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Abstract: A deterministic model for the transmission dynamics of two-strains Herpes Simplex Virus (HSV)
is developed and analyzed. Following the qualitative analysis of the model, reveals a globally asymptotically
stable disease free equilibrium whenever a certain epidemiological threshold known as the reproduction
number (R0), is less than unity and the disease persist in the population whenever this threshold exceed
unity. However, it was shown that the endemic equilibrium is globally asymptotically stable for a special
case. Numerical simulation of the model reveals that whenever R1 < 1 < R2, strain 2 drives strain 1 to
extinction (competitive exclusion) but when R2 < 1 < R1, strain 1 does not drive strain 2 to extinction.
Finally, it was shown numerically that super-infection increases the spread of HSV-2 in the model.
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1. Introduction

H erpes simplex virus (HSV) is a kind of infection that causes herpes. Herpes can appear in different
part of the body, particularly on the mouth or genital area. HSV infections are endemic throughout

the world [1–5]. For both point-prevalence and prospective studies, a large percentage of persons that are
seropositive for HSV type 1 (HSV-1) or HSV type 2 (HSV-2) have no clinical manifestations of the disease
[1–6]. HSV-1 and HSV-2 are lifelong infections [1,2]. HSV-1 is mainly transmitted by oral to oral contact
to cause infection in or around the mouth (oral herpes). HSV-2 is almost exclusively sexually transmitted,
causing infection in the genital or anal area (genital herpes). Nonetheless, HSV-1 can also be transmitted to the
genital area through oral-genital contact to cause genital herpes [2].

In 2012, it was estimated that about 3.7 billion people under the age of 50, or 67% of the population had
HSV-1 infection while over 267 million women and 150 million men were living with HSV-2 infection [2].
Estimated prevalence of HSV-1 infection was highest in Africa, 87% and lowest in the Americas 40− 50% [2].
Prevalence of HSV-2 infection was estimated to be highest also in Africa (31.5%), followed by the Americas
(14.4%) [2,7]. This is a clear sign that there should be a global call to fight against the global burden of HSV.

Many mathematical models have been developed to study the dynamics of HSV-2 see [8–15]. In the
manner that, Sally Blower and Li ma [13] formulated a mathematical model that predicts the effect of high
prevalence of HSV-2 on HIV. Their results showed that HSV-2 epidemic has more than double impact on the
peak of HIV incidence. Abu-Raddad et al [16], considered a homosexual male population and suggested that
HSV-2 prevalence, if near endemic level may predict the spread of HIV. Foss et al. [17], developed a dynamical
model to estimate the HIV infection due to HSV-2 in heterosexual population. Alvey et al. [18], developed
a model that takes into account the transmission through either homosexual or heterosexual behaviour and
investigate the impact of the coupled dynamics of HIV and HSV-2. Their results showed that homosexual
transmission has great impact on the disease prevalence.

For all the models considered so far and to the best of our knowledge, none of them considered the
transmission dynamics of the two strain of HSV. However, a detailed study of the transmission dynamics of
disease with multiple strains has been one of the important problems in epidemiology. Hence, in order to
fight against this global socio-economic burden, a deterministic model of two strains of HSV is developed and
rigorously analysed, to get more insight into the long-term dynamics of the disease.
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The paper is organized as follows. The model is formulated in Section 2 while it is analysed in Section 3.
Also the numerical simulation is presented in Section 4 and the conclusion is drawn in Section 5.

2. Model formulation

The model is based on the transmission dynamics of HSV. The total population at time t is denoted by
N(t). This is divided into susceptible individuals S(t); infectious individuals infected with strain 1 I1(t),
infectious individuals infected with strain 2 I2(t); such that

N(t) = S(t) + I1(t) + I2(t).

We give the detailed explanation of the transmission in the schematic diagram below

Figure 1. Schematic diagram of the two strain HSV epidemic model with superinfection and the arrows with
head indicate movement.

It is assumed that the susceptible population is generated at a constant rate∧. It is reduced due to infection
by either HSV-1 (at a rate β1) or by HSV-2 (at a rate β2) and natural death at a rate µ, such that

dS
dt

= ∧− β1SI1 − β2SI2 − µS.

The rate of change of the infectious individuals infected with strain 1 is increased by infecting the susceptible
population (at a rate β1). It is decreased due to genital herpes induced by HSV-1 (at a rate η) and by natural
death (at a rate µ), so that

dI1

dt
= β1SI1 − (η + µ) I1.

Finally, the rate of change of the infectious individuals infected with strain 2 is increased by infecting the
susceptible population (at a rate β2) and due to genital herpes induced by HSV-1 (at a rate η). It is decreased
due natural death (at a rate µ). Thus

dI2

dt
= β2SI1 + η I1 − µI2.

In summary, the model for the transmission dynamics of both HSV-1 and HSV-2 is given by the non-linear
differential equations. The model variables and parameters are described in Table 1 and the schematic diagram
of the model is depicted in Figure 1.

dS
dt

= ∧− β1SI1 − β2SI2 − µS

dI1

dt
= β1SI1 − (η + µ) I1

dI2

dt
= β2SI1 + η I1 − µI2

(1)
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Table 1. Description of model variables and parameters

Variables Description

S(t) Susceptible Population
I1(t) Individuals infected with strain 1
I2(t) Individuals infected with strain 2
∧ Recruitment rate
β1 Efficient contact rate of strain 1
β2 Efficient contact rate of strain 2
η Rate of genital herpes induced by strain 1
µ Natural mortality rate

2.1. Basic properties of the model

For the model to be epidemiologically meaningful, we need to prove that all the states variables are
non-negative for all time t. In other words the solution of Equation (1) with positive initial condition will
remain positive for all t ≥ 0.

Theorem 1. If the initial condition S(0) > 0, I1(0) > 0 and I2(0) > 0, then the solutions S, I1, and I2 of model
Equation (1) are positive for all t.

Proof. Given that S(0) > 0, I1(0) > 0 and I2(0) > 0, we want to show that S(t) > 0, I1(t) > 0 and I2(t) > 0.
Let τ = sup {t > 0 : S(t) > 0, I1(t) > 0, I2(t) > 0}. Thus τ > 0. Lets consider the first equation in Equation
(1), we have that

dS
dt
≥ − (φ(t) + µ) S, where φ(t) = β1 I1(t) + β2 I2(t). (2)

Integrating the above equation, we get

S(τ) ≥ S(0)e{−[
∫ τ

0 φ(t)dt+µτ]}. (3)

Considering the second equation in Equation (1), we have that

dI1

dt
≥ − (η + µ) I1. (4)

Integrating the above equation, we get

I1(τ) ≥ I1(0)e−(η+µ)τ . (5)

Finally, considering the third equation in Equation (1), we have that

dI2

dt
≥ −µI2. (6)

Integrating the above equation, yields

I2(τ) ≥ I2(0)e−µτ . (7)

Thus S(t), I1(t) and I2(t) are all positive for any non-negative initial conditions.

2.2. Positively invariant region

Lemma 2. The region

Γ =

{
(S, I1, I2) ∈ R3

+ : S + I1 + I2 ≤
∧
µ

}
is positively invariant and attracting in Equation (1).
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Proof. Adding the Equation (1), gives

dN
dt

= ∧− µ (S + I1 + I2) ,

dN
dt
≤ ∧− µN.

Thus the population is bounded above by ∧
µ so that dN

dt < 0 whenever N(t) > ∧
µ . Hence by comparison

Theorem [19], N(t) ≤ N(0)e−µt + ∧
µ

[
1− e−µt], in particular N(t) ≤ ∧

µ if N(0) ≤ ∧
µ . Thus, Γ is positively

invariant. Also if N(0) > ∧
µ , then either the solution enters Γ in finite time or N(t) approaches ∧

µ

asymptotically. Therefore, the region Γ attracts all solution in R3
+. Hence, it suffices to consider the dynamics

of the model Equation (1) in Γ, where the model is epidemiologically and mathematically well posed [20].

3. Model analysis

3.1. Disease-free equilibrium point

At equilibrium point, we equate each of the right hand side of Equation (1) to zero and solve. Where we
represent diseases free equilibrium (DFE) as E0 to be

E0 =
(

S0, I0
1 , I0

2

)
=

(
∧
µ

, 0, 0
)

. (8)

3.2. Basic reproduction number (R0)

The basic reproduction numberR0 measures the average number of secondary new infections caused by
one primary infection in a completely susceptible population. R0 gives the threshold whether a disease will
go extinction or persist. In this research, we find ourR0 using the next generation matrix method on Equation
(1). Using the notation in [21], the matrices F is the rate of appearance of new infections in compartment i,
and V is the rate of other transitions between compartment i and other infected compartments of Equation (1)
are given respectively by

F =

[
β1SI1

β2SI2 + η I1

]
,

V =

[
(η + µ) µ

µI2

]
.

Computing the matrices F and V, for the new infection terms and of the transition terms, respectively, we have

F =

[
β1∧

µ 0

η
β2∧

µ

]
,

V =

[
η + µ 0

0 µ

]
.

Thus, the basic reproduction number of Equation (1), denoted by R0, is given by (where ρ is the spectral
radius)

R0 = ρ
(

FV−1
)
= max {R1,R2} ,

whereR1 andR2 are the associated reproduction numbers of strain 1 and strain 2, respectively given by

R1 =
β1∧

µ (η + µ)
and R2 =

β2∧
µ2 . (9)

3.3. Local stability of disease-free equilibrium

Theorem 3. The DFE of Equation (1), given by E0, is locally asymptotically stable (LAS) if R0 < 1, and unstable if
R0 > 1.
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Proof. The Jacobian matrix of Equation (1) denoted by J is given as

J =

− (β1 I1 + β2 I2 + µ) −β1S −β2S
β1 I1 β1S− (η + µ) 0
β2 I2 η β2S− µ

 , (10)

evaluating J at E0, we get

J( ∧
µ ,0,0

) =


−µ − β1∧

µ − β2∧
µ

0 β1∧
µ − (η + µ) 0

0 η
β2∧

µ − µ

 .

The eigenvalues associated with the above matrix are

λ1 = −µ,

λ2 =
1
µ

(
β1 ∧−ηµ− µ2

)
,

λ3 =
1
µ

(
β2 ∧−µ2

)
.

But λ2 and λ3 can be re-written as (∧+ µ) (R1 − 1) and 1
µ (R2 − 1) respectively. It is clear that since λ1 < 0,

then E0 is LAS if λ2 < 0 and λ3 < 0 i.e ifR1 < 1 andR2 < 1. And unstable ifR01 > 1,R2 > 1 or bothR1,R2

> 0.

3.4. Global stability of disease-free equilibrium

Theorem 4. The DFE given by E0 is globally asymptotically stable (GAS) in Γ wheneverR0 ≤ 1.

Proof. Consider the Lyapunov function for Equation (1)

F = K1 I1 + K2 I2, (11)

Clearly the function F is continuous and positive definite, with lyapunov derivative given below

Ḟ = K1 İ1 + K2 İ2.

Substituting İ1 and İ2 in the above equation, we get

Ḟ = K1 İ1 + K2 İ2

= K1 [β1SI1 − (µ + η) I1] + K2 [β1SI2 + η − µI2]

= K1 I1 [β1S− (µ + η)] + K2 I2 [β2S− µ] + K2η I1

≤ K1 I1

[
β1∧

µ (µ + η)
− 1
]
+ µK2 I2

[
β2∧
µ2 − 1

]
+ η I1

(
β1∧

µ + η
− µ

)2

= K1 I1 [R1 − 1] + µK2 I2 [R2 − 1] + µ2η I1 [R1 − 1]2

= (µη + β1β2)
4 I1 [R1 − 1] + µ2η I1 [R1 − 1]2 + µI2

(
β1∧

µ + η
− µ

)2

[R2 − 1]

, (12)

where

K1 = (µη + β1β2)
4 and K2 =

(
β1∧

µ + η
− µ

)2
.

Thus from Equation (12), Ḟ ≤ 0 if R0 = max {R1,R2} ≤ 1 and Ḟ = 0 if and only if I1 = I2 = 0.
Substituting I1 = I2 = 0 in Equation (1) we get S(t) → ∧

µ as t → ∞. Also the largest compact invariant

set in
{
(S, I1, I2) ∈ Γ : dF

dt = 0
}

is the singleton {E0} .
Hence it follows from the Laselle invariance principle [22], every solutions in Equation (1) with initial

condition in R3
+, converges to DFE E0 as t→ ∞ wheneverR0 = max {R1,R2} ≤ 1. Thus the DFE, E0, is GAS

in Γ forR0 = max {R1,R2} ≤ 1.
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3.4.1. Existence of endemic equilibrium

Finding the condition(s) for the existence of an equilibrium E∗ =
(
S∗, I∗1 , I∗2

)
of the model Equation (1)

such that the disease is endemic in the population, the Equation (1) are solved at steady state which yields

E∗ =

(
η + µ

β1
,

β1µI∗2
(β2 (η + µ) + β1µ)

,
(β2 (η + µ) β1µ) (β1 ∧−µ (η + µ))

(η + µ)
[
β2

1µ + β2
2 (η + µ) + β2

1β2
2µ
]) . (13)

3.5. Local stability of endemic equilibrium

Theorem 5. The EE, E1 of Equation (1) is LAS provided that

q1 > q2, (14)

q3 > q4, (15)

q5 > q6, (16)

where q1, q2, q3, q4, q5, and q5 are given in the proof.

Proof. The characteristics polynomial of Equation (10) at E1 can be written as

λ3 + a1λ2 + a2λ + a3 = P(λ), (17)

where

a1 = q1 − q2,

a2 = q3 − q4,

a3 = q5 − q6,

(18)

with

q1 = β1 I∗1 + β2 I∗2 + (η + 3µ) ,

q2 = S∗ (β1 + β2) ,

q3 = β1 I∗1 (η + 2µ) + β2 I∗2 (η + 2µ) + S∗β1β2 + µ (2η + 3µ) ,

q4 = S∗β1β2 (I∗1 + I∗2 ) + 2S∗µ (β1 + β2) + S∗β2η,

q5 = I∗1 β1µ (η + µ) + I∗2 β2µ (η + µ) + (S∗∗)2β1β2µ + µ
(

η + µ2
)

,

q6 = S∗β1β2 (I∗1 + I∗2 ) + S∗β1µ2 + S∗β2µ (η + µ) .

(19)

Under the conditions in Equation (14), (15), (16) and (17), a1 > 0, a2 > 0 and a3 > 0. But a1a2 = q1q3 + q2q4 −
q1q4 − q2q3 and a1a2 > a3 if q1q3 + q2q4 − q1q4 − q2q3 > q5 − q6 that is if

q1q3 + q2q4 + q6 > q1q4 + q2q3 + q5. (20)

Thus by the Routh- Hurwitz criterion [23] all the eigenvalues of Equation (10) at E1 have negative real part.
Hence the endemic equilibrium of Equation (1) subject to the conditions of Equation (14), (15), (16) ,(17) and
(20) is LAS.

3.6. Global stability of endemic equilibrium: special case

Theorem 6. If R0 = max {R1,R2} ≥ 1 and η = 0, then the endemic equilibrium is globally asymptotically stable
(GAS) in Γ.

Proof. Consider the non-linear Lyapunov function (such non-linear functions has been used in many
mathematical epidemiology, see [24–27] for

F = S− S∗ − S∗ ln
S
S∗

+ I1 − I∗1 − I∗1 ln
I1

I∗1
+ I2 − I∗2 − I∗2 ln

I2

I∗2
, (21)
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with Lyapunov derivative

Ḟ = Ṡ− S∗

S
Ṡ + İ1 −

I∗1
I1

İ1 + İ2 −
I∗2
I2

İ2.

Substituting Ṡ, İ1 and İ2 in the above equation, we get

Ḟ =

[
1− S∗

S

]
(∧− β1SI1 − β2SI2 − µS)

+

[
1−

I∗1
I1

]
(β1SI1 − µI1) +

[
1− I∗

S 2

]
(β2SI2 − µI2) .

(22)

It can be shown from Equation (1) with η = 0, at endemic state that

∧ = β1 I∗1 S∗ + β2 I∗2 S∗ + µS∗, (23)

substituting Equation (23) into (22), we have

Ḟ = −µ
(S− S∗)2

S
+ β1S∗ I∗1

(
1− S∗

S

)
+ β2S∗ I∗2

(
1− S∗

S

)
+ β1SI1

(
1− S∗

S

)
+ β2SI2

(
1− S∗

S

)
+ β1SI1

(
1−

I∗1
I1

)
− µI1

(
1−

I∗1
I1

)
+ β2SI2

(
1− I∗2

I2

)
− µI2

(
1− I∗2

I2

)
= −µ

(S− S∗)2

S
+ β1S∗ I∗1 −

β1S∗2 I∗1
S

+ β2S∗ I∗2 −
β1S∗2 I∗2

S
+ β1S∗ I1 + β2S∗ I2

− β1SI∗1 − β2SI∗2 − µI1 + µI∗1 − µI2 + µI∗2 .

(24)

It can be shown from Equation (1) with η = 0, at endemic state that

µI∗1 = β1 I∗1 S∗,

µI∗2 = β2 I∗2 S∗.
(25)

substituting Equation (25) into (24), we have

Ḟ = −µ
(S− S∗)2

S
+ 2β1S∗ I∗1 −

β1S∗2 I∗1
S

− β1SI∗1 + 2β2S∗ I∗2 −
β2S∗2 I∗2

S
− β2SI∗2

+ β1S∗ I1 − µI1 + β2S∗ I2 − µI2

= −µ
(S− S∗)2

S
+ 2β1S∗ I∗1 −

β1S∗2 I∗1
S

− β1S∗ I∗1
S
S∗

+ 2β2S∗ I∗2 −
β2S∗2 I∗2

S

− β2S∗ I∗2
S
S∗

+ β1S∗ I1 −
µI1 I∗1

I∗1
+ β2S∗ I2 −

µI2 I∗2
I∗2

= −µ
(S− S∗)2

S
+ β1S∗ I∗1

(
2− S∗

S
− S

S∗

)
+ β2S∗ I∗2

(
2− S∗

S
− S

S∗

)
+ β1S∗ I1

−
µI1 I∗1

I∗1
+ β2S∗ I2 −

µI2 I∗2
I∗2

.

(26)

from Equation (25), we have (26) to be

Ḟ = −µ
(S− S∗)2

S
+ β1S∗ I∗1

(
2− S∗

S
− S

S∗

)
+ β2S∗ I∗2

(
2− S∗

S
− S

S∗

)
+ β1S∗ I1

−
β2S∗ I1 I∗1

I∗1
+ β2S∗ I2 −

β2S∗ I2 I∗2
I∗2

= −µ
(S− S∗)2

S
+ β1S∗ I∗1

(
2− S∗

S
− S

S∗

)
+ β2S∗ I∗2

(
2− S∗

S
− S

S∗

)
.

(27)
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Since the arithmetic mean is greater than or equal to the geometric mean, then

2− S∗

S
− S

S∗
≤ 0.

Clearly, the first term of Ḟ is always negative and the second and third terms are also negative, therefore
Ḟ ≤ 0, with Ḟ = 0 if and only if S∗ = S. Also the largest compact invariant set in

{
(S, I1, I2) ∈ Γ : dF

dt = 0
}

is the singleton {E1} . Thus by the Laselle Invariance Principle [22], every solutions in Equation (1) with initial
conditions in R3

+, converges to E1 as t → ∞ whenever R0 = max {R1,R2} ≥ 1. Hence, E1, is GAS in Γ for
R0 = max {R1,R2} > 1.

4. Numerical simulations and discussions

In this section, the model Equation (1), using the parameter values given in Table 2 (unless otherwise
stated), to assess the impact of super-infection on the dynamics of two strain HSV. The objective of this section
is to illustrate some of the theoretical results in this paper. Since the model presented in this paper is completely
new (no similar two strain model for HSV model has yet been published in the literature to our knowledge),
appropriate data for estimating the associated parameters are not available at the present time. Thus, the
parameter values chosen for the numerical simulations below may not all be realistic biologically, although
such uncertainties in parameter values are partially addressed below by considering different rate of genital
herpes induced by strain 1(super-infection) in the simulations, it is important to emphasize that the simulation
results obtained should be interpreted bearing these uncertainties in mind.

Table 2. Parameter values for model Equation (1)

Parameters Baseline value Reference

∧ 10000 per day Assumed
β1 7× 10−9 per day Assumed
β2 2× 10−9 per day Assumed
η 0.0022 per day Assumed
µ 0.0167 per day Assumed

With the given parameters in Table 2,R1 = 0.204 andR2 = 0.072 such thatR0 = 0.204 < 1. It is observed
that the susceptible individuals increases as a result ∧ which is the recruitment rate, however due to natural
mortality rate µ the increase in susceptible individuals is regulated, moreover individuals in the susceptible
compartment reach a saturation point 600000 (∧µ ) from Figure (2a). This shows that as time increases the
individuals who enter the susceptible compartment would equal to those who leave the compartment as a
result of natural mortality rate µ. It was also observed that whenever there is no disease Figure (2b) and (2c)
goes to zero. Therefore by Theorem 4 the DFE is GAS. Figure (2a), (2b) and (2c) shows this this simulations,
confirming the GAS property of the DFE. In addition, the effect of super-infection governed by η is monitored,
which shows that the total number of infected individuals with strain 2 increases with increase in η and
decreases with decrease in η. This is depicted in Figure (2b) and (2c). Furthermore, in Figure (2d) and (3),
additional simulation shows that when R2 < 1 < R1, strain 1 does not drive strain 2 to extinction but when
R1 < 1 < R2, strain 2 drives out strain 1 to extinction (competitive exclusion).

Figure (4a) depicts the scenario where the susceptible individuals increases then decreases but stabilizes
in the system as a result of R0 > 1 and Figure (4b) and (4c) shows how individuals infected with srain 1 and
strain respectively evolve due to R0 > 1. Also, Figure (4b) and (4c) shows that when R1 > 1 and R2 > 1,
strain 1 and strain 2 co-exist.

5. Conclusions

A new deterministic model for the transmission dynamics of two-strain HSV is designed and analysed.
The main findings in this paper are:

(1) Model Equation (1) has a GAS DFE wheneverR0 < 1.
(2) Model Equation (1) has a GAS EE for special case when η = 0 wheneverR0 > 1.
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(a) (b)

(c) (d)

Figure 2. Showing simulation of model Equation (1). Figure (a), (b) and (c) shows how the susceptible
individuals, infected individuals with strain 1 and infected individuals with strain 2 respectively evolve when
R0 < 1 with parameters as in Table 2. (d) R2 < 1 < R1 with β1 = 7× 10−8, β2 = 2× 10−8. Other parameters
as in Table 2 and different values of η as in legend.

Figure 3. Showing simulation of model Equation (1), R1 < 1 < R2 with β1 = 2× 10−8, β2 = 7× 10−8. Other
parameters as in Table 2 and different values of η as in legend.
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(a) (b)

(c)

Figure 4. Showing simulation of model Equation (1). For (a),(b) and (C),R0 = 2.482,R1 = 2.482 andR2 = 1.793
respectively with β1 = 8× 10−8, β2 = 5× 10−8. Other parameters as in Table 2 and different values of η as in
legend.

(3) Numerical simulation of model Equation (1) shows that strain 2 drives strain 1 to extinction whenR1 <

1 < R2, that is the model undergoes competitive exclusion. But when R2 < 1 < R1, strain 1 those not
drive strain 2 to extinction.

(4) Numerical simulation of Equation (1) shows that super-infection has a great impact on strain 2 by
increasing it population for any small increment on the super-infection parameter η.

(4) Numerical simulation of Equation (1) shows that the two strains coexist whenR1 > R2 > 1.

However, this study shows that HSV-1 has great impact on increasing the spread of HSV-2. This is as the
result of the genital herpes induced by HSV-1 (super-infection). This study suggest that governments should
provide screening centres to enable every individual to know his or her status of HSV. Also the governments
and public health agencies should organize massive campaign world wide to sensitize people on HSV and to
encourage the general public to go for HSV testing as this would enable researchers get ample data to carry
out research effectively and provide possible solutions to eradicating this burden (HSV).
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