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ON A CLASS OF NEW HYPERGEOMETRIC
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Abstract. In this article we continue the investigations presented in our
previous papers [1, 2, 3, 4], presenting some, for the best of our knowledge,
new transformations of the Gauss hypergeometric function (4) and (13).
They have been obtained using only elementary methods and stem from a
couple of integrals evaluated in terms of complete elliptic integral of first
kind by Legendre in [5] Chapter XXVII, at sections II and III.
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1. Introduction

Hypergeometric transformations are undoubtedly a fascinating field of investi-
gation, which originates from the identities of Pfaff (1) and Euler (2)
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The research for such kind of transformations is under current investigations.
Algebraic transformations of hypergeometric functions of modular origin, are
related to the monodromy of the underlying linear differential equations. This
piece of research was started by the seminal contribution of Goursat, see [6] as the
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starting point, we highlight [7, 8, 9] for some recent developments for this kind of
approach. In [10] the theory of Theta functions is used to derive hypergeometric
transformation formulæ , while [11] presents an approach referring to functional
identities inspired by the work of [12]. Our contribution makes use of elementary
methods, in the same spirit of [12].
In the first volume of his Traité [5], Legendre devotes more than a half of it to
the elliptic integrals of first, second and third kind, showing their properties and
explaining how to compute them by series, moduli transformation and so on. In
Chapter XXVII, section II and III are dedicated to two integrals:

Rm(k) =

∫ π

2

0

dϕ
m

√

1− k2 sin2 ϕ
, m = 3, 4. (3)

First we provide a brief account of the Legendre’s step in such computations,
where he used plenty of the so-called Cauchy-Schlömich variable transformation,
in order to evaluate definite integrals, see [13] for some historical references.
Then we compute R3 and R4 using pure hypergeometric techniques obtaining
new hypergeometric transformations for the Gauss function 2F1, see equations
(4) and (13) below.
In the following we will use the integral representation theorem for the Gauss
function 2F1
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which is traditionally ascribed to Euler, but really due to Legendre [14]. We will
employ also the hypergeometric representation of the complete elliptic integral
of first kind:
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2. Main results

In this section we prove, using the evaluation of the integrals (3) for k = 4 and
k = 3 given in [5], two hypergeometric transformation formulæ . Observe that
the k = 4 case is cited, without any quotation, by [15] entry 807.01 page 293,
while there is no reference for k = 3. Our first theorem comes from the case
k = 4:

Theorem 2.1. If 0 < b < 1 then:
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Proof. In order to proof (4) we first recall the way with Legendre computed the
definite integral:

R4(c) :=

∫ π
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We start, choosing b, c ∈ R
+ such that b2 + c2 = 1. Then change variable in (5):
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Observing that from (6) we get
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which leads to our first integral transformation:
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Then Legendre uses a Cauchy-Schlömich change of variable, putting:
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Here the situation is similar to that, also studied by Legendre, which we pre-
sented in [3]. In fact, to use correctly the change of variable (7), since the trans-
formation is not monotonic, we have to split the relevant integration domain in
two sub-intervals, which are detected solving (7)
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Looking at Figure 1 we infer that integral (5a) has to be evaluated splitting in
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to choose the “−” sign, while in the second integral we have to take the “+”
sign. Then using the denesting relation for quadratic surds, solving for x in (8)
we arrive at:
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Figure 1. Cauchy-Schlömich transformation (7)

Similarly, for x ∈ [ 4
√
b, 1] the integral transformation provides:
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Therefore, summing, we can infer that
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Now using entry 3.131-6 of [16] or (236.00) of [15] we obtain:
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On the other side we can evaluate R4(c) in hypergeometric terms as:
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Now, comparing equation (11) and (10), representing the complete elliptic inte-
gral of first kind in terms of Gauss 2F1 function, we obtain (4), recalling relation
c2 + b2 = 1. �

The second result comes from the evaluation of (3) when k = 3.

Theorem 2.2. If 0 < b < 1 and
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1
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then the hypergeometric transformation formula holds true:
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Proof. Here we start from (3) taking k = 3 and using for R3(c) the change of
variable:

1− x3

c2
= sin2 ϕ (14)

which transforms the R3(c) integral into:
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where, to simplify the notation, we put n3 = b being 0 < n < 1. In fact, observing
that from (14) follows:
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which shows (15). Legendre then uses again a Cauchy-Schlömich transformation

z = x+
n2

x
. (16)

We repeat the same consideration to use correctly the change of variable (16): the
lack of monotonicity requires again to split the interval of integration. Looking
at Figure 2 we have to split the interval of integration in [n2, n] and [n, 1], recall
that n < 1. To work with variable transformation (16) we revisit Legendre’s path,
providing a more rigorous approach, in order to manage properly the separation
of the domain of integration. First write (16) as:

x2 + n2 = xz (17)
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Figure 2. Cauchy-Schlömich transformation (16)

then using (17) compute

(x+ n)2 = x2 + n2 + 2nx = xz + 2nx = x(z + 2n),

(x− n)2 = x2 + n2 − 2nx = xz − 2nx = x(z − 2n),
(18)

For x ∈ [n2, n], since x− n < 0 extracting square root in (18) we find:
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√
x
√
z + 2n, x− n = −

√
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√
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Summing side by side equations (19) we obtain:
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√
z − 2n. (20)

We now use (20) to get the differential term of the change of variable (16),
observe that since x ∈ [n2, n] the (16) transformation is decreasing, see Figure 2,
therefore when x ∈ [n2, n] we have
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and solving for x in (16) always minding that x ∈ [n2, n] we get:
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Eventually, after heavy computations helped by computer algebra, we arrive at:
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Joining (24) and (25) we finally obtain
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(26) in terms of complete elliptic integral of first kind:
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Thus, recalling (15), using (26b) and (26c) we obtain

R3(c) =
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On the other side, we can evaluate R3(c) using the hypergeometric function:
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Thesis (13) follows representing the complete elliptic integral of first kind in
terms of Gauss 2F1 function, replacing b with b3 in (27) and (12).

�

3. Conclusion

Legendre in his Traité [5] was committed in searching identities among first
kind complete elliptic integrals of different moduli, inspired by famous modular
transformation:

K(k) =
1

1 + k
K

(

2
√
k

1 + k

)

.

Searching for similar transformations he represented several kind of integrals
in terms of complete elliptic integrals of first kind. Our contribution, starting
from the elliptic evaluation of integrals R3(c) and R4(c), see (3), consists of the
hypergeometric evaluation of such integrals, which leads to new, for the best
of our knowledge, functional relations for the Gauss hypergeometric function,
formulæ (4) and (13). A possible new research scenario consists of investigating
further hypergeometric relations arising from integrals Rk(c) when k > 4.
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hypergéométrique. Ann. Sci. Ecole Norm. Sup.(2), 10, 3-142.

7. Almkvist, G., Van Straten, D., & Zudilin, W. (2011). Generalizations of Clausen’s for-
mula and algebraic transformations of CalabiYau differential equations. Proceedings of the
Edinburgh Mathematical Society, 54 (2), 273-295.

8. Maier, R. (2007). Algebraic hypergeometric transformations of modular origin. Transac-
tions of the American Mathematical Society, 359 (8), 3859-3885.
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