn),
(4)

where n = 0, 1, 2, . . . and γn, δn ∈ (0, 1]. This sequence of iterates is called the
S orbit, which is a function of four arguments (f, z0, γn, δn) and we will denote
it by SO(f, z0, γn, δn).

In [14] Kang et al. have proved the escape criterion for the Mandelbrot and
Julia sets in S-orbit.

Theorem 2.5 (Escape Criterion for S-iteration). Let Qc(z) = zk+1 + c, where
k = 1, 2, 3, . . . and c ∈ C. Iterate Qc using (4) with γn = γ, δn = δ, where

γ, δ ∈ (0, 1]. Suppose that

|z| > max

{

|c|,

(

2

γ

)
1
k

,

(

2

δ

)
1
k

}

, (5)

then there exist λ > 0 such that |zn| > (1 + λ)n |z| and |zn| → ∞ as n → ∞.

3. Main results

In each of the two steps of S-iteration we use a convex combination of two
elements. In the literature we can find some generalizations of the convex com-
bination. One of such generalizations is the s-convex combination.
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Definition 3.1 (s-convex combination [17]). Let z1, z2, . . . , zn ∈ C and s ∈
(0, 1]. The s-convex combination is defined in the following way:

λs
1z1 + λs

2z2 + . . .+ λs
nzn, (6)

where λk ≥ 0 for k ∈ {1, 2, . . . , n} and
∑n

k=1 λk = 1.

Let us notice that the s-convex combination for s = 1 reduces to the standard
convex combination. Now, we will replace the convex combination in the S-
iteration with the s-convex one.
Let Qc be a polynomial and z0 ∈ C. We define the S-iteration with s-convexity
as follows:

{

zn+1 = (1− γ)sQc(zn) + γsQc(wn),

wn = (1− δ)szn + δsQc(zn),
(7)

where n = 0, 1, 2, . . . and γ, δ, s ∈ (0, 1]. We will denote the S-iteration with
s-convexity by SOs(f, z0, γ, δ, s).
In the following subsections we prove escape criteria for some classes of polyno-
mials using the S-iteration with s-convexity.

3.1. Escape criterion for quadratic function.

Theorem 3.2. Assume that |z| ≥ |c| > 2
sγ

and |z| ≥ |c| > 2
sδ
, where γ, δ, s ∈

(0, 1] and c ∈ C. Let z0 = z. Then for (7) with Qc(z) = z2+c we have |zn| → ∞
as n → ∞.

Proof. Consider
|w| = |(1 − δ)sz + δsQc(z)| .

For Qc(z) = z2 + c,

|w| =
∣

∣(1 − δ)sz + δs(z2 + c)
∣

∣

=
∣

∣(1 − δ)sz + (1− (1 − δ))s(z2 + c)
∣

∣ .

By binomial expansion upto linear terms of δ and (1− δ), we obtain

|w| ≥
∣

∣(1− sδ)z + (1 − s(1− δ))(z2 + c)
∣

∣

=
∣

∣(1− sδ)z + (1 − s+ sδ)(z2 + c)
∣

∣

≥
∣

∣(1− sδ)z + sδ(z2 + c)
∣

∣ , because 1− s+ sδ ≥ sδ

≥
∣

∣sδz2 + (1− sδ)z
∣

∣− |sδc|

≥
∣

∣sδz2 + (1− sδ)z
∣

∣− |sδz| , because |z| ≥ |c|

≥
∣

∣sδz2
∣

∣− |(1− sδ)z| − |sδz|

≥
∣

∣sδz2
∣

∣− |z|+ |sδz| − |sδz|

= |z| (sδ |z| − 1). (8)

In the second step of the S-iteration with s-convexity we have

|z1| = |(1− γ)sQc(z) + γsQc(w)|

=
∣

∣(1− γ)s(z2 + c) + (1− (1 − γ))s(w2 + c)
∣

∣ . (9)
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By binomial expansion upto linear terms of γ and (1 − γ), we obtain

|z1| ≥
∣

∣(1 − sγ)(z2 + c) + (1 − s(1− γ))(w2 + c)
∣

∣

=
∣

∣(1 − sγ)(z2 + c) + (1 − s+ sγ)(w2 + c)
∣

∣

≥
∣

∣(1 − sγ)(z2 + c) + sγ((|z| (sδ |z| − 1))2 + c)
∣

∣ , because 1− s+ sγ ≥ sγ.(10)

Since |z| > 2/(sδ), which implies sδ|z| > 2 and (sδ|z| − 1)2 > 1. Thus

|z|2(sδ|z| − 1)2 > |z|2 > δ|z|2 (∵ 0 < δ < 1) (11)

Using (11) in (10) we have

|z1| ≥
∣

∣(1− sγ)(z2 + c) + sγ(δ|z|2 + c)
∣

∣

=
∣

∣

∣
sγδ |z|

2
+ (1− sγ)z2 + (1− sγ)c+ sγc

∣

∣

∣

=
∣

∣

∣
sγδ |z|

2
+ (1− sγ)z2 + c

∣

∣

∣

≥ sγδ |z|
2
−
∣

∣(sγ − 1)z2
∣

∣− |c|

≥ sγδ |z|2 − (sγ − 1)
∣

∣z2
∣

∣− |z| (∵ |z| > |c|)

= |z| ((sγδ − sγ + 1) |z| − 1) .

Because |z| > 2/(sγ) and |z| > 2/(sδ), so

|z| >
2

sγδ
>

2

sγδ − sγ + 1
,

which implies

(sγδ − sγ + 1)|z| − 1 > 1.

Therefore, there exists λ > 0, such that (sγδ − γ + 1)|z| − 1 > 1 + λ > 1.
Consequently

|z1| > (1 + λ)|z|.

We may apply the same argument repeatedly to obtain:

|z2| > (1 + λ)2 |z| ,

...

|zn| > (1 + λ)n |z| .

Hence, |zn| → ∞ as n → ∞. This completes the proof. �

Corollary 3.3. Suppose that

|c| >
2

sγ
and |c| >

2

sδ
, (12)

then the orbit SOs(Qc, 0, γ, δ, s) escapes to infinity.

The following corollary is the refinement of the escape criterion.
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Corollary 3.4 (Escape Criterion). Let γ, δ, s ∈ (0, 1]. Suppose that

|z| > max

{

|c|,
2

sγ
,
2

sδ

}

, (13)

then there exist λ > 0 such that |zn| > (1 + λ)n |z| and |zn| → ∞ as n → ∞.

3.2. Escape criterion for cubic function.

Theorem 3.5. Assume that |z| ≥ |c| > ( 2
sγ
)

1
2 and |z| ≥ |c| > ( 2

sδ
)

1
2 , where

c ∈ C and γ, δ, s ∈ (0, 1]. Let z0 = z. Then for (7) with Qc(z) = z3 + c we have

|zn| → ∞ as n → ∞.

Proof. Consider
|w| = |(1 − δ)sz + δsQc(z)| .

For Qc(z) = z3 + c, we have

|w| =
∣

∣(1 − δ)sz + δs(z3 + c)
∣

∣

=
∣

∣(1 − δ)sz + (1− (1 − δ))s(z3 + c)
∣

∣ .

By binomial expansion upto linear terms of δ and (1− δ), we obtain

|w| ≥
∣

∣(1− sδ)z + (1− s(1 − δ))(z3 + c)
∣

∣

=
∣

∣(1− sδ)z + (1− s+ sδ)(z3 + c)
∣

∣

≥
∣

∣(1− sδ)z + sδ(z3 + c)
∣

∣ , because1− s+ sδ ≥ sδ

≥
∣

∣sδz3 + (1− sδ)z
∣

∣− |sδc|

≥
∣

∣sδz3 + (1− sδ)z
∣

∣− |sδz| , because |z| ≥ |c|

≥
∣

∣sδz3
∣

∣ − |(1− sδ)z| − |sδz|

≥
∣

∣sδz3
∣

∣ − |z|+ |sδz| − |sδz|

= |z| (sδ |z|
2
− 1). (14)

In the second step of the S-iteration with s-convexity we have

|z1| = |(1− γ)sQc(z) + γsQc(w)|

=
∣

∣(1− γ)s(z3 + c) + (1− (1 − γ))s(w3 + c)
∣

∣ . (15)

By binomial expansion upto linear terms of γ and (1 − γ), we obtain

|z1| ≥
∣

∣(1 − sγ)(z3 + c) + (1 − s(1− γ))(w3 + c)
∣

∣

=
∣

∣(1 − sγ)(z3 + c) + (1 − s+ sγ)(w3 + c)
∣

∣

≥
∣

∣

∣
(1 − sγ)(z3 + c) + sγ((|z| (sδ |z|2 − 1))3 + c)

∣

∣

∣
, because 1− s+ sγ ≥ sγ.(16)

Since |z| > (2/(sδ))
1
2 , which implies sδ|z|2 > 2 and (sδ|z|2 − 1)3 > 1. Thus

|z|3(sδ|z|2 − 1)3 > |z|3 > δ|z|3 (∵ 0 < δ < 1). (17)

Using (17) in (16) we have

|z1| ≥
∣

∣(1− sγ)(z3 + c) + sγ(δ|z|3 + c)
∣

∣
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=
∣

∣

∣
sγδ |z|

3
+ (1− sγ)z3 + (1− sγ)c+ sγc

∣

∣

∣

=
∣

∣

∣
sγδ |z|3 + (1− sγ)z3 + c

∣

∣

∣

≥ sγδ |z|
3
−
∣

∣(sγ − 1)z3
∣

∣− |c|

≥ sγδ |z|
3
− (sγ − 1)

∣

∣z3
∣

∣− |z| (∵ |z| > |c|)

≥ |z|
(

(sγδ − sγ + 1) |z|
2
− 1

)

.

Because |z| > (2/(sγ))
1
2 and |z| > (2/(sδ))

1
2 , so

|z|2 >
2

sγδ
>

2

sγδ − sγ + 1
,

which implies

(sγδ − sγ + 1)|z|2 − 1 > 1.

Therefore, there exists λ > 0, such that (sγδ − γ + 1)|z|2 − 1 > 1 + λ > 1.
Consequently

|z1| > (1 + λ) |z| .

We may apply the same argument repeatedly to obtain:

|z2| > (1 + λ)2 |z| ,

...

|zn| > (1 + λ)n |z| .

Hence |zn| → ∞ as n → ∞. This completes the proof. �

Corollary 3.6. Suppose that

|c| >

(

2

sγ

)
1
2

and |c| >

(

2

sδ

)
1
2

, (18)

then the orbit SOs(Qc, 0, γ, δ, s) escapes to infinity.

The following corollary is the refinement of the escape criterion.

Corollary 3.7 (Escape Criterion). Let γ, δ, s ∈ (0, 1]. Suppose that

|z| > max

{

|c|,

(

2

sγ

)
1
2

,

(

2

sδ

)
1
2

}

, (19)

then there exist λ > 0 such that |zn| > (1 + λ)n |z| and |zn| → ∞ as n → ∞.
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3.3. A general escape criterion.

Theorem 3.8. Assume that |z| ≥ |c| > ( 2
sγ
)

1
k+1 and |z| ≥ |c| > ( 2

sδ
)

1
k+1 ,

where k = 1, 2, . . ., c ∈ C and γ, δ, s ∈ (0, 1]. Let z0 = z. Then for (7) with

Qc(z) = zk+1 + c we have |zn| → ∞ as n → ∞.

Proof. Consider

|w| = |(1 − δ)sz + δsQc(z)| .

For Qc(z) = zk+1 + c, we have

|w| =
∣

∣(1 − δ)sz + δs(zk+1 + c)
∣

∣

=
∣

∣(1 − δ)sz + (1 − (1− δ))s(zk+1 + c)
∣

∣ .

By binomial expansion upto linear terms of δ and (1− δ), we obtain

|w| ≥
∣

∣(1− sδ)z + (1 − s(1− δ))(zk+1 + c)
∣

∣

=
∣

∣(1− sδ)z + (1 − s+ sδ)(zk+1 + c)
∣

∣

≥
∣

∣(1− sδ)z + sδ(zk+1 + c)
∣

∣ , because 1− s+ sδ ≥ sδ

≥
∣

∣sδzk+1 + (1− sδ)z
∣

∣− |sδc|

≥
∣

∣sδzk+1 + (1− sδ)z
∣

∣− |sδz| , because |z| ≥ |c|

≥
∣

∣sδzk+1
∣

∣− |(1− sδ)z| − |sδz|

≥
∣

∣sδzk+1
∣

∣− |z|+ |sδz| − |sδz|

= |z| (sδ |z|
k
− 1). (20)

In the second step of the S-iteration with s-convexity we have

|z1| = |(1− γ)sQc(z) + γsQc(w)|

=
∣

∣(1− γ)s(zk+1 + c) + (1− (1 − γ))s(wk+1 + c)
∣

∣ . (21)

By binomial expansion upto linear terms of γ and (1 − γ), we obtain

|z1| ≥
∣

∣(1 − sγ)(zk+1 + c) + (1− s(1− γ))(wk+1 + c)
∣

∣

=
∣

∣(1 − sγ)(zk+1 + c) + (1− s+ sγ)(wk+1 + c)
∣

∣

≥
∣

∣

∣
(1 − sγ)(zk+1 + c) + sγ((|z| (sδ |z|

k
− 1))k+1 + c)

∣

∣

∣
, since 1− s+ sγ ≥ sγ.(22)

Since |z| > (2/(sδ))
1
k , which implies sδ|z|k > 2 and (sδ|z|k − 1)k+1 > 1. Thus

|z|k+1(sδ|z|k − 1)k+1 > |z|k+1 > δ|z|k+1 (∵ 0 < δ < 1). (23)

Using (23) in (22) we have

|z1| ≥
∣

∣(1 − sγ)(zk+1 + c) + sγ(δ|z|k+1 + c)
∣

∣

=
∣

∣

∣
sγδ |z|

k+1
+ (1− sγ)zk+1 + (1 − sγ)c+ sγc

∣

∣

∣

=
∣

∣

∣
sγδ |z|

k+1
+ (1− sγ)zk+1 + c

∣

∣

∣
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≥ sγδ |z|
k+1

−
∣

∣(sγ − 1)zk+1
∣

∣− |c|

≥ sγδ |z|
k+1

− (sγ − 1)
∣

∣zk+1
∣

∣− |z| (∵ |z| > |c|)

= |z|
(

(sγδ − sγ + 1) |z|k − 1
)

.

Because |z| > (2/(sγ))
1
k and |z| > (2/(sδ))

1
k , so

|z|k >
2

sγδ
>

2

sγδ − sγ + 1
,

which implies
(sγδ − sγ + 1)|z|k − 1 > 1.

Therefore, there exists λ > 0, such that (sγδ − γ + 1)|z|k − 1 > 1 + λ > 1.
Consequently

|z1| > (1 + λ) |z| .

We may apply the same argument repeatedly to obtain:

|z2| > (1 + λ)2 |z| ,

...

|zn| > (1 + λ)n |z| .

Hence |zn| → ∞ as n → ∞. This completes the proof. �

Corollary 3.9 (Escape Criterion). Let γ, δ, s ∈ (0, 1]. Suppose that

|z| > max

{

|c|,

(

2

sγ

)
1
k

,

(

2

sδ

)
1
k

}

, (24)

then there exist λ > 0 such that |zn| > (1 + λ)n |z| and |zn| → ∞ as n → ∞.

4. Generation of Mandelbrot and Julia sets

In this section we present some graphical examples of Mandelbrot and Julia
sets. To generate the images we used the escape time algorithms which were
implemented in Mathematica 9.0. Pseudocode of the Mandelbrot set genera-
tion algorithm is presented in Algorithm 1, whereas Algorithm 2 presents the
pseudocode for the Julia set generation algorithm.

4.1. Mandelbrot sets for the quadratic polynomial Qc(z) = z2 + c.
Examples of a quadratic Mandelbrot set, i.e., the set for Qc(z) = z2+c, in the S
orbit with s-convexity are presented in Fig. 1. The common parameters used to
generate the images were the following: K = 50, γ = 0.7, δ = 0.2. Whereas, the
varying parameters were the following: (a) A = [−2, 0.3]× [−1.2, 1.2], s = 0.1,
(b) A = [−2.4, 0.5]× [−1.5, 1.5], s = 0.2, (c) A = [−2.6, 0.5]× [−1.8, 1.8], s = 0.3,
(d) A = [−3, 0.9] × [−2, 2], s = 0.4, (e) A = [−3.5, 0.9] × [−2, 2], s = 0.5, (f)
A = [−4, 1]× [−2.5, 2.5], s = 0.6, (g) A = [−4.5, 1]× [−2.7, 2.7], s = 0.7, (h) A =
[−6, 1]×[−3, 3], s = 0.8, (i) A = [−6, 1]×[−3, 3], s = 0.9, (j) A = [−6, 1]×[−3, 3],
s = 1.0.
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Algorithm 1: Mandelbrot set generation

Input: Qc(z) = zk+1 + c, where c ∈ C and k = 1, 2, . . ., A ⊂ C – area, K –
the maximum number of iterations, γ, δ, s ∈ (0, 1] – parameters for
the S-iteration with s-convexity, colourmap[0..C − 1] – colourmap
with C colours.

Output: Mandelbrot set for the area A.

1 for c ∈ A do

2 R = max{|c|, (2/(sγ))
1
k , (2/(sδ))

1
k }

3 n = 0

4 z0 = 0

5 while n ≤ K do

6 wn = (1− δ)szn + δsQc(zn)

7 zn+1 = (1− γ)sQc(zn) + γsQc(wn)

8 if |zn+1| > R then

9 break

10 n = n+ 1

11 i = ⌊(C − 1) n
K
⌋

12 colour c with colourmap[i]

4.2. Mandelbrot sets for the cubic polynomial Qc(z) = z3+ c. Examples
of a cubic Mandelbrot set, i.e., the set for Qc(z) = z3 + c, in the S orbit with
s-convexity are presented in Fig. 2. The common parameters used to generate
the images were the following: K = 50, γ = 0.6, δ = 0.4. Whereas, the varying
parameters were the following: (a) A = [−0.7, 0.7] × [−1, 1], s = 0.1, (b) A =
[−0.8, 0.8]× [−1.3, 1.3], s = 0.2, (c) A = [−1, 1]× [−1.5, 1.5], s = 0.3, (d) A =
[−1, 1]×[−2, 2], s = 0.4, (e) A = [−1, 1]×[−2, 2], s = 0.5, (f) A = [−1, 1]×[−2, 2],
s = 0.6, (g) A = [−1, 1]×[−2.2, 2.2], s = 0.7, (h) A = [−1, 1]×[−2.5, 2.5], s = 0.8,
(i) A = [−1, 1]× [−2.5, 2.5], s = 0.9, (j) A = [−1.5, 1.5]× [−2.5, 2.5], s = 1.0.

4.3. Mandelbrot sets for the polynomial Qc(z) = zk+1 + c, where k = 3.
Examples of the fourth order Mandelbrot set, i.e., the set for Qc(z) = z4 + c, in
the S orbit with s-convexity are presented in Fig. 3. The common parameters
used to generate the images were the following: K = 50, γ = 0.5, δ = 0.3.
Whereas, the varying parameters were the following: (a) A = [−0.9, 0.7] ×
[−0.7, 0.7], s = 0.1, (b) A = [−1.1, 0.8]× [−0.8, 0.8], s = 0.2, (c) A = [−1.3, 1]×
[−0.9, 0.9], s = 0.3, (d) A = [−1.4, 1]× [−1.1, 1.1], s = 0.4, (e) A = [−1.5, 1.1]×
[−1.3, 1.3], s = 0.5, (f) A = [−1.7, 1.2]× [−1.4, 1.4], s = 0.6, (g) A = [−1.8, 1.3]×
[−1.5, 1.5], s = 0.7, (h) A = [−1.8, 1.4]× [−1.6, 1.6], s = 0.8, (i) A = [−1.8, 1.5]×
[−1.6, 1.6], s = 0.9, (j) A = [−1.8, 1.5]× [−1.6, 1.6], s = 1.0.
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Algorithm 2: Julia set generation

Input: Qc(z) = zk+1 + c, where k = 1, 2, . . ., c ∈ C – parameter, A ⊂ C –
area, K – the maximum number of iterations, γ, δ, s ∈ (0, 1] –
parameters for the S-iteration with s-convexity,
colourmap[0..C − 1] – colourmap with C colours.

Output: Julia set for the area A.

1 R = max{|c|, (2/(sγ))
1
k , (2/(sδ))

1
k }

2 for z0 ∈ A do

3 n = 0

4 while n ≤ K do

5 wn = (1− δ)szn + δsQc(zn)

6 zn+1 = (1− γ)sQc(zn) + γsQc(wn)

7 if |zn+1| > R then

8 break

9 n = n+ 1

10 i = ⌊(C − 1) n
K
⌋

11 colour z0 with colourmap[i]

4.4. Julia sets for the quadratic polynomial Qc(z) = z2 + c. Examples
of a quadratic Julia set, i.e., the set for Qc(z) = z2 + c, in the S orbit with s-
convexity are presented in Fig. 4. The common parameters used to generate the
images were the following: c = −1.45+0.3i, K = 50, γ = 0.3, δ = 0.5. Whereas,
the varying parameters were the following: (a) A = [−2.1, 1.3]× [−1, 1], s = 0.1,
(b) A = [−2.5, 1.5]× [−1.4, 1.4], s = 0.2, (c) A = [−2.3, 1.5]× [−1.4, 1.4], s = 0.3,
(d) A = [−2.5, 1.7]× [−1.6, 1.6], s = 0.4, (e) A = [−2.5, 1.7]× [−1.8, 1.8], s = 0.5,
(f) A = [−2.5, 1.7]× [−2, 2], s = 0.6, (g) A = [−2.5, 1.8]× [−2.3, 2.3], s = 0.7,
(h) A = [−2.5, 1.8]× [−2.6, 2.6], s = 0.8, (i) A = [−2.5, 1.8]× [−2.9, 2.9], s = 0.9,
(j) A = [−2.8, 2.3]× [−3.4, 3.4], s = 1.0.

5. Conclusions

In this paper we proposed the use instead of a convex combination the s-convex
combination in the S-iteration. Using this modified S-iteration we derived es-
cape criteria for the polynomial function of the form zk+1 + c, where c ∈ C and
k = 1, 2, . . .. Moreover, we presented some graphical examples of Mandelbrot
and Julia sets generated using the escape time algorithm with the derived escape
criteria. Very interesting changes in the Mandelbrot and Julia sets can be ob-
served when s varies from low to high values. Because the s-convex combination
is a generalization of the convex combination, thus the results presented in this
paper are generalization of the results obtained by Kang et al. in [14].
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In our further work we will try to derive the escape criteria in the S-iteration
with s-convexity for functions of other classes than the polynomial one, e.g.,
trigonometric. Moreover, in the fixed point literature we can find many different
iteration methods that can be used in the study of Julia and Mandelbrot sets.
A review of explicit iterations and their dependencies can be found in [26].
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(a) s = 0.1 (b) s = 0.2 (c) s = 0.3

(d) s = 0.4 (e) s = 0.5 (f) s = 0.6

(g) s = 0.7 (h) s = 0.8 (i) s = 0.9

(j) s = 1.0

Figure 1. Quadratic Mandelbrot set for γ = 0.7, δ = 0.2 and
varying s
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(a) s = 0.1 (b) s = 0.2 (c) s = 0.3

(d) s = 0.4 (e) s = 0.5 (f) s = 0.6

(g) s = 0.7 (h) s = 0.8 (i) s = 0.9

(j) s = 1.0

Figure 2. Cubic Mandelbrot set for γ = 0.6, δ = 0.4 and varying s
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(a) s = 0.1 (b) s = 0.2 (c) s = 0.3

(d) s = 0.4 (e) s = 0.5 (f) s = 0.6

(g) s = 0.7 (h) s = 0.8 (i) s = 0.9

(j) s = 1.0

Figure 3. Mandelbrot set for k = 3, γ = 0.5, δ = 0.3 and varying s
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(a) s = 0.1 (b) s = 0.2 (c) s = 0.3

(d) s = 0.4 (e) s = 0.5 (f) s = 0.6

(g) s = 0.7 (h) s = 0.8 (i) s = 0.9

(j) s = 1.0

Figure 4. Quadratic Julia set for c = −1.45+0.3i, γ = 0.3, δ =
0.5 and varying s


