
Open J. Math. Sci., Vol. 2(2018),No.1, pp. 115 - 121
Website: https://pisrt.org/psr-press/journals/oms/

ISSN: 2523-0212 (Online) 2616-4906 (Print)

http://dx.doi.org/10.30538/oms2018.0021

SUPER (a, d)-C4-ANTIMAGICNESS OF BOOK GRAPHS
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Abstract. Let G = (V,E) be a finite simple graph with |V (G)| ver-
tices and |E(G)| edges. An edge-covering of G is a family of subgraphs

H1, H2, . . . , Ht such that each edge of E(G) belongs to at least one of

the subgraphs Hi, i = 1, 2, . . . , t. If every subgraph Hi is isomorphic to
a given graph H, then the graph G admits an H-covering. A graph G

admitting H covering is called an (a, d)-H-antimagic if there is a bijection

f : V ∪E → {1, 2, . . . , |V (G)|+ |E(G)|} such that for each subgraph H′ of
G isomorphic to H, the sum of labels of all the edges and vertices belonged

to H′ constitutes an arithmetic progression with the initial term a and the
common difference d. For f(V ) = {1, 2, 3, . . . , |V (G)|}, the graph G is said

to be super (a, d)-H-antimagic and for d = 0 it is called H-supermagic. In

this paper, we investigate the existence of super (a, d)-C4-antimagic label-
ing of book graphs, for difference d = 0, 1 and n ≥ 2.
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1. Introduction

An edge-covering of finite and simple graphG is a family of subgraphsH1, H2, . . . ,
Ht such that each edge of E(G) belongs to at least one of the subgraphs Hi, i =
1, 2, . . . , t. In this case we say that G admits an (H1, H2, . . . ,Ht)-(edge) covering.
If every subgraph Hi is isomorphic to a given graph H, then the graph G admits
an H-covering. A graph G admitting an H-covering is called (a, d)-H-antimagic
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if there exists a total labeling f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|}
such that for each subgraph H ′ of G isomorphic to H, the H ′-weights,

wtf (H ′) =
∑

v∈V (H′)

f(v) +
∑

e∈E(H′)

f(e),

constitute an arithmetic progression a, a+d, a+2d, . . . , a+(t−1)d, where a > 0
and d ≥ 0 are two integers and t is the number of all subgraphs of G isomorphic
to H. Moreover, G is said to be super (a, d)-H-antimagic, if the smallest possible
labels appear on the vertices. If G is a (super) (a, d)-H-antimagic graph then the
corresponding total labeling f is called the (super) (a, d)-H-antimagic labeling.
For d = 0, the (super) (a, d)-H-antimagic graph is called (super) H-magic.
The (super) H-magic graph was first introduced by Gutiérrez and Lladó in [1].
They proved that the star K1,n and the complete bipartite graphs Kn,m are
K1,h-supermagic for some h. They also proved that the path Pn and the cycle
Cn are Ph-supermagic for some h. Lladó and Moragas [2] investigated Cn-
(super)magic graphs and proved that wheels, windmills, books and prisms are
Ch-magic for some h. Some results on Cn-supermagic labelings of several classes
of graphs can be found in [3]. Maryati et al. [4] gave Ph-(super)magic labelings
of shrubs, subdivision of shrubs and banana tree graphs. Other examples of
H-supermagic graphs with different choices of H have been given by Jeyanthi
and Selvagopal in [5]. Maryati et al. [6] investigated the G-supermagicness of
a disjoint union of c copies of a graph G and showed that disjoint union of any
paths is cPh-supermagic for some c and h.
The (a, d)-H-antimagic labeling was introduced by Inayah et al. [7]. In [8] Inayah
et al. investigated the super (a, d)-H-antimagic labelings for some shackles of
a connected graph H.
For H ∼= K2, (super) (a, d)-H-antimagic labelings are also called (super) (a, d)-
edge-antimagic total labelings. For further information on (super) edge-magic
labelings, one can see [9, 10, 11, 12].
The (super) (a, d)-H-antimagic labeling is related to a (super) d-antimagic label-
ing of type (1, 1, 0) of a plane graph which is the generalization of a face-magic
labeling introduced by Lih [13]. Further information on super d-antimagic la-
belings can be found in [14, 15, 16].
In this paper, we study the existence of super (a, d)-C4-antimagic labeling of
book graphs.

2. Super C4-antimagic labeling of book graphs and disjoint union of
book graphs

In this section, we discuss super (a, 1)-C4-antimagicness of book graphs for dif-
ference d = 1 and super (b, 0)-C4-antimagicness of disjoint union of book graphs
mBn .
Let K1,n, n ≥ 2 be a complete bipartite graph on n+ 1 vertices. The book graph
Bn is a cartesian product of K1,n with K2. i.e., Bn ∼= K1,n�K2. Clearly book
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graph Bn admits covering by cycle C4.
The book graph Bn has the vertex and edge set

V (Bn) = {y1, y2} ∪ ∪ni=1{x(1,i), x(2,i)}

E(Bn) = ∪ni=1{y1x(1,i), y2x(2,i), x(1,i)x(2,i)} ∪ {y1y2}
respectively.
It can be noted that |V (Bn)| = 2(n+ 1) and |E(Bn)| = 3n+ 1.

Every C
(j)
4 , 1 ≤ j ≤ n in Bn has the vertex set:

V (C
(j)
4 ) = {y1, y2, x(1,j), x(2,j)}

and the edge set is:

E(C
(j)
4 ) = {y1y2, y1x(1,j), y2x(2,j), x(1,j)x(2,j)}.

Under a total labeling α, the C
(j)
4 weights, j = 1, . . . , n, would be:

wtα(C
(j)
4 ) =

∑
v∈V (C

(j)
4 )

α(v) +
∑

e∈E(C
(j)
4 )

α(e).

=

2∑
k=1

α(yk) + α(y1y2) +

2∑
k=1

α(x(k,j)) +

2∑
k=1

α(ykx(k,j)) + α(x(1,j)x(2,j))

(1)

Theorem 2.1. For any integer n ≥ 2, the book graph Bn is super (a, 1)-C4-
antimagic.

Proof. Under a labeling α, the set {y1, y2, y1y2}, would be labeled as as:

α(y1) = 1, α(y2) = 2

α(y1y2) = 2(n+ 1) + 1,

and therefore the partial sum of wtα(C
(j)
4 ) would be

α(y1) + α(y2) + α(y1y2) = 2(n+ 3). (2)

For remaining set of vertices and edges, the labeling α is defined as:

α(x(t,i)) = 2 + j + (k − 1)n, if k = 1, 2

j = 1, 2, . . . , n

α(x(1,i)x(2,i)) = 2(n+ 1) + 1 + j, if j = 1, 2, . . . , n

α(ykx(k,i)) = (6− k)n+ 4− j, if k = 1, 2

j = 1, 2, . . . , n

Clearly

α(V (Bn)) = {1, 2, . . . , 2(n+ 1)}.



118 M. A. Umar, M. A. Javed, M. Hussain, B. R. Ali

Therefore α is a super labeling and together with

α(E(Bn)) = {2(n+ 1) + 1, 2(n+ 1) + 2, . . . , 5n+ 3}
it shows α is a total labeling.

Using (1) and (2), wtα(C
(j)
4 ) are:

wtα(C
(j)
4 ) = 2(n+ 3) + (4 + 2i+ n) + (11n+ 11− j)

= 14n+ 21 + j.

Thus wtα(C
(j)
4 ) constitute an arithmetic progression with a = 14n + 22 and

d = 1. Hence book graphs are super (a, 1)-C4-antimagic.
This completes the proof. �

Theorem 2.2. For any integer n ≥ 2 and n ≡ 1 (mod 2), the book graph Bn is
C4-supermagic.

Proof. Under a labeling ψ, the set {y1, y2, y1y2}, would be labeled as as:

ψ(y1) = 1, ψ(y2) = 2

ψ(y1y2) = 2(n+ 1) + 1,

and therefore the partial sum of wtψ(C
(j)
4 ) would be

ψ(y1) + ψ(y2) + ψ(y1y2) = 2(n+ 3). (3)

For remaining set of vertices and edges, the labeling ψ is defined as:

ψ(x(k,i)) =

{
2 + i, k = 1, i = 1, 2, . . . , n

2n+ 3− i, k = 2, i = 1, 2, . . . , n

ψ(x(1,i)x(2,i)) = 5n+ 4− i

ψ(ykx(k,i)) =


2n+ 3 + i+1

2 k = 1, i = 1, 3, . . . , n
5n+7

2 + i
2 k = 1, i = 2, 4, . . . , n− 1,

7n+6+i
2 k = 2, i = 1, 3, . . . , n

3(n+ 1) + i
2 k = 1, i = 2, 4, . . . , n− 1

Clearly
ψ(V (Bn)) = {1, 2, . . . , 2(n+ 1)}.

Therefore ψ is a super labeling and together with

ψ(E(Bn)) = {2(n+ 1) + 1, 2(n+ 1) + 2, . . . , 5n+ 3}
it shows ψ is a total labeling.

Using (1) and (3), the wtψC
(j)
4 are:

wtψ(C
(j)
4 ) = 2(n+ 3) +

(
11n+ 13

2
+ i

)
+ (5n+ 4− i) + (2n+ 5)

=
29n+ 43

2
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Thus wtψ(C
(j)
4 ) are independent of i. Hence book graphs are C4-supermagic for

n ≡ 1 (mod 2). This completes the proof. �

Theorem 2.3. Let m ≥ 1, n ≥ 2 be positive integers and book graph Bn admits
a C4-supermagic labeling. Then the disjoint union of arbitrary number of copies
of Bn, i.e. mBn, also admits a C4-supermagic labeling.

Proof. Let m be a positive integer. By the symbol xi, i = 1, 2, . . . ,m, we denote
an element (a vertex or an edge) in the ith copy of the book graph Bn, denoted
by Bn(i), corresponding to the element x in Bn, i.e., x ∈ V (Bn) ∪ E(Bn).

Analogously, let Cj4(i), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, be the subgraph in the

ith copy of Bn corresponding to the subgraph Cj4 in Bn.
Let us define the total labeling φ of mBn in the following way:

φ(xi) =

{
m(ψ(x)− 1) + i if x ∈ V (Bn),

mψ(x) + 1− i if x ∈ E(Bn).

First we shall show that the vertices of
⋃m
i=1Bn(i) under the labeling φ use

integers from 1 up to pm, i.e. if i = 1 then the vertices of Bn(1) successively
attain values [1,m + 1, 2m + 1, . . . , (p − 1)m + 1], if i = 2 then the vertices of
Bn(2) successively assume values [2,m + 2, 2m + 2, . . . , (p − 1)m + 2], . . . , the
values of vertices of Bn(i) are equal successively to [i,m + i, 2m + i, . . . , (p −
1)m + i], . . . , if i = m then the vertices of Bn(m) successively assume values
[m, 2m, 3m, . . . , pm].
Second we can see that the edges of

⋃m
i=1Bn(i) under the labeling φ use integers

from pm+1 up to (p+q)m. It means, if i = 1 then the edges of Bn(1) successively
assume values [(p+1)m, (p+2)m, (p+3)m, . . . , (p+q)m], if i = 2 then the edges
of Bn(2) successively assume values [(p + 1)m − 1, (p + 2)m − 1, (p + 3)m −
1, . . . , (p + q)m − 1], . . . , the values of edges of Bn(i) are equal successively to
[(p+ 1)m+ 1− i, (p+ 2)m+ 1− i, (p+ 3)m+ 1− i, . . . , (p+ q)m+ 1− i], . . . , if
i = m then the edges of Bn(m) successively assume values [pm+ 1, (p+ 1)m+
1, (p+ 2)m+ 1, . . . , (p+ q − 1)m+ 1].
It is not difficult to see that the labeling φ is a bijection between the integers
{1, 2, . . . , (p + q)m} and the vertices and edges of

⋃m
i=1Bn(i), therefore φ is a

total labeling.

Under the labeling φ, the weights of every subgraph C
(j)
4 (i), 1 ≤ i ≤ m, 1 ≤ j ≤

k, where k is the number of C4’s in Bn(i), would be:

wtφ(C
(j)
(4,i)) =

∑
v∈V (C

(j)
4 (i))

φ(v) +
∑

e∈E(C
(j)
4 (i))

φ(e)

=
∑

v∈V (C
(j)
4 (i))

(m(ψ(v)− 1) + i) +
∑

e∈E(C
(j)
4 (i))

(mψ(e) + 1− i)

=m
∑

v∈V (C
(j)
4 (i))

ψ(v)−m|V (C
(j)
4 (i))|+ i|V (C

(j)
4 (i))|
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+m
∑

e∈E(C
(j)
4 (i))

ψ(e) + |E(C
(j)
4 (i))| − i|E(C

(j)
4 (i))|

=m

 ∑
v∈V (C

(j)
4 (i))

ψ(v) +
∑

e∈E(C
(j)
4 (i))

ψ(e)

−m|V (C
(j)
4 (i))|+ |E(C

(j)
4 (i))|

+ i|V (C
(j)
4 (i))| − i|E(C

(j)
4 (i))|

=mwtψ(C
(j)
4 (i))−m|V (C

(j)
4 (i))|+ |E(C

(j)
4 (i))|+ i|V (C

(j)
4 (i))| − i|E(C

(j)
4 (i))|.

As every C
(j)
4 (i), i = 1, 2, . . . ,m, j = 1, 2, . . . , k, is isomorphic to the cycle C4 it

holds

|V (C
(j)
4 (i))| = |V (C4)| = 4,

|E(C
(j)
4 (i))| = |E(C4)| = 4.

Thus for the C4-weights we get

wtφ(C
(j)
4 (i)) = mwtψ(C

(j)
4 ) + 4(1−m)

=
m

2
(29n+ 43) + 4(1−m)

=
m

2
(29n+ 35) + 4.

It is easy to see that the set of all C
(j)
4 (i)-weights in

⋃m
i=1Bn(i) consists of same

integers. Thus the graph
⋃m
i=1Bn is a C4-supermagic.

This completes the proof. �
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