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1. Introduction

G eneral topology plays an important role in many fields of applied sciences as well as branches of
mathematics. In general topology, generalized open sets plays an important role. Indeed a significant

theme in general topology and real analysis concerns that variously modified forms of continuity, separation
axioms etc. by utilizing generalized open sets.

Continuous functions stand among the most fundamental concepts in the whole mathematical science.
Many different forms of stronger and weaker forms of such functions have been introduced and studied over
the years in the field of general topology. The idea of totally continuous functions presented in 1980 by Jain
[1]. In [2] totally semi continuous functions presented as a generalization of totally continuous functions and
basic results were proved. Recently, Rajamni and Vishwanathan [3] introduced the notion of αgs-closed set
using α-closure operator. Using αgs-closed set, almost contra αgs-continuous as well as contra ags-continuous
functions were introduced in [4].

In this paper the new generalization of total continuity named as totally αgs-continuous is presented.
The notion of totally αgs-continuous is a weaker form of total continuity. Also it’s fundamental properties are
investigated.

2. Preliminaries

In the entire paper (X, τ), (Y, σ)(or simply X, Y) represents topological spaces on which no separation
axioms are assumed unless explicitly stated. Cl(A) and Int(A) represents closure and interior of A with
respect to τ in the sequel. We recall some definitions which are necessary.

Definition 1. A subset A of a topological space X is known as:

1. semi open set [5] if A ⊂ Cl(Int(A)).
2. semi closed set [6] if Int(Cl(Int(A))) ⊂ A.
3. α-open [7] if A ⊂ Int(Cl(Int(A))).

Definition 2. [3] A subset A of X is αgeneralized semi-closed (shortly, αgs-closed) set if αCl(A) ⊂ U whenever
A ⊂ U and U is semi open in X.
The complement of αgs-closed set is αgeneralized-semi open (shortly,αgs-open). The family of all αgs-closed
sets of X is denoted as αGSC(X,τ) besides αgs-open sets by αGSO(X,τ).

Definition 3. [8] The intersection of all αgs-closed sets containing a set A is said to be αgs-closure of A and is
denoted by αgsCl(A). A set A is αgs-closed if and only if αgsCl(A) = A.
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Definition 4. [8] The union of all αgs-open sets contained in A is said to be αgs-interior of A and is denoted
by αgsInt(A). A set A is αgs-open if and only if αgsInt(A) = A.

Definition 5. [9] A topological space X is said to be αgs-T2 if for each pair of distinct points x and y of X, there
exists disjoint αgs-open sets, one containing x and the other containing y .

Definition 6. [1] A function h : X → Y is said to be totally continuous if the inverse image of each open subset
of Y is a clopen subset of X.

Definition 7. [4] A topological space X is said to be αgs-connected if it cannot be written as the union of two
non-empty disjoint αgs-open sets.

3. Totally αgs-Continuous Functions

In this section, the idea of a new class of functions named totally αgs-continuous function is presented. In
addition, the relationships with existing functions are discussed.

Definition 8. A function µ : X → Y is said to be totally αgs-continuous if µ−1(K) is αgs-clopen in X for every
open set K of Y.

Remark 1. Every totally continuous function is totally αgs-continuous. The converse may not be true.

Example 1. Consider topologies τ = {X, φ, {p} , {q, r}} , σ = {Y, φ, {p} , {p, q}} on X = Y = {p, q, r}, We
have αGSC(X)= {{q} , {r} , {p, q} , {p, r}}. Define a function h : X → Y by h(p) = q, h(q) = p, h(r) = r. Then h
is totally αgs-continuous but it is not totally continuous as h−1({p}) = {q} is not clopen in X.

Remark 2. Every totally αgs-continuous is αgs-continuous function. But the converse is not true as illustrated
by the following example.

Example 2. Let X = {a, b, c}, τ = {X, φ, {a} , {a, b}}. We have αGSC(X) are {{c} , {b, c}}. Let Y = {1, 2, 3},
σ = {Y, φ, {1, 2}}. Define a function h : X → Y by h(a) = 2, f(b) = 1, f(c) = 3. Then h is totally αgs-continuous
but it is not αgs-continuous as h−1({1, 2}) = {a, b} is αgs-open set but not αgs-closed set in X.

Theorem 9. If f is totally αgs-continuous function from αgs-connected space X onto any space Y, then Y is an indiscrete
space.

Proof. Assume that Y isn’t indiscrete. Let K be a proper non-empty subset of Y. Then f−1(K) is non-empty
αgs-clopen subset of X, which is contradiction to the fact that X is αgs-connected space. Then Y is indiscrete
space.

Theorem 10. Let X be αgs-connected with Y be T1. If h : X → Y is totally αgs-continuous, then f is constant.

Proof. Let X be a αgs-connected and h as totally αgs-continuous. Since Y is T1-space, Λ =
{

h−1(y) : y ∈ Y
}

is a disjoint αgs-clopen partition of X. If |Λ| ≥ 2, then there exists a proper αgs-clopen set M for some U ∈ Λ
in αgs-connected space X. This is contradiction to the fact that X is αgs-connected. So |Λ| = 1. Therefore f is
constant.

Definition 11. Consider a topological space X. We define an equivalence relation on X by taking p ≈ q if there
is a αgs-connected subset of X containing p as well as q. The equivalence families are said to be αgs-separation
of X or αgs-component of X.

Theorem 12. Let h : X → Y be a totally αgs-continuous function from a topological space X into T1 space Y. Then h is
constant on each αgs-component of X.

Proof. This result follows immediately from above theorem.
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Definition 13. For a subset A of X, αgsCl(A) − θgsInt(A) is said to be αgs-frontier of A and is denoted as
αgs-Fr(A).

Theorem 14. The set of all points p of X at which h : X → Y is not totally αgs-continuous is identical with the union
of αgs-frontier if the inverse images of closed sets of Y containing h(x).

Proof. Assume that h is not totally αgs-continuous at p ∈ X, then there exists an open set V of Y
containing h(x) such that h(U) is not contained in V for each αgs-clopen set U containing p. This indicates
U ∩ (X − h−1(V)) 6= φ for each U ∈ αGSO(X, p). Therefore, p ∈ αgsCl(X − h−1(V)). But, as p ∈ h−1(V) ⊂
αgsCl(h−1(V)), p ∈ αgsCl(h−1(V)) ∩ αgsCl(X− h−1(V)). This shows that, p ∈ αgs-Fr(h−1(V)).
Conversely, assume p ∈ αgs-Fr(h−1(V)) for some open set V of Y containing h(x) with h is totally
αgs-continuous at p ∈ X. Then there exists U ∈ αGSO(X, p) such that h(U) ⊂ V. This indicates
x ∈ U ⊂ h−1(V). Therefore p ∈ αgsInt(h−1(V)) ⊂ X − αgs-Fr(h−1(F)). This is contradiction to the fact
that, x ∈ αgs-Fr(h−1(F)). Therefore h is not totally αgs-continuous.

Definition 15. A filter base Ω in a topological space X is said to be αgs-co-convergent to a point q in X if for
any U ∈ αGSO(X) containing q, there exists K ∈ Ω such that K ⊂ U.

Theorem 16. If a function h : X → Y is totally αgs-continuous, then for each point q ∈ X and every filter base Ω in X
αgs-co-converging to q, therefore filter base h(Ω) is convergent to h(q).

Proof. Let q ∈ X as well as Ω be any filter base in αgs-co-converging to q. Since h is totally αgs-continuous,
then for any open set V of Y containing h(q), there exists U ∈ αGSO(X) containing q such that h(U) ⊂ V. As
Ω is αgs-co-converging to q, there exists K ∈ Ω such that K ⊂ U. This means that h(K) ⊂ V and therefore the
filter base h(Ω) is convergent to h(q).

4. Covering Properties

Definition 17. A topological space X is said to be:

1. αgs-co-compact if every αgs-clopen cover of X has finite subcover.
2. αgs-co-compact relative to X if every cover of A by αgs-clpoen sets of X has finite subcover.
3. αgs-compact [4] if every αgs-open cover of X has finite subcover.
4. αgs-compact [4] if A is a αgs-compact as a subspace of X.

Theorem 18. If a function µ : X → Y is totally αgs-continuous as well as Q is αgs-co-compact relative to X, then µ(Q)

is compact in Y.

Proof. Let {Hi : i ∈ I} be any cover of µ(Q) by open sets of Y. For each x ∈ Q, there exists ix ∈ I such
that µ(x) ∈ (Hα)x and there exists Ux ∈ αGSO(X) containing x such that µ(Ux) ⊂ (Hα)x. Since the
collection {Ux : x ∈ Q} is a cover of Q by αgs-clopen sets of X, there exists a finite subset Q0 of Q such
that Q ⊂ ⋃

{Ux : x ∈ Q0}. So, we get µ(Q) ⊂ ⋃
{µ(Ux) : x ∈ Q0} ⊂

⋂
{(Hα)x : x ∈ Q0} and hence µ(Q)

is compact.

Theorem 19. Following results are equivalent for a function h : X → Y

1. h is totally αgs-continuous,
2. for every open set V of Y, h−1(V) is αgs-clopen in X,
3. for every closed set F of Y, h−1(F) is αgs-clopen in X.

Proof. 1⇒2 Consider an open set V in Y as well as x ∈ h−1(V). Then h(x) ∈ V. By (1), there exists a αgs-clopen
set Ux in X such that x ∈ Ux ⊂ h−1(V). This implies h−1(V) is αgs-clopen nhd of x. As x is arbitrary, h−1(V)

is αgs-clopen nhd of each of its points. This indicates h−1(V) is αgs-clopen in X.
2⇒1 Let H be any open set in Y containing h(x), such that x ∈ h−1(H). Again by (2), h−1(H) is αgs-clopen in
X. Set G = f−1(H), then G is αgs-clopen set in X containing x with h(G) = h(h−1(H)) ⊂ H. This implies h is
totally αgs-continuous at x ∈ X. As x is arbitrary, it follows that h is totally αgs-continuous at each point x of
X. Then, h is totally αgs-continuous.
2⇒3 Let F be a closed set in Y. Then Y− F is an open set in Y. By (2), h−1(Y− F) = X− h−1(F) is αgs-clopen
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in X. This means h−1(F) is αgs-clopen in X.
3⇒2 Consider O be an open set in Y, then Y −O is a closed set in Y. By (iii), h−1(Y −O) = X − h−1(O) is
αgs-clopen in X. This implies h−1(O) is αgs-clopen in X.

Theorem 20. If f : X → Y is totally αgs-continuous injection and Y is T0 then X is αgs-T2.

Proof. Let p and q be any two distinct points in X. As f is injective, f (p) as well as f (q) are distinct points
in Y. As Y is T0, there exist an open set U containing say f (p) but not f (q), which implies, p ∈ f−1(U) and
q /∈ f−1(U). As f is totally αgs-continuous, f−1(U) is a αgs-clopen subset of X. Thus for two distinct points
p and q of X, there exist two disjoint αgs-clopen subsets of X such that p ∈ f−1(U) and q /∈ X − f−1(U).
Therefore X is αgs-T2.

Theorem 21. Let f : X → Y be totally αgs-continuous injection function with Y is T1-space. If A is a αgs-connected
subset of X, then f (A) is a single point.

Proof. Let A be a αgs-connected member of X such that f (A) is not a single point. Let p and q be distinct
points of subset A in X. As f is injective f (p) and f (q) are distinct points of f (A) in Y. As Y is T1-space, there
exist open sets U and V such that f (p) ∈ U, f (q) /∈ U and f (q) ∈ V, f (p) /∈ V. This indicates p ∈ f−1(U),
q /∈ f−1(U) and q ∈ f−1(V), p /∈ f−1(V). For the reason f is totally αgs-continuous, implies f−1(U) and
f−1(V) are proper αgs-clopen sets in A. This is contradiction to the fact that, A is αgs-connected subset of X.
Thus, f (A) is a single point.

Definition 22. A collection {Ai : i ∈ I} of αgs-clopen sets in a topological space X is said to be αgs-clopen
cover of a subset A in X if A ⊂ ⋃i∈I Ai.

Definition 23. A topological space X is said to be:

1. mildly αgs-compact if every cover of X by αgs-clopen sets has a finite subcover.
2. mildly countably αgs-compact if every countable cover of X by αgs-clopen sets has a finite subcover.
3. mildly αgs-Lindelof if every cover of X by αgs-clopen sets has a countable subcover.
4. strongly S-closed [10] if every closed cover of X has a finite subcover.

Theorem 24. If f : X → Y is totally αgs-continuous surjection with X is mildly αgs-compact, then Y is strongly
S-closed.

Proof. Let {Vα : α ∈ I} be any closed cover of Y. As f is totally αgs-continuous,
{

f−1(Vα) : α ∈ I
}

is
αgs-clopen cover of X. As X is mildly αgs-compact, there exists a finite subset I0 of I such that X =

∪
{

f−1(Vα) : α ∈ I0
}

. This indicates, Y = ∪ {Vα : α ∈ I0}, which is finite subcover of Y. As a result Y is
strongly S-closed.

Theorem 25. Let h : X → Y be a totally αgs-continuous surjection. Then, the following results hold

1. If X is mildly αgs-compact, then Y is compact.
2. If X is mildly countably αgs-compact, therefore Y is countably compact.
3. If X is mildly αgs-Lindelö f , then Y is Lindelö f .

Proof. (1) Let {Vα : α ∈ I} be any open cover of Y. As h is totally αgs-continuous,
{

h−1(Vα) : α ∈ I
}

is
αgs-clopen cover of X. As X is mildly αgs-compact, there exists a finite member I0 of I such that X =

∪
{

f−1(Vα) : α ∈ I0
}

. This indicates, Y = ∪ {Vα : α ∈ I0}, which is finite subcover of Y. Then Y is compact.
(2) Let {Vα : α ∈ I} be be any countable open cover of Y. As h is totally αgs-continuous,

{
h−1(Vα) : α ∈ I

}
is countable αgs-clopen cover of X. As X is Mildly countably αgs-compact, there exists a finite subset I0 of I
such that X = ∪

{
h−1(Vα) : α ∈ I0

}
. This indicates, Y = ∪ {Vα : α ∈ I0}, which is finite subcover of Y. So Y is

countably compact.
(3) Lat {Vα : α ∈ I} be any open cover of Y. As h is totally αgs-continuous,

{
h−1(Vα) : α ∈ I

}
is αgs-clopen

cover of X. As X is Mildly αgs-Lindelöf, there exists a finite subset I0 of I such that X = ∪
{

h−1(Vα) : α ∈ I0
}

.
This implies, Y = ∪ {Vα : α ∈ I0}, which is finite subcover of Y. Thus Y is Lindelöf.

Definition 26. A topological space X is said to be
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1. αgs-co-T1 if for each pair of distinct points x and y of X there exist αgs-clopen sets G and H such that
x ∈ G, y /∈ G and y ∈ H, x /∈ H.

2. αgs-co-T2 if for each pair of distinct points x and y of X, there exist disjoint αgs-clopen sets G and H such
that x ∈ G and y ∈ H.

Theorem 27. A topological space X is αgs-co-T1 if and only if every singleton subset {x} of X is αgs-clopen set.

Proof. Let X be a αgs-co-T1 space and p ∈ X. Let q ∈ X − {x}. Then for p 6= q, there exists αgs-clopen set
Uq such that q ∈ Uq and p /∈ Uq. Then, q ∈ Uy ⊂ X − {x}. That is X − {x}=∪

{
Uy : y ∈ X− {x}

}
, which is

αgs-clopen set. Hence {x} is αgs-clopen set.
Conversely, assume {x} is αgs-clopen set for every x ∈ X. Let x and y∈ X with x 6= y. Now x 6= y means

y ∈ X − {x}. Therefore X − {x} is αgs-clopen set containing y yet not x. Similarly, X − {y} is αgs-clopen set
containing x but not y. Then X is αgs-co-T1 space.

Theorem 28. If h : X → Y is totally αgs-continuous injection and Y is T1 then X is αgs-co-T1 space.

Proof. Let f : X → Y is totally αgs-continuous injection with Y as T1. For any two distinct points x1, x2 of X
there exists distinct points y1, y2 of Y such that y1 = h(x1) with y2 = h(x2). As Y is T1-space there exist an
open sets U and V in Y such that y1 ∈ U, y2 /∈ U as well as y1 /∈ V, y2 ∈ V. That is x1 ∈ h−1(U), x1 /∈ h−1(V)

and x2 ∈ h−1(V), x2 /∈ h−1(U). As h is totally αgs-continuous h−1(U), h−1(V) are αgs-clopen sets in X. Thus,
for two distinct points x1, x2 of X there exist αgs-clopen sets h−1(U) and h−1(V) such that x1 ∈ h−1(U), x1 /∈
h−1(V) and x2 ∈ h−1(V), x2 /∈ h−1(U). Therefore X is αgs-co-T1 space.

Theorem 29. If µ : X → Y is totally αgs-continuous injection with Y is T2 then X is αgs-co-T2 space.

Proof. Let µ : X → Y is totally αgs-continuous injection with Y is T2. For any two distinct points x1, x2 of X
there exist distinct points y1, y2 of Y such that y1 = µ(x1) and y2 = µ(x2). As Y is T2 space there exist disjoint
open sets U and V in Y such that y1 ∈ U and y2 ∈ V. That is x1 ∈ µ−1(U) and x2 ∈ µ−1(V). As f is totally
αgs-continuous µ−1(U), µ−1(V) are αgs-clopen sets in X. Furthermore µ is injective, µ−1(U) ∩ µ−1(V) =

µ−1(U ∩V) = µ−1(φ) = φ. Thus, for two disjoint points x1, x2 of X there exist distinct αgs-clopen sets µ−1(U)

and µ−1(V) such that x1 ∈ µ−1(U) and x2 ∈ µ−1(V). Therefore X is αgs-co-T2 space.

Definition 30. A function h : X → Y is said to be:

1. totally αgs-irresolute if preimage of a αgs-clopen member of Y is a αgs-clopen subset of X,
2. totally pre-αgs-clopen if image of each αgs-clopen subset of X is αgs-clopen.

Theorem 31. Let h : X → Y be surjective totally αgs-irresolute and totally pre-αgs-clopen with k : Y → Z be any
function. Then k ◦ h : X → Z is totally αgs-continuous if and only if k is totally αgs-continuous.

Proof. The ’if’ part is trivial. To claim ’only if’ part, let k ◦ h : X → Z be totally αgs-continuous furthermore,
let V be an open subset of Z. Then (k ◦ h)−1(V) is a αgs-clopen member of X, h−1(k−1(V)) is αgs-clopen. As h
is totally pre-αgs-clopen, h(h−1(k−1(V))) is a αgs-clopen subset of Y. So, k−1(V) is αgs-clopen in Y. Thus k is
totally αgs-continuous.

Definition 32. A topological space X is said to be:

1. αgs-co-regular if for each closed set F with each point x /∈ F, there exist disjoint αgs-clopen sets U and V
such that x ∈ U and F ⊂ V,

2. strongly αgs-co-regular if for every αgs-clopen set F with a point x /∈ F, there exist disjoint open sets U
and V such that x ∈ U and F ⊂ V,

3. αgs-co-normal if for every pair of disjoint closed sets A and B, there exists a pair of disjoint αgs-clopen
sets U and V in X such that A ⊂ U and B ⊂ V,

4. strongly αgs-co-normal if for each pair of disjoint αgs-clopen sets A with B, there exist a pair of disjoint
open sets U and V in X such that A ⊂ U and B ⊂ V.

Theorem 33. If h : X → Y is totally αgs-continuous, closed, injection and Y is regular, then X is αgs-co-regular.
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Proof. Let F be a closed set in X and x /∈ F. As h is closed injection h(F) is closed set in Y such that h(x) /∈ h(F).
Now Y is regular, there exist disjoint open sets G besides H such that h(x) ∈ G as well as h(F) ⊂ H. This
indicates x ∈ h−1(G) with F ⊂ h−1(H). As h is totally αgs-continuous, h−1(G) besides h−1(H) are αgs-clopen
sets in X. Further h−1(G) ∩ h−1(H) = φ. Then X is αgs -co-regular.

Theorem 34. If η : X → Y is totally αgs-continuous, open, injection with X is strongly αgs-co-regular, then Y is
regular.

Proof. Let P be a closed set in Y with y /∈ P. Take y = η(x) being any x ∈ X, then x /∈ η−1(P). As η is totally
θgs-continuous, η−1(P) is αgs-clopen set in X, not containing x. As X is strongly αgs-co-regular, there exist
disjoint open sets U and V such that x ∈ U and η−1(P) ⊂ V. That is η(x) ∈ η(U) and P ⊂ η(V). As η is open
injective, η(U) with η(V) are disjoint open sets in Y. Therefore, Y is regular.

Theorem 35. If Y is normal and k : X → Y is totally αgs-continuous, closed, injection, then X is αgs-co-normal.

Proof. Let E and F be disjoint closed sets in Y. As k closed injection k(E) as well as k(F) are disjoint closed
sets in Y. Now Y is normal, there exist disjoint open sets G and H in order that k(E) ⊂ G with k(F) ⊂ H. This
implies E ⊂ k−1(G) with F ⊂ k−1(H). As k is totally αgs-continuous k−1(G) and k−1(H) are αgs-clopen sets
in X. Further k−1(G) ∩ k−1(H) = φ. Hence X is αgs-co-normal.

Theorem 36. I f k : X → Y is totally αgs-continuous, open, injection and X is strongly αgs-co-normal, then Y is
normal.

Proof. Let us consider the disjoint closed sets E and F in Y.As k is totally αgs-continuous, k−1(E) and k−1(F)
are αgs-clopen sets in X. As X is strongly αgs-co-normal, there exist disjoint open sets U and V such that
k−1(E) ⊂ U and k−1(F) ⊂ V. That is E ⊂ k(U) and F ⊂ f (V). As k is open injective, k(U) as well as k(V) are
disjoint open sets in Y. Therefore, Y is normal.
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