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1. Introduction

I n this work, we study asymptotic properties of solutions of differential equation of the fourth order and
with middle term (

r (`) y′′′ (`)
)′
+ p (`) y′′′ (`) + q (`) y (σ (`)) = 0, ` ≥ `0. (1)

We assume r (`) ∈ C ([`0, ∞) ,R) , r (`) > 0 for all ` ≥ `0, p, q, σ ∈ C ([`0, ∞) ,R) such that p (`) ≥ 0, q >

0, σ (`) ≤ ` and lim
`→∞

σ (`) = ∞. We say that a function y (`) is a solution of (1), we mean a non-trivial real

function y(`) ∈ C
(
[`y, ∞)

)
, `y ≥ `0, satisfying (1) on [`y, ∞) and moreover, having the properties: y(`), y′(`),

y′′(`) and r (`) [y′′′ (`)] are continuously differentiable for all ` ∈ [`y, ∞). We consider only those solutions
y (`) of (1) which satisfy sup{|y(`)| : ` ≥ `} > 0, for any ` ≥ `y. A solution of (1) is called oscillatory if it has
arbitrary large zeros, otherwise it is called nonoscillatory.

The oscillations of higher and fourth order differential equations have been studied by several authors and
several techniques have been proposed for obtaining oscillatory criteria for higher and fourth order differential
equations. For treatments on this subject, we refer the reader to the texts [1–6] and the articles [7–25]. In what
follows, we review some results that have provided the background and the motivation, for the present work.

Hou and Cheng [22] studied the oscillation of differential equation with middle term

y(4) (`) + p (`) y′ (`) + q (`) f (y (σ (`))) = 0, ` ≥ `0‚

under the condition: third-order differential equation z′′′ (`) + p (`) z (`) = 0, is nonoscillatory.
Džurina and Jadlovskă [11] have considered the differential equation of the fourth order with a negative

term

y(4) (`) + p (`) y′ (`) + q (`) y (σ (`)) = 0, ` ≥ `0‚

under the condition: all solutions of the contributory third-order differential equation are nonoscillatory.
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Moaaz et al. [19] studied the oscillatory behavior of the third-order nonlinear differential equation with
middle term of the form[

r2 (`)
(

r1 (`)
(
y′ (`)

)α
)′]′

+ φ
(
`, y′ (σ (`))

)
+ q (`) f (y (σ (`))) = 0, ` ≥ `0‚

under ∫ ∞

`0

1

r
1
α (`)

d` = ∞. (2)

Our aim, in the present work, is to use the generalized Riccati transformations and new comparison
principles to obtain a new conditions for the oscillation of every solutions of (1) under condition

R (`) =
∫ `

`0

1
r (s)

exp
(
−
∫ s

`0

p (u)
r (u)

du
)

ds and R (`)→ ∞ as `→ ∞. (3)

An example is included to illustrate the main results.

2. Main results

In the next section, we shall establish some oscillation criteria for equation (1). The proof of our main
results are essentially based on the following lemmas.

Lemma 1. (See [20], Lemma 1) Let β ≥ 1 be a ratio of two numbers, where U and V are constants. Then

Uz−Vz
β+1

β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
, V > 0.

Lemma 2. (See [6], Lemma 13) If the function u satisfies u(κ) > 0, κ = 0, 1, ..., m, and u(m+1) < 0, then

u (`)

`m/m!
≥ u′ (`)

`m−1/ (m− 1)!
.

Lemma 3. (See [1], Lemma 2.2.3) Let h ∈ Cn ([`0, ∞) , (0, ∞)) . Let h(n) (`) is of a fixed sign and on the interval
[`0, ∞), h(n) (`) not identically zero, and that there exists a `1 ≥ `0 such that h(n−1) (`) h(n) (`) ≤ 0 for all ` ≥ `1. If
lim
`→∞

h (`) 6= 0 then for every λ ∈ (0, 1) there exists `λ ≥ `0 such that

h (`) ≥ λ

(n− 1)!
`n−1

∣∣∣h(n−1) (`)
∣∣∣ for ` ≥ `λ.

For convenience, we denote

ρ′+ (`) := max
{

0, ρ′+ (`)
}

and δ′+ (`) := max
{

0, δ′ (`)
}

.

Theorem 4. Assume that (3) holds . If there exist positive functions ρ, δ ∈ C1 ([`0, ∞)) such that

∫ ∞

`0

(
ρ (s) q (s)

µ

2
σ2 (s)− 1

4ρ (s) r (s)

[
ρ′+ (s)
ρ (s)

− p (s)
r (s)

]2
)

ds = ∞, (4)

for some µ ∈ (0, 1) , and

∫ ∞

`0

[
δ (s)

∫ ∞

s

[
1

r (υ)

∫ ∞

υ
q (ν)

(
σ2 (ν)

ν2

)
dν

]
dυ− (δ′ (s))2

4δ (s)

]
ds = ∞, (5)

then all solutions of (1) are oscillatory.
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Proof. Assume that (1) has a solution y is nonoscillatory. Without loss of generality, we may assume that
there exists a `1 ∈ [`0, ∞) such that y(`) > 0, y(σ(`)) > 0 for all ` ∈ [`0, ∞). It follows from (1) and (3) that
(r (`) y′′′ (`))′ < 0 and there exist two possible cases for ` ≥ `1, where `1 ≥ `0 is sufficiently large:

(C1) y(κ) (`) > 0 for κ = 0, 1, 2, 3;

(C2) y(κ) (`) > 0 for κ = 0, 1, 3, and y′′ (`) < 0.

Assume that we have Case (C1). We define a generalized Riccati substitution by

ω (`) := ρ (`)
r (`) (y′′′ (`))

y′′
. (6)

Then ω (`) > 0. Differentiating, we obtain

ω′ (`) = ρ (`)

(
r (`) (y′′′ (`))

y′′

)′
+ ρ′ (`)

r (`) (y′′′ (`))
y′′ (`)

,

= ρ (`)
(r (`) (y′′′ (`)))′

y′′
− ρ (`)

r (`) (y′′′ (`))2

(y′′)2 + ρ′ (`)
r (`) (y′′′ (`))

y′′
.

By virtue of (1), we have. (
r (`) y′′′ (`)

)′
+ p (`) y′′′ (`) = −q (`) y (σ (`)) . (7)

From (7),we see that

ω′ (`) ≤ ρ′+ (`)
r (`) (y′′′ (`))

y′′
− ρ (`)

p (`) y′′′ (`)
y′′

− ρ (`) (q (`) y (σ (`)))

y′′
− ρ (`)

r (`) (y′′′ (`))2

(y′′)2 .

Hence, by (7), we obtain

ω′ (`) ≤
ρ′+ (`)

ρ (`)
ω (`)− p (`)

r (`)
ω (`)− ρ (`) q (`)

y (σ (`))

y′′
− 1

ρ (`) r (`)
ω (`)2 . (8)

From Lemma 2, we have that y (`) ≥ `
2 y′ (`) and hence,

y′ (`)
y (`)

≤ 2
`

.

Integrating from ` to σ (`) we find
y (σ (`))

y (`)
≥ σ2 (`)

`2 .

This implies that

y (σ (`)) ≥ σ2 (`)

`2 y (`) . (9)

It follows from Lemma 3 that
y (`) ≥ µ

2
`2y′′ (`) , (10)

for all µ ∈ (0, 1) and every sufficiently large `. Thus, by (8), (9) and (10), we get

ω′ (`) ≤
ρ′+ (`)

ρ (`)
ω (`)− p (`)

r (`)
ω (`)− ρ (`) q (`)

σ2 (`)

`2
y (`)
y′′
− 1

ρ (`) r (`)
ω (`)2 ,

≤
ρ′+ (`)

ρ (`)
ω (`)− p (`)

r (`)
ω (`)− ρ (`) q (`)

(
σ (`)

`

)2 µ

2
`2 − 1

ρ (`) r (`)
ω (`)2 .

This implies that

ω′ (`) ≤
[

ρ′+ (`)

ρ (`)
− p (`)

r (`)

]
ω (`)− ρ (`) q (`)

µ

2
σ2 (`)− 1

ρ (`) r (`)
ω (`)2 . (11)
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Using Lemma 1 with U =
[

ρ′+(`)
ρ(`)
− p(`)

r(`)

]
, V = 1

ρ(`)r(`) and z = ω, we get

[
ρ′+ (`)

ρ (`)
− p (`)

r (`)

]
ω (`)− 1

ρ (`) r (`)
ω (`)2 ≤ 1

4ρ (`) r (`)

[
ρ′+ (`)

ρ (`)
− p (`)

r (`)

]2

.

Hence, we obtain

ω′ (`) ≤ −ρ (`) q (`)
µ

2
σ2 (`) +

1
4ρ (`) r (`)

[
ρ′+ (`)

ρ (`)
− p (`)

r (`)

]2

.

Which implies that

∫ `

`1

(
ρ (s) q (s)

µ

2
σ2 (s)− 1

4ρ (s) r (s)

[
ρ′+ (s)
ρ (s)

− p (s)
r (s)

]2
)

ds ≤ ω (`1) ,

for some µ ∈ (0, 1) which contradicts (4).
Assume that we have Case (C2) holds. Define

ψ (`) := δ (`)
y′ (`)
y (`)

, ` ≥ `1. (12)

Then ψ (`) > 0 for ` ≥ `1 and

ψ′ (`) = δ′ (`)
y′ (`)
y (`)

− δ (`)
y′′ (`) y (`)− (y′)2 (`)

y2 (`)
, (13)

= δ (`)
y′′ (`)
y (`)

+
δ′ (`)

δ (`)
ψ (`)− ψ2 (`)

δ (`)
. (14)

Integrating (1) from ` to u we find

r (u)
(
y′′′
)
(u)− r (`)

(
y′′′
)
(`) +

∫ u

`
q (s) y (σ (s)) ds ≤ 0.

By virtue of y′ (`) > 0, y(`) > 0 and y′′ (`) < 0 by (9), we obtain

r (u)
(
y′′′
)
(u)− r (`)

(
y′′′
)
(`) +

∫ u

`
q (s)

(
σ2 (s)

s2

)
y (`) ds ≤ 0,

whence it follows, by y′ (`) > 0, that

r (u)
(
y′′′
)
(u)− r (`)

(
y′′′
)
(`) + y (`)

∫ u

`
q (s)

(
σ2 (s)

s2

)
ds ≤ 0.

Letting u→ ∞, we arrive at the inequality

−r (`)
(
y′′′
)
(`) + y (`)

∫ ∞

`
q (s)

(
σ2 (s)

s2

)
ds ≤ 0,

we get

y′′ (`) + y (`)
∫ ∞

`

[
1

r (`)

∫ ∞

υ
q (`)

(
σ2 (s)

s2

)
ds
]

dυ ≤ 0, (15)

we see
y′′ (`)
y (`)

≤ −
[

1
r (`)

∫ ∞

υ
q (`)

(
σ2 (s)

s2

)
ds
]

dυ. (16)

Hence, by (16) in (14), we find

ψ′ (`) ≤ −δ (`)
∫ ∞

`

[
1

r (υ)

∫ ∞

υ
q (`)

(
σ2 (s)

s2

)
ds
]

dυ +
δ′ (`)

δ (`)
ψ (`)− ψ2 (`)

δ (`)
. (17)
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Thus, we have

ψ′ (`) ≤ −δ (`)
∫ ∞

`

[
1

r (υ)

∫ ∞

υ
q (s)

(
σ2 (s)

s2

)
ds
]

dυ +
(δ′ (`))2

4δ (`)
. (18)

Integrating from `1 to `, we get

∫ `

`1

[
δ (s)

∫ ∞

s

[
1

r (υ)

∫ ∞

υ
q (ν)

(
σ2(ν)

ν2

)
dν

]
dυ− (δ′(s))2

4δ(s)

]
ds ≤ ψ (`1) ,

which contradicts (5).
The proof of the theorem is complete.

Another criteria for oscillation of (1) can be establish by comparison with ordinary equations of the lower
order. We extend a comparison theorem that fasten properties of solutions of (1) with those of second-order
differential equations. It is well known (see [1]) that the differential equation[

a (`)
(
y′ (`)

)]′
+ q (`) y (`) = 0‚ ` ≥ `0, (19)

where a , q ∈ C[`0‚ ∞), a (`) , q (`) > 0, and the necessary and sufficient condition for nonoscillatory of this
equation is to there exist a number ` ≥ `0, and a function υ ∈ C1[`‚ ∞), satisfying

υ′ (`) + a−1 (`) υ2 (`) + q (`) ≤ 0‚ on [`‚ ∞).

In the following, we compare the behavior of oscillatory of (1) with the half-linear differential equations of
type (19).

Lemma 5. (see[1]) Let ∫ ∞

`0

1
a (s)

ds = ∞.

Then the condition

lim inf
`→∞

(∫ ∞

`0

1
a (s)

ds
) ∫ ∞

`
q (s) ds >

1
4

,

guarantees oscillation of (19).

Theorem 6. Let (3) and assume that the equation[
r (`) y′ (`)

]′
+ q (`)

µ

2
σ2 (`) y (`) = 0‚ (20)

and

y′′ (`) +
(∫ ∞

`

[
1

r (υ)

∫ ∞

υ
q (s)

(
σ2 (s)

s2

)
ds
]

dυ

)
y (`) = 0, (21)

are oscillatory, then every solution of (1) is oscillatory.

Proof. Proceeding as in proof of the Theorem 4. If we set ρ (`) = 1 in (11), then we get

ω′ (`) +
p (`)
r (`)

ω (`) + q (`)
µ

2
σ2 (`) +

1
r (`)

ω (`)2 ≤ 0,

for every constant µ ∈ (0, 1) . Thus, we can see that equation (20) is nonoscillatory for every constant µ ∈
(0, 1) , which is a contradiction. If we now set δ (`) = 1 in (17), then we find

ψ′ (`) +
∫ ∞

`

[
1

r (υ)

∫ ∞

υ
q (s)

(
σ2 (s)

s2

)
ds
]

dυ + ψ2 (`) ≤ 0.

Hence, equation (21) is nonoscillatory, which is a contradiction.
Theorem 6 is proved.
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3. Example

In this section, we give the following example to illustrate our main results.

Example 1. Consider the differential equation(
1
`

y′′′ (`)
)′

+
(

1\2`2
)

y′′′ (`) +
β

`
y
(
`

2

)
= 0, ` ≥ 1, (22)

where β > 0 is a constant. Let

r (`) =
1
`

, p (`) = 1\2`2, σ (`) =
`

2
, p (`) = 1\2`2, q (`) =

β

`
,

we get
R (`) = 2\3

(
`3\2 − 1

)
→ ∞ as `→ ∞.

If we now set ρ (s) = δ (s) = 1 then

∫ ∞

`0

(
ρ (s) q (s)

µ

2
σ2 (s)− 1

4ρ (s) r (s)

[
ρ′+ (s)
ρ (s)

− p (s)
r (s)

]2
)

ds,

=

(
βµ

8
− 1

4

) ∫ ∞

`0

`d` = ∞, if β >
2
µ

for some constant µ ∈ (0, 1)

and ∫ ∞

`0

[
δ (s)

∫ ∞

s

[
1

r (υ)

∫ ∞

υ
q (ν)

(
σ2 (ν)

ν2

)
dν

]
dυ− (δ′ (s))2

4δ (s)

]
ds = ∞.

Thus, by Theorem 4, every solution of equation (22) is oscillatory, provided β > 2
µ .

4. Conclusion

In this work, by using the generalized Riccati transformations technique and new comparison principles,
we offer some new sufficient conditions which ensure that any solution of Equation (1) oscillates under the
condition (3). Further, we can try to get some oscillation criteria of Equation (1) if y (`) = x (`) + p (`) x (τ (`))

in the future work.
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