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Abstract: The major purpose of this article is to discuss the oscillatory flow of an incompressible viscous
Maxwell fluids (IVMF) between two infinite coaxial of circular pipes. In the case when time t = 0 the inner
pipe is lying at rest where as at t > 0 the inner pipe of the annulus starts to oscillate along the common
axis of the pipes. The analytical solutions of the problem are obtained via integral transformation technique
which is beneficial for time dependent problems. Moreover, the derived solutions are given under the series
form of the generalized G functions satisfying all the imposed auxiliary conditions whereas, the solutions
for ordinary Maxwell and Newtonian fluids appear as the limiting case of the present obtained results. We
include graphical comparison between Maxwell and Newtonian fluid, and we also explored the effects of
different physical parameters on the fluid motion.
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1. Introduction

U nlike the Newtonian fluid, the model of non-Newtonian fluid is complex due to its non-linear behaviour.
The non-Newtonian fluid are found in food industry, medical sciences, bio chemistry and engineering,

therefore it is important to understand the non-Newtonian fluid models. There is no specific model that exactly
describe the rheological behaviour of non-Newtonian fluids. Models, such as Maxwell, Oldroyd-B, second
grade and Burgers’ are of great importance.

Lee and Finlayson [1] established the stability of Couette and plane Poiseuille flow of a Maxwell fluid.
They used the Newton Raphson iteration method on the eigenvalues. Choi et al. [2] studied the two
dimensional Maxwell’s fluid in porous channel. By considering the effects of viscoelasticity and inertia, the
problem is solved in both way analytically and numerically. They also discussed its application on injection
flow of Maxwell’s fluid. Karra et al. [3] studied the Maxwell’s model of viscoelastic fluid by assuming that the
viscosity and relaxation parameters are depending on pressure. They also solved the boundary value problem
using a generalized Maxwell’s and pressure dependent model. Vieru et al. [4] considered the infinite circular
cylinder and determined the exact solutions of Maxwell fluid for oscillation (both longitudinal and torsional)
with the help of the Laplace transformation. Time-periodic motion was discussed in the form of steady state
solution that are free from initial conditions. The study of unsteady fractional Maxwell’s fluid between two
circular domains have been done by Fetecau et al. [5]. Initially, they considered the fluid at rest position and
after that they assumed that the fluid is moving due to the motion of inner cylinder. The motion in the fluid
begin with the motion of inner cylinder and they find the results in the form of G and R functions.

Mathur et al. [6] obtained the exact solutions of viscoelastic fluid in pipe like domain with Maxwell model
between annulus of the cylinders. The torsional stress (time dependent) on inner pipe producing motion in
fluid where as outer pipe is moving with constant velocity. Mathur et al. [7] also obtained the exact solution
of fractional Maxwell fluid moving between two coaxial infinite circular cylinders due to oscillation. Finite
Hankel and Laplace transform has been used with boundary conditions i.e both the cylinders start to oscillate

Open J. Math. Sci. 2019, 3, 159-166; doi:10.30538/oms2019.0059 https://pisrt.org/psr-press/journals/oms

https://pisrt.org/psr-press/journals/oms
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oms


Open J. Math. Sci. 2019, 3, 159-166 160

about their common axis. Akhtar et al. [8] find out the exact solutions of an incompressible generalized
Maxwell’s fluid between circular cylinders by mean of rotation. They wrote their results in the form of
generalized function by using Laplace and finite Hankel transformation.

Fetecau and Cornia [9] examined the flow behaviour of an Oldroyd-B fluid produced by instantly moving
smooth plates. Accurate solutions for velocity field and its corresponding tangential tension are found by using
the integral transform method, solutions for second grade and Maxwell fluids are also discussed. Bandelli [10]
have carried out a research on the heated edges of the unsteady unidirectional flows of second grade fluids and
derived the energy equation for second grade fluids. Also, they determined accurate results for different flows.
Safdar et al. [11] derived the exact solutions for the flow model of generalized Burger’s fluid with in pipe like
domain by using the similar integral transformation technique. They also obtained the numerical solutions for
the same fluid and flow. An et al. [12] numerically studied the oscillatory flow between two cylinders with
two different diameters. Finite element method is used to solve the Navier-Stokes equations. The interesting
result is that the flow field between two cylinders is different from the single case, specially when diameters of
cylinders are increasing. Similarly, many mathematicians applied fractional derivative approach and integral
transformation technique on different fluid models [13–16].

2. Mathematical formation of the problem

Let us consider an IVMF in an annulus of two pipes with radii Ri and RO of inner and outer pipe
respectively. Also, assuming that the outer pipe is fixed while inner pipe is oscillating. Imposing, the initial
and boundary conditions as,

Vs($, 0) = w($, 0) = 0 ; $ε[Ri, RO] ; t = 0, (1)

Vs(Ri, t) = w(Ri, t) = ASin(Ωt) ; w(RO, t) = 0 ; t > 0. (2)

By replacing the inner time derivative with fractional differential operator, we have the governing equation of
an IVMF as follows [5]

(1 +iβDβ
t )τ($, t) = µ

(
∂

∂$
− 1

$

)
w($, t), (3)

(1 +iβDβ
t )

∂w($, t)
∂$

= ν

(
∂2

∂$2 +
1
$

∂

∂$
− 1

$2

)
w($, t). (4)

2.1. Calculation of velocity field

Applying the Laplace transformation on both sides of Equation (4) also on boundary conditions,

ν

(
∂2

∂$2 +
1
$

∂

∂$
− 1

$2

)
w($, s)− s(1 +iβ)w($, s) = 0, (5)

where s is the parameter of Laplace transform

w(Ri, s) =
AΩ

Ω2 + s2 , w(RO, s) = 0. (6)

By multiplying the Equation (5) by $B1($$n) and integrating with respect to $ from Ri to RO,

s(1 +iβsβ
t )
∫ RO

Ri

$B1($$n)w($, s)d$ = ν
∫ RO

Ri

$B1($$n)

(
∂2

∂$2 +
1
$

∂

∂$
− 1

$2

)
w($, s)d$, (7)

where

B1($$n) = J0($$n)Y0(Ri$n)− J0(Ri$n)Y0($$n)
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Figure 1. Geometry of the problem

and $n are the positive roots of equation, also B1(RO$n) = 0. Here Jp(.) and Yp(.) are the Bessel functions of
first and second kind of order p. The Hankel transform of w($, s) can be defined as

w($n, s) =
∫ RO

Ri

$B1($$n)w($, s)d$,

and its inverse Hankel transform is

w($, s) =
π2

2

∞

∑
n=1

$2
n J2

1 (RO$n)B1($$n)

J2
1 (Ri$n)− J2

1 (RO$n)
w($n, s).

Integrating by parts Equation (7) becomes as

s(1 +iβsβ
t )wH($n, s) + ν$2

nwH($n, s) =
−2AΩν

π(Ω2 + s2)
, (8)

also

wH($n, s) =
−2AΩ

π$2
n(Ω2 + s2)

+
2AΩ

π$2
n(Ω2 + s2)

[
s +iβsβ+1

(s +iβsβ+1 + $2
nν)

]
. (9)

Which can be written into suitable form as

wH($n, s) = −wH0($n, s) + wH1($n, s), (10)
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where

wH0($n, s) =
2AΩ

π$2
n(Ω2 + s2)

, (11)

and

wH1($n, s) =
2AΩ

π$2
n(Ω2 + s2)

[
s +iβsβ+1

(s +iβsβ+1 + $2
nν)

]
. (12)

Now, by applying the inverse Hankel transformation on Equations (11) and (12) then substituting in Equation
(10), we get

w($, s) =
AΩ

Ω2 + s2
Ri($

2 − R2
O)

(R2
O − R2

i )$
+

π2

2

∞

∑
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$2
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× 2AΩ

π$2
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(s +iβsβ+1 + $2
nν)

]
. (13)

The last factor of Equation (13) can be written in the following form, as in [8]

1 +iβsβ

s(iβsβ+1 + s + ν$2
n)

=
1
iβ

∞

∑
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(
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iβ
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(sβ +i−β)k+1 +
iβsβ−k−2

(sβ +i−β)k+1

]
. (14)

Using the identity Equation (14) and applying the Laplace inverse transform, the final form of velocity field is

w($, t) = −
(ASinΩt)Ri($

2 − R2
O)

(R2
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i )$
+Aπ

∞
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1
iβ

∞
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(
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, t
)
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0
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(
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, t
)
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]

, (15)

where Ga, b, c(. , t) is the generalized function, as defined in [Equations (97) and (101)] [17]

Ga, b, c(d , t) = L−1
{

sb

(sa − d)c

}
=

∞

∑
l=0

dl Γ(c + l)
Γ(c)Γ(l + 1)

t(c+l)a−b−1

Γ[(c + l)a− b]
; Re(ac− b) > 0, | d

sa | < 1. (16)

2.2. Calculation of the shear stress

By applying the Laplace transform to Equation (4), we find that

τ($, s)(1 +iβsβ) = µ

(
∂

∂$
− 1

$

)
w($, s), (17)

after simplification
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Dividing the term (1 +iβsβ) both sides and applying the inverse Laplace transform
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where Ga, b, c(. , t) is the generalized function.

3. Limiting Cases

3.1. Ordinary Maxwell fluid

Setting β→ 1 in Equations (15) and (19), we have the expression for ordinary Maxwell’s fluid i.e

w($, t) = −
(ASinΩt)Ri($
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and
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3.2. Newtonian fluid

By making iβ → 0 in Equations (15) and (19) and using the following result

lim
iβ→0

1
ik G1,−k,k+1(−i−β, t) =

tk−1

Γ(k)
, k < 0.

w($, t) = −
(ASinΩt)Ri($

2 − R2
O)

(R2
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i )$
+Aπ

∞

∑
n=1

J2
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∞
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(−ν$2
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k
∫ t
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SinΩ(t− ø)

tk−1

Γ(k)
dt, (22)

and

τ($, t) = µπA
∞

∑
n=1

J1(RO$n)[$$nB0($$n)− 2B1($$n)]

$[J2
1 (Ri$n)− J2

1 (RO$n)]

∞

∑
k=0

(−ν$2
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k
∫ t

0
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n)dt, (23)

is the motion for Newtonian fluid.

4. Graphical illustrations
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Figure 2. The influence of velocity w($, t) for Ri = 0.1, Ro = 0.7, β = 0.85, i = 2, A = 5, ν = 0.45 and Ω = 3
with various values of time.
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Figure 3. The influence of velocity w($, t) for Ri = 0.1, Ro = 0.7, β = 0.85, t = 1.87, A = 5, ν = 0.35 and Ω = 2
with various values of i.
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Figure 4. The influence of velocity w($, t) for Ri = 0.1, Ro = 0.7, t = 1.90, i = 2, A = 5, ν = 0.45 and Ω = 3
with various values of β.
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Figure 5. The influence of velocity w($, t) for Ri = 0.1, Ro = 0.7, β = 0.85, t = 1.90, i = 3, A = 5 and Ω = 3
with various values of ν.
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Figure 6. The influence of velocity w($, t) for Ri = 0.1, Ro = 0.7, β = 0.85, t = 1.90, i = 2, A = 5, ν = 0.45 and
Ω = 3 for comparison of Maxwell and Newtonian fluids.

5. Results and Discussion

The present paper, describe the oscillatory flow of an incompressible viscous Maxwell fluids passing
through the infinite coaxial of circular pipes. The outer pipe is at rest and inner pipe is oscillating with respect
to time. The time dependent results for velocity profile and shear stress are derived above. In this section, we
discuss the nature of different fractional and physical parameters including in the results.s

Figure 2 shows the behaviour of time parameter with respect to velocity. The parameter $ ∈
{0.1, 0.2, ..., 0.7} and point to point value can also observed from the graph. Here, we take the fixed values
of inner cylinder 0.1, outer cylinder 0.7, fractional parameter 0.85, relaxation parameter 2, constant A = 5,
dynamic viscosity 0.45 and angular parameter Ω = 3. Figure 3 depict the decreasing nature of relaxation
parameter i with respect to velocity. The influence of fractional variable β is increasing with the increase in
velocity as in Figure 4. Dynamic viscosity ν have decreasing behaviour with increase in the velocity parameter
shown in Figure 5. All other involved parameters are remain fixed also for this graph given in the caption of
Figure 5. Comparison of Newtonian and Maxwell fluids are given in Figure 6 which showa that the Maxwell
fluid has more viscosity than the Newtonian fluid.
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