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Abstract: In this paper, we study the outcome of fractional Laplace transform using inverse difference
operator with shift value. By the definition of convolution product, the properties of fractional
transformation, the relation between convolution product and fractional frequency Laplace transform with
shift value have been discussed. Further, the connection between usual Laplace transform and fractional
frequency Laplace transform with shift value are also presented. Numerical examples with graphs are
verified and generated by MATLAB.
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1. Introduction

T he continuous fractional calculus has been developed by Miller and Ross [1], Oldham and Spanier [2],
and Podlubny [3]. Recently discrete delta fractional calculus have been developed by Atici and Eloe

[4–6], Goodrich [7–9], and Holm [10]. These theories are used in integral transforms in the literature and are
applied in astronomy, physics and engineering. The integral transforms like mellin, Laplace and Fourier were
applied to obtain the solution of differential equations. These transforms made effectively possible changes a
signal in the time domain into a frequency s-domain in the field of Digital Signal Processing(DSP) [11].

The delta Laplace transform was first defined in a very general way by Bohner and Peterson [12]. In
2015, Aleksandar Ivic discussed the discrete Laplace transforms in the view of fast decay factor e−sx and

obtained the Laplace transform of P(x) as
∞∫
0

P(x)e−sxdx = πs−2
∞
∑

n=1
r(n)e−π2/n. In practice, many applications

of Laplace Transform (LT), L[ f (x)] =
∞∫
0

f (x)e−sxdx, and the forward Discrete Laplace Transform (DLT),

L[ f (n)] =
∞
∑

n=0
f (n)e−sn, are discussed and mentioned by several authors in the citations [13–16].

In the existing Laplace transform the shifting value of time domains are one. In 2016, G. Britto Antony
Xavier etc., [17] have defined Laplace transform with shift value ` using generalized difference operator and
obtain the outcomes of polynomial and trigonometric functions etc. In this fractional Laplace transform with
shift value ν taken from 0 to 1.

In this paper, we continue the work derived in [17] by defining fractional frequency Laplace transform
with fractional factor e−s1/νt. We presented convolution product and several properties of the fractional
transforms for the functions like polynomial factorial and trigonometric functions.

2. Preliminaries

In this section, we present basic theory of the `−difference operator ∆h. The polynomial factorial is
defined t(m)

h = t(t− h)(t− 2h) · · · (t− (m− 1)h), h > 0 for non-negative integer m and using Stirling numbers
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of first kind sm
r and second kind Sm

r , the relation between polynomial and polynomial factorials are given by,

(i) t(m)
h =

m

∑
r=1

sm
r hm−rtr, (ii) tm =

m

∑
r=1

Sm
r hm−rt(r)h . (1)

Definition 1. Let u(t), t ∈ [0, ∞), be a real or complex valued function and h > 0 be a fixed shift value. Then,
the h−difference operator ∆h on u(t) is defined as

∆hu(t) =
u(t + h)− u(t)

h
, (2)

and its infinite h− difference sum is defined by

∆−1
h u(t) = h

∞

∑
r=0

u(t + rh). (3)

Definition 2. Let u(t) and v(t) are the two real valued functions defined on (−∞, ∞) and if ∆hv(t) = u(t),
then the finite inverse principle law is given by

v(t)− v(t−mh) = h
m

∑
r=1

u(t− rh), m ∈ Z+ (4)

Applying the Definition 1, we get the modified identities as follows:

(i) ∆ht(m)
h = mt(m−1)

h , (ii) ∆−1
h t(m)

h =
t(m+1)
h

m + 1
(iii) ∆−1

h tm =
m

∑
r=1

Sm
r hm−rk(r)h

r + 1
. (5)

Lemma 3. [18] Let h > 0 and u(t), w(t) are real valued bounded functions. Then

∆−1
h (u(t)w(t)) = u(t)∆−1

h w(t)− ∆−1
h (∆−1

h w(t + h)∆hu(t)). (6)

Lemma 4. Let t ∈ (−∞, ∞), h > 0 and ν > 0, then we have

∆−1
h e−s1/νt =

he−s1/νt

(e−s1/νh − 1)
. (7)

Proof. The proof follows by taking u(t) = e−s1/νt in Definition 1 and applying ∆−1
h .

Corollary 5. Let t ∈ (−∞, ∞), h > 0 and ν > 0, then we have

he−s1/νt

(e−s1/νh − 1)
− he−s1/ν(t−mh)

(e−s1/νh − 1)
= h

m

∑
r=1

u(t− rh). (8)

Proof. The proof follows by equating (7) and the finite inverse principle law given in (4).

Example 1. For the particular values ν = 0.5, s = 0.1, t = 3 and h = 2, (8) is verified by MATLAB. The coding
is given by (2. ∗ exp(−(0.1).∧ (1./0.5). ∗ 3))./(exp(−(0.1).∧ (1./0.5). ∗ 2)− 1)− (2. ∗ exp(−(0.1).∧ (1./0.5). ∗
1))./(exp(−(0.1).∧ (1./0.5). ∗ 2)− 1) = 2. ∗ symsum(exp(−(0.1).∧ (1./0.5). ∗ (3− 2. ∗ r)), r, 1, 1).

Theorem 6. Let t ∈ (−∞, ∞), h > 0 be shift value and 2(cosh s1/νh− cos ph) 6= 0. Then we have

∆−1
h (e−s1/νt cos pt) =

he−s1/νt(e−s1/νh cos p(t− h))− cos pt
2(cosh s1/νh− cos ph)

, (9)

∆−1
h (e−s1/νt sin pt) =

he−s1/νt(e−s1/νh sin p(t− h))− sin pt
2(cosh s1/νh− cos ph)

. (10)
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Proof. Taking ∆−1
h on u(t) = e−s1/νt cos pt, we get:

∆−1
h (e−s1/νt cos pt) = Re part ∆−1

h (e−s1/νteipt) = Re part ∆−1
h (e(−s1/ν+ip)t),

Now (9) follows by applying Lemma 4 and taking conjugate. Similarly the proof of (10) holds.

3. Fractional Frequency Laplace Transform and its Properties

In this section, we define and obtain the properties of FGLT and present the transforms of certain functions
like trigonometric, hyperbolic and polynomials etc.

Definition 7. Let u(t) be the real valued function, h > 0 and ν ∈ R+. If lim
t→∞

∆−1
h u(t)e−s1/νt = 0, then the

Fractional Frequency Laplace Transform(FFLT) is defined as

Lh,ν[u(t)] = uh,ν(s) = ∆−1
h u(t)e−s1/νt

∣∣∣∞
0
= h

∞

∑
r=0

u(rh)e−s1/νrh. (11)

Proposition 8. If Lh,ν(u(t)) = ūh,ν(s) and Lh,ν(v(t)) = v̄h,ν(s), then

Lh,ν(au(t) + bv(t)) = aūh,ν(s) + bv̄h,ν(s) and Lh,ν(u(at)) =
1
a

ūh,ν

( s
a

)
. (12)

Proof. From (11), we have Lh,ν(u(at)) = ∆−1
h u(at)e−s1/νt

∣∣ ∞
t=0. Now the proof follows by substituting at by

k.

Proposition 9. If Lh,ν(u(t)) = ūh,ν(s), then Lh,ν(e−atu(t)) = ūh,ν(s + a).

Proof. The proof follows by taking u(t) = e−atu(t) in (11).

Theorem 10. If cosh s1/νh− cos ph 6= 0, then we have

Lh,ν[sin pt] =
he−s1/νh sin ph

2(cosh s1/νh− cos ph)
and Lh,ν[cos pt] =

h(1− e−s1/νh cos ph)
2(cosh s1/νh− cos ph)

. (13)

When h→ 0 and ν = 1, we get L(sin pt) =
p

s2 + p2 and L(cos pt) =
s

s2 + p2 .

Proof. The proof of (13) follows from (9), (10) and (11).

Theorem 11. If cosh s1/νh− cos(n− 2r)ph 6= 0 for r = 0, 1, 2, · · · , n, then

Lh,ν(sinn pt) =
[n/2]

∑
r=0

(
n
r

)
(−1)(

n−1
2 )+rh sin(n− 2r)ph

2n(cosh s1/νh− cos(n− 2r)ph)
, n is odd. (14)

Lh,ν(sinn pt) =
[n/2]−1

∑
r=0

(
n
r

)
(−1)

n
2 +rh(es1/νh − cos(n− 2r)ph)

2n(cosh s1/νh− cos(n− 2r)ph)
+

(
n
n
2

)
(−1)

n
2 2−nh

(1− e−s1/νh)
, n is even. (15)

Lh,ν(cosn pt) =
[n/2]

∑
r=0

(
n
r

)
h(es1/νh − cos(n− 2r)ph)

2n(cosh s1/νh− cos(n− 2r)ph)
, n is odd. (16)

Lh,ν(cosn pt) =
[n/2]−1

∑
r=0

(
n
r

)
2−nh(es1/νh − cos(n− 2r)ph)
(cosh s1/νh− cos(n− 2r)ph)

+

(
n
n
2

)
2−nh

(1− e−s1/νh)
, n is even. (17)

Proof. From sinn pt =
1

2n−1(−1)
n−1

2

[n/2]
∑

r=0
(−1)r(n

r) sin(n− 2r)pt and (13), we get the proof of (14). Similarly we

can obtain the proof of (15), (16) and (17).
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Corollary 12. Let t ∈ [0, ∞), s, h, nu > 0, then we have

h
∞

∑
r=0

u(rh)e−s1/νrh =
h sin 5ph

32(cosh s1/νh− cos 5ph)
− 5h sin 3ph

32(cosh s1/νh− cos 3ph)
+

10h sin 5ph
32(cosh s1/νh− cos ph)

. (18)

Proof. The proof follows by taking n = 5 in (14) and then equating that with (11).

Example 2. For the particular values ν = 0.6, s = 3, p = 2 and h = 3, (18) is verified by MATLAB. The
coding is given by 3. ∗ symsum((sin(2. ∗ 3. ∗ r)). ∧ 5. ∗ exp(−3. ∧ (1./0.6). ∗ 3. ∗ r), r, 0, in f ) = (3. ∗ sin(5. ∗ 2. ∗
3))./(32. ∗ (cosh((3).∧ (1./0.6). ∗ 3)− cos(5. ∗ 2. ∗ 3)))− (5. ∗ 3. ∗ sin(3. ∗ 2. ∗ 3))./(32. ∗ (cosh((3).∧ (1./0.6). ∗
3)− cos(3. ∗ 2. ∗ 3))) + (10. ∗ 3. ∗ sin(2. ∗ 3))./(32. ∗ (cosh((3).∧ (1./0.6). ∗ 3)− cos(2. ∗ 3))).

Theorem 13. If e−(s
1/ν±p)h 6= 1 and s > 0, then

Lh,ν(sinh pt) =
h
2

( 1

e−(s1/ν+p)h − 1
+

1

1− e−(s1/ν−p)h

)
, Lh,ν(cosh pt) =

h
2

( 1

1− e−(s1/ν+p)h
+

1

1− e−(s1/ν−p)h

)
.

(19)
When h→ 0 and ν = 1, we get L(sinh pt) =

p
s2 − p2 and L(cosh pt) =

s
s2 − p2 .

Proof. From (11), we have Lh,ν(sinh pt) = (1/2)∆−1
h e−s1/νt(ept − e−pt). Which completes the proof of (19).

Similarly we can obtain Lh,ν(cosh pt).

Theorem 14. If we denote Hr = e−(s
1/ν+(n−2r)a)h − 1, H−r = e−(s

1/ν−(n−2r)a)h − 1, then

Lh,ν(sinhn pt) =
h
2n

[n/2]

∑
r=0

(
n
r

)( (−1)r

Hr
− (−1)r

H−r

)
, n is odd. (20)

Lh,ν(sinhn pt) =
h
2n

[n/2]−1

∑
r=0

(
n
r

)( (−1)r+1

Hr
+

(−1)r+1

H−r

)
+

(
n
n
2

)
2−n(−1)rh
(1− e−s1/νh)

, n is even. (21)

Lh,ν(coshn pt) =
−h
2n

[n/2]

∑
r=0

(
n
r

)( 1
Hr

+
1

H−r

)
, n is odd. (22)

Lh,ν(coshn pt) =
−h
2n

[n/2]−1

∑
r=0

(
n
r

)( 1
Hr

+
1

H−r

)
+

(
n
n
2

)
2−nh

(1− e−s1/νh)
, n is even. (23)

Proof. From sin hn pt =
1

2n−1

[n/2]
∑

r=0
(−1)r(n

r) sin h(n− 2r)pt and (13), we get the proof of (20). Similarly, we can

obtain the proof of (21), (22) and (23).

Theorem 15. Let t ∈ (0, ∞), h > 0 and s > 0, then Lh,ν(t
(µ)
h ) =

hµ+1µ!es1/νh

(es1/νh − 1)µ+1
.

Proof. Taking u(t) = t(1)h in (11), we have Lh,ν(t
(1)
h ) = h∆−1

h e−s1/νtt(1)h

∣∣ ∞
t=0. Now taking u(t) = t(1)h , w(t) =

e−s1/νt in (6) and applying (5), we get

Lh,ν(t
(1)
h ) = h

( t(1)h e−s1/νt

(e−s1/νh − 1)

∣∣ ∞
t=0 −

he−s1/ν(t+h)

(e−s1/νh − 1)2

∣∣ ∞
t=0

)
=

h2es1/νh

(es1/νh − 1)2
(24)

Now taking u(t) = t(2)h in (11) and applying (6), and (5), we get Lh,ν(t
(2)
h ) =

h32!es1/νh

(es1/νh − 1)3
. Repeating this

process n times, we get the proof of Theorem (15).
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Corollary 16. Let t ∈ (0, ∞), h > 0 and s > 0, then Lh,ν(tn) =
n
∑

r=0

Sn
r hn+1n!es1/νh

(es1/νh − 1)n+1
.

Proof. The proof follows from (ii) of (1), (ii) of (5) and Theorem (15).

Example 3. Taking n = 2 in Theorem 15, we obtain

Lh,ν(t
(2)
h ) =

h32!es1/νh

(es1/νh − 1)3
= h

∞

∑
r=0

(rh)(2)h e−s1/νrh (25)

which verified for the values h = 2, s = 3 and ν = 0.7 by MATLAB coding given below: 2. ∗ symsum((r. ∗ 2. ∗
(r− 1). ∗ 2). ∗ exp(−3. ∧ (1./0.7). ∗ r. ∗ 2), r, 0, in f ) = (16. ∗ exp(3. ∧ (1./0.7). ∗ 2))./((exp(3. ∧ (1./0.7). ∗ 2)−
1).∧ 3).

Figure 1 is the input function(signal) as polynomial factorial for the time factor t and Figure 2 is the
fractional generalized Laplace transform in the frequency domain s and also here in the frequency domain the
fraction ν varies as 0.9, 0.8, 0.7, 0.6, 0.5 which are generated by MATLAB.

Figure 1. Time(t)

Figure 2. Frequency(s)
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4. Convolution Product and Fractional Laplace Transforms

In this section, we defined convolution product and its properties with Fractional Laplace transforms.
The following definitions are motivated by [19] using difference operator.

Definition 17. Let u(t) be the real valued function, then the incomplete generalized Laplace transform is
defined by

Lh[u(t), b] = ∆−1
h u(t)e−st∣∣b

0. (26)

Definition 18. Let u(t) and v(t) are the two real valued functions, then the convolution product is defined by

(u ◦ v)(t) = ∆−1
h u(ξ − t)v(ξ)

∣∣∞
ξ=t, t > 0. (27)

The following lemma shows that the relation between convolution product and Fractional Laplace
transform.

Lemma 19. Let µ ∈ R+, u(t) and v(t) are the real valued functions, then

1. u ◦ e−µ1/ν
= Lh,ν[u] · e−µ1/ν

,
2. Lh,ν[u ◦ v] = Lh,ν[Lh(u(t1), ξ)].

Proof. (1) From (27), we get (u ◦ e−µ1/ν
)(t) = ∆−1

h u(ξ − t)e−µ1/νt
∣∣∞
ξ=t. Taking t1 = ξ − t, which gives

(u ◦ e−µ1/ν
)(t) = ∆−1

h u(t1)e−µ1/ν(t1+t)
∣∣∞
t1=0. Then, (u ◦ e−µ1/ν

)(t) = e−µ1/ν(t)∆−1
h u(t1)e−µ1/ν(t1)

∣∣∞
t1=0, which

completes the proof of (1).

(2) Now Lh,ν[u ◦ v](t) = ∆−1
h (u ◦ v)(t)e−µ1/ν(t)

∣∣∣∞
t=0

= ∆−1
h

[
∆−1

h u(ξ − t)v(ξ)
∣∣∞
ξ=t

]
e−µ1/ν(t)

∣∣∣∞
t=0

. Now applying

Fubini’s Theorem, we get

∆−1
h e−µ1/ν(t)

[
∆−1

h u(ξ − t)v(ξ)
∣∣∣∞
ξ=t

] ∣∣∣∞
t=0

= ∆−1
h v(ξ)

[
∆−1

h u(ξ − t)e−µ1/ν(t)
∣∣∣ξ
t=0

] ∣∣∣∞
ξ=0

. (28)

Then the proof of (2) follows by applying (26).

The following example illustrate the verification of convolution product.

Example 4. Consider the following functions

u(t) =

{
e−s1/νt, t ∈ (0, ∞)

0, otherwise
v(t) =

{
t, t ∈ (0, ∞)

0, otherwise

Now, from (27), we get (u ◦ v)(t) = ∆−1
h e−s1/ν(ξ−t)ξ

∣∣∣∞
ξ=0

. Then using (24), which gives (u ◦ v)(t) =

h2e−s1/ν(h−t)

(e−s1/νh − 1)2
. By (3), we get the relation as follows

(u ◦ v)(t) = h
∞

∑
r=0

(rh)e−s1/ν(rh−t) =
h2e−s1/ν(h−t)

(e−s1/νh − 1)2

which verified for the values t = 4, h = 3, s = 2 and ν = 0.3 by MATLAB coding given below: 3. ∗
symsum(exp(−2. ∧ (1./0.3). ∗ ((r. ∗ 3)− 4)). ∗ r. ∗ 3, r, 0, in f ) = 9. ∗ exp(−2. ∧ (1./0.3). ∗ (−1))./((exp(−2. ∧
(1./0.3). ∗ 3)− 1).2).

Figure 3 explains the input time(t) function u(t) and v(t) and Figure 4 tells that the convolution product
of the functions in the frequency(s) domain as varying ν as 0.5, 0.6, 0.7 which are generated by MATLAB.
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Figure 3. Time(t)

Figure 4. Frequency(s)

5. Conclusion

The fractional generalized Laplace transform is successfully defined and properties were presented. We
derived formulaes and obtained its transform for certain functions like polynomial factorial, trigonometric
functions, etc. When ν = 1 and h → 0, we get classical Laplace transform. The convolution product defined
and the relation between Laplace transform and convolution product were presented. We conclude this
investigations and findings are verified and analyzed the outcomes in the time(t) and frequency(s) domains
with graphs.
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