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Abstract: The boundary value problems in Kinetic theory of gases, elasticity and other applied areas are
mostly reduced in solving single variable nonlinear equations. Hence, the problem of approximating a
solution of the nonlinear equations is important. The numerical methods for finding roots of such equations
are called iterative methods. There are two type of iterative methods in literature: involving higher
derivatives and free from higher derivatives. The methods which do not require higher derivatives have
less order of convergence and the methods having high convergence order require higher derivatives. The
aim of present report is to develop an iterative method having high order of convergence but not involving
higher derivatives. We propose three new methods to solve nonlinear equations and solve text examples to
check validity and efficiency of our iterative methods.
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1. Introduction

O ne of the complex problem in science and specially in mathematics is to solve the non-linear equation

f (x) = 0. (1)

The solution of such type of equations cannot be find directly except in special cases. Therefore most of the
methods for solving such type of equations are iterative methods. In iterative methods, we start with an initial
guess x0 which is improved step by step by means of iterations. In recent years, several iterative methods have
been developed by using the different techniques namely: Taylor’s series expansion, Adomian decomposition,
Quadrature formulae etc. Some basic iterative methods are given in literature [1–3], and the references therein.

Considering (1) and assume that α is a simple zero of (1) and γ is an initial guess sufficiently close to α

then by using the Taylor’s series around γ for (1), we have

f (γ) + (x− γ) f ′(γ) +
1
2!
(x− γ)2 f ′′(γ) + . . . = 0 (2)

If f ′(γ) 6= 0, we can evaluate the above expression as follow’s:

f (xk) + (x− xk) f ′(xk) = 0.

If we choose xk+1 the root of equation, then we have

xk+1 = xk −
f (xk)

f ′(xk)
. (3)
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This is so-called the Newton’s method (NM) [4], for root-finding of nonlinear functions and converges
quadratically. From (2), we obtain

xk+1 = xk −
2 f (xk) f ′(xk)

2 f ′2(xk)− f (xk) f ′′(xk)
. (4)

This is so-called the Halley’s method (HM) [5], for root-finding of nonlinear functions and converges cubically.
Simplification of (2) yields another method:

xk+1 = xk −
f (xk)

f ′(xk)
− f 2(xk) f ′′(xk)

2 f ′3(xk)
. (5)

This is known as Househölder’s method [6], for solving nonlinear equations and converges cubically.
In this paper, we modified the Abbasbandy’s method [7] by making it three step iterative method by

taking Newton’s method as a pre-predictor and predictor step and Abbasbandy’s method as a corrector step.
We proved that this new modified methods have twelve, twelve and ten order of convergence and most
efficient than existing methods. Some examples are given to show the performance of this method with other
famous methods.

2. Iterative methods

Let f : X → R, X ⊂ R is a scalar function, then by using Taylor expansion, expanding f (x) about the
point xk, we obtain the Abbasbandy’s method as

xk+1 = xk −
f (xk)

f ′(xk)
− f 2(xk) f ′′(xk)

2 f ′3(xk)
− f 3(xk) f ′′′(xk)

6 f ′4(xk)
.

Algorithm 1. For a given x0, compute the approximate solution xn+1 by the following three step iterative scheme:

yn = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, ...,

wn = yn −
f (yn)

f ′(yn)

xn+1 = wn −
f (wn)

f ′(wn)
− f 2(wn) f ′′(wn)

2 f ′3(wn)
− f 3(wn) f ′′′(wn)

6 f ′4(wn)
.

By following the finite difference scheme, we develop the following algorithms:

Algorithm 2. For a given x0, compute the approximate solution xn+1 by the following iterative schemes:

yn = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, ...,

wn = yn −
f (yn)

f ′(yn)

xn+1 = wn −
f (wn)

f ′(wn)
− f 2(wn) f ′′(wn)

2 f ′3(wn)
+

f 3(wn) f ′(yn)[ f ′′(wn)− f ′′(yn)]

6 f (yn) f ′4(wn)
.

Algorithm 3. For a given x0, compute the approximate solution xn+1 by the following iterative schemes:

yn = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, ...,

wn = yn −
f (yn)

f ′(yn)

xn+1 = wn −
f (wn)

f ′(wn)
− f ′(yn) f 2(zn)

2 f ′3(wn)

[
f ′(yn)− f ′(wn)

f (yn)
(1− f ′(yn) f (wn)

3 f (yn) f ′(wn)
) +

f ′(xn) f (wn)( f ′(xn)− f ′(yn))

3 f (xn) f (yn) f ′(wn)

]
3. Convergence Analysis

In this section, we prove the convergence of our purposed iterative methods.
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Theorem 4. Suppose that α is a root of the equation f (x) = 0. If f (x) is sufficiently smooth in the neighborhood of
α, then the convergence order of Algorithm (1), Algorithm (2) and Algorithm (3) is at least twelve, twelve and ten
respectively.

Proof. To prove the convergence, suppose that α is a root of the equation f (x) = 0 and en be the error at nth
iteration, then en = xn − α and by using Taylor series expansion, we have

f (xn) = f ′(α)en +
1
2!

f ′′(α)e2
n +

1
3!

f ′′′(α)e3
n +

1
4!

f (iv)(α)e4
n +

1
5!

f (v)(α)e5
n +

1
6!

f (vi)(α)e6
n + . . .

f (x) = f ′(α)[en + c2e2
n + c3e3

n + c4e4
n + c5e5

n + c6e6
n + . . .] (6)

f ′(xn) = f ′(α)[1 + 2c2en + 3c3e2
n + 4c4e3

n + 5c5e4
n + 6c6e5

n + 7c7e6
n + . . .] (7)

where

cn =
1
n!

f (n)(α)
f ′(α)

.

With the help of Equation (6) and Equation (7), we get

yn = f ′(α)[α + c2e2
n + (2c3 − 2c2

2)e
3
n + (3c4 − 7c2c3 + 4c3

2)e
4
n + (−6c2

3 + 20c3c2
2 − 10c2c4 + 4c5 − 8c4

2)e
5
n

+(−17c4c3 + 28c4c2
2 − 13c2c5 + 5c6 + 33c2c2

3 − 52c3c3
2 + 16c5

2)e
6
n + . . .] (8)

f (yn) = f ′(α)[c2e2
n + (2c3 − 2c2

2)e
3
n + (5c3

2 − 7c2c3 + 3c4)e4
n + (24c3c2

2 − 12c4
2 − 10c2c4 + 4c5 − 6c2

3)e
5
n

+(−73c3c3
2 + 34c4c2

2 + 28c5
2 + 37c2c2

3 − 17c4c3 − 13c2c5 + 5c6)e6
n + . . .] (9)

f ′(yn) = f ′(α)[1 + 2c2
2e2

n + (4c2c3 − 4c3
2)e

3
n + (6c2c4 − 11c3c2

2 + 8c4
2)e

4
n + 28c3c3

2 − 20c4c2
2 + 8c2c5 − 16c5

2)e
5
n

+(−16c4c2c3 − 68c3c4
2 + 12c3

3 + 60c4c3
2 − 26c5c2

2 + 10c2c6 + 32c6
2)e

6
n + . . .] (10)

f ′′(yn) = f ′(α)[2c2 + 6c2c3e2
n + (12c2

3 − 12c3c2
2)e

3
n + (−42c2c2

3 + 18c4c3 + 24c3c3
2 + 12c4c2

2)e
4
n + (−12c2c4c3

+24c5c3 − 36c3
3 + 120c2

3c2
2 − 48c3c4

2 − 48c4c3
2)e

5
n + (−78c3c2c5 + 30c3c6 − 54c4c2

3 − 96c3c4c2
2

+198c2c3
3 − 312c2

3c3
2 + 96c3c5

2 + 72c2c2
4 + 144c4c4

2 + 20c5c3
2)e

6
n + . . .] (11)

With the help of Equations (8), (9), (10) and (11), we get

wn = f ′(α)[α + c3
2e4

n + (4c3c2
2 − 4c4

2)e
5
n + (−20c3c3

2 + 6c4c2
2 + 10c5

2 + 4c2c2
3)e

6
n + . . .] (12)

f (wn) = f ′(α)[c3
2e4

n + (4c3c2
2 − 4c4

2)e
5
n + (−20c3c3

2 + 6c4c2
2 + 10c5

2 + 4c2c2
3)e

6
n + . . .] (13)

f ′(wn) = f ′(α)[1 + 2c4
2e4

n + (8c3c3
2 − 8c5

2)e
5
n + (−40c3c4

2 + 12c4c3
2 + 20c6

2 + 8c2
3c2

2)e
6
n + . . .] (14)

f ′′(wn) = f ′(α)[2c2 + 6c3c3
2e4

n + (24c2
3c2

2 − 24c3c4
2)e

5
n + (−120c2

3c3
2 + 36c3c4c2

2 + 60c3c5
2 + 24c2c3

3)e
6
n + . . .](15)

f ′′′(wn) = f ′(α)[6c3 + 24c4c3
2e4

n + (96c3c4c2
2 − 96c4c4

2)e
5
n + (−480c3c4c3

2 + 144c2
4c2

2

+240c4c5
2 + 96c4c2c2

3)e
6
n + . . .] (16)

Using Equations (12), (13), (14), (15) and (16) in Algorithm (1), (2) and (3), we get
xn+1 = α + (2c11

2 − 2c3c9
2)e

12
n + O(e13

n ),
xn+1 = α + 2c11

2 e12
n + O(e13

n ),

and xn+1 = α− 3c3c7
2

2 e10
n + O(e11

n ).
Which implies that

en+1 = (2c11
2 − 2c3c9

2)e
12
n + O(e13

n ) (17)
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en+1 = 2c11
2 e12

n + O(e13
n ) (18)

en+1 = −
3c3c7

2
2

e10
n + O(e11

n ) (19)

Equations (17), (18) and (19) shows that the Algorithms (1), (2) and (3) have convergence of order twelve,
twelve and ten respectively.

4. Applications

In this section we solved some nonlinear functions to illustrate the efficiency of our developed algorithms.
We compare our developed methods with Newton’smethod (NM), Halley’s method (HM and Abbasbanday’s
method (AM).

Example 1. In this example we solved f (x) = x3 + 4x2 − 25 by taking x0 = −0.8. It can be observed from
Table 1 that NM takes 35 iterations, HM takes 36 iterations, AM takes 13 iterations and our Algorithms (1), (2)
and (3) takes 12, 5 and 5 iterations respectively to reach at root of f (x) = x3 + 4x2 − 25.

Table 1. Comparison of NM, HM, AM and Algorithms (1), (2) and (3) .

Method N N f | f (xn+1)| xn+1

NM 35 70 1.105260e− 24
HM 36 108 2.995246e− 17 1.365230013414096845760806828980
AM 13 52 6.423767e− 20

Algorithm 1 12 72 2.738493e− 48
Algorithm 2 5 25 2.812883e− 25
Algorithm 3 5 20 3.108248e− 83

Example 2. In this example we solved f (x) = x3 + x2 − 2 by taking x0 = −0.1. It can be observed from Table
2 that NM takes 13 iterations, HM takes 17 iterations, AM takes 19 iterations and our Algorithms (1), (2) and
(3) takes 5, 4 and 5 iterations respectively to reach at root of f (x) = x3 + x2 − 2.

Table 2. Comparison of NM, HM, AM and Algorithms (1), (2) and (3) .

Method N N f | f (xn+1)| xn+1

NM 13 26 2.203086e− 19
HM 17 51 4.338982e− 22 1.000000000000000000000000000000
AM 19 76 2.239715e− 27

Algorithm 1 5 30 2.338056e− 31
Algorithm 2 4 20 5.192250e− 45
Algorithm 3 5 20 6.607058e− 83

Example 3. In this example we solved f (x) = e(x2+7x−30)− 1 by taking x0 = 4.5. It can be observed from Table
3 that NM takes 27 iterations, HM takes 14 iterations, AM takes 16 iterations and our Algorithms (1), (2) and
(3) takes 8, 7 and 7 iterations respectively to reach at root of f (x) = e(x2+7x−30) − 1.

Table 3. Comparison of NM, HM, AM and Algorithms (1), (2) and (3) .

Method N N f | f (xn+1)| xn+1

NM 27 54 6.454129e− 23
HM 14 42 1.217550e− 25 3.000000000000000000000000000000
AM 16 64 1.136732e− 17

Algorithm 1 8 48 1.261140e− 22
Algorithm 2 7 35 6.546702e− 15
Algorithm 3 7 28 9.047215e− 71
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Example 4. In this example we solved f (x) = x2 − ex − 3x + 2 by taking x0 = 3.5. It can be observed from
Table 4 that NM takes 6 iterations, HM takes 5 iterations, AM takes 5 iterations and our Algorithms (1), (2) and
(3) takes 2, 3 and 3 iterations respectively to reach at root of f (x) = x2 − ex − 3x + 2.

Table 4. Comparison of NM, HM, AM and Algorithms (1), (2) and (3) .

Method N N f | f (xn+1)| xn+1

NM 6 12 4.925534e− 15
HM 5 15 1.463064e− 40 0.257530285439860760455367304937
AM 5 20 1.120893e− 28

Algorithm 1 2 12 8.978612e− 19
Algorithm 2 3 15 0.000000e + 00
Algorithm 3 3 12 4.980111e− 66

Example 5. In this example we solved f (x) = xex2 − sin2x + 3cosx + 5 by taking x0 = 1.1. It can be observed
from Table 5 that NM takes 45 iterations, HM takes 44 iterations, AM takes 50 iterations and our Algorithms
(1), (2) and (3) takes 14, 12 and 12 iterations respectively to reach at root of f (x) = xex2 − sin2x + 3cosx + 5.

Table 5. Comparison of NM, HM, AM and Algorithms (1), (2) and (3) .

Method N N f | f (xn+1)| xn+1

NM 45 90 1.268546e− 15
HM 44 132 1.169824e− 26 −1.207647827130918927009416758360
AM 50 200 2.868208e− 29

Algorithm 1 14 84 1.935782e− 64
Algorithm 2 12 60 4.515078e− 97
Algorithm 3 12 48 4.515078e− 97

Example 6. In this example we solved f (x) = x2 + sin( x
5 ) −

1
4 by taking x0 = 2.2. It can be observed from

Table 6 that NM takes 7 iterations, HM takes 5 iterations, AM takes 7 iterations and our Algorithms (1), (2) and
(3) takes 2, 2 and 2 iterations respectively to reach at root of f (x) = x2 + sin( x

5 )−
1
4 .

Table 6. Comparison of NM, HM, AM and Algorithms (1), (2) and (3) .

Method N N f | f (xn+1)| xn+1

NM 7 14 7.777907e− 23
HM 5 15 1.210132e− 42 0.409992017989137131621258376499
AM 7 28 2.132547e− 32

Algorithm 1 2 12 5.800844e− 23
Algorithm 2 2 10 5.897018e− 23
Algorithm 3 2 8 4.106937e− 22

5. Conclusions

Three new algorithms for solving nonlinear functions has been established. We can conclude that the
efficiency indexes of algorithms (1), (2) and (3) are 1.5131, 1.6438, and 1.7783 respectively. The convergence
orders of algorithms (1), (2) and (3) are twelve, twelve and ten respectively. By solving some examples, the
performance of our developed algorithms is discussed. Our developed algorithms are performing well in
comparison to Newton’s method, Halley’s method and Abbasbanday’s method.
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