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Abstract: Cervical cancer is a global threat with over half a million cases worldwide and over 200000 deaths
annually. Sexual minority women are at risk for infection with human papillomavirus (HPV); the virus
which causes cervical cancer, yet little is known about the prevalence of HPV infection. In this paper, the
dynamics of HPV infection in the presence of vaccination among women which progresses to cervical cancer
is investigated. The disease-free equilibrium state of the model is determined. Using the next generation
method, the cancer reproduction number, R0, is computed in terms of the model parameters and used as
a threshold value. The reproduction number is examined analytically for its sensitivity to the vaccination
parameter having shown that it is locally and globally asymptotically stable for R0 < 1 and unstable for
R0 > 1 at the disease free state. The centre manifold theorem is used to determine the stability of the endemic
equilibrium and shown to exhibit a backward bifurcation phenomenon implying that cervical cancer due to
HPV infection may persist in the population even if R0 < 1. Finally, numerical simulations are carried out to
obtain analytical results. As prevalence estimates vary between sexual orientation dimensions, these findings
help inform targeted HPV and cervical cancer prevention efforts.
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1. Introduction

T he human body is composed of cells which reproduce and generate new cells. However the abnormal
growth of these cells leads to cancer. There are different types of cancers, and the location where

a cancer begins defines its name even though it can spread to different parts of the body [1]. Human
Papillomavirus is now a well established cause of cervical cancer and is the most common related viral
infection of the reproductive system. Persistent HPV infection leads to precancerous cells in the cervix which
later become malignant. Human Papillomavirus is transferred from one person to the other through skin
contact but not through blood [2]. Over 100 different HPV strains have been discovered and classified among
which 16, 18, 31 and 45 are referred to as high risk [3]. HPV strain 16 and 18 have been accounted to cause 70%
of cervical cancers [4]. In general, there are no signs that show that one has genital HPV apart from the genital
warts caused by the types 6 and 11. However, most HPV infections go away naturally [5].

Cervical cancer is the chief cause of death among cancer related deaths in women especially in developing
countries [6,7]. The world population is at risk of developing cervical cancer with statistics showing that
girls and women aged 15 years and older having HPV is about 2.8 million [8]. Over half a million women
across the world are diagnosed with cervical cancer with about 265, 672 dying from the disease annually [8].
Approximately 3000 Ghanaian women are diagnosed with cervical cancer each year with about 2000 of the
cases leading to death. In Uganda and Nigeria, about 3915 and 14089 women are recorded of having cervical
cancer and 2275 and 8240 out of the recorded cases die from the disease respectively [9]. Each year over 500000
cases are diagnosed worldwide with 200000 deaths relating to this disease [1].

Many researchers have used mathematical models to explain the dynamics of HPV infection leading to
cervical cancer and the intervention strategies [2,7,10–12]. Pongsumpun analysed a mathematical model of
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cervical cancer due to HPV [1]. Pongsumpun observed that, for a given period of time when the number of
women infected with HPV is higher, the time of convergence for one to be infected becomes shorter. Although
a model incorporating screening was developed by [13] in the effort of reducing HPV infection incidence in
the population, vaccination plays a major role in reducing HPV infection by protecting both vaccinated and
unvaccinated individuals. Motivated by this assertion of reduction in HPV infections as a result of vaccination;
a mathematical model of cervical cancer due to HPV infection incorporating vaccination is constructed. The
rest of the paper is organized as follows: Section 2 provides the model formulation. Section 3 presents
the analysis of the model. Numerical simulations are carried out in Section 4 and finally, the discussion is
presented in Section 5.

2. Basic Model Formulation

In this section, the formulation of the model for the transmission of HPV in the presence of vaccination
which classifies the population at any time t into compartments depending on the infection status of an
individual is made. The total population at time t is denoted by N(t) and it is divided among five disjoint
independent compartments. These are: the compartment denoted by S which contains the susceptible
individuals. I(t) refers to the number of infectious individuals in the population, V(t) refers to the number
of individuals who are vaccinated, C(t) is the number of individuals with cervical cancer, and R refers to
the compartment of the recovered individuals. We assume that individuals are recruited into the susceptible
compartment at a constant rate π. A proportion θ of these individuals in the susceptible population are
vaccinated. The vaccine offers some protection against the infection. However, the susceptible individuals
can be infected by HPV at a rate λ when they come into effective contact of an infectious individual. The
parameter β, is the effective contact rate. The vaccine is assumed to wane and vaccinated individuals can
become susceptible again. The vaccine wanes at a rate ω. However, a positive modification of the lesbian
and bisexual women behaviour by a rate η influences the contact rate of C(t) and brings about a reduction
in the infectivity potential of transmission rate of HPV in the population. The force of infection is given by

λ =
β(I + ηC)

N
. Furthermore, we assume that the individuals who receive vaccination may be infected at a

reduced rate (1 − ε)λ, where ε ∈ (0, 1) measures the efficacy of the vaccine. If ε = 0, then the vaccine is
useless and if ε = 1, then the vaccine is 100% effective in preventing HPV infection. Moreover, the infected
individuals progress to develop cervical cancer at a rate σ while those who do not develop cancer recover at a
rate γ1. Individuals with cervical cancer recover at a rate ρ. The parameter γ2 denotes the rate at which those
who progress to develop cervical cancer recover from HPV and cancer. Individuals in each compartment die
naturally at a rate µ, while mortality as a result of cervical cancer is given by α. The general process of this
model is shown in Figure 1.

Figure 1. Flow diagram for HPV infection with vaccination.
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From the assumptions made and the flow diagram, we obtain the following system of non linear ordinary
differential equations;

dS
dt

= π + ωV − (λ + θ + µ)S,

dV
dt

= θS− (1− ε)λV − (µ + ω)V,

dI
dt

= λS + (1− ε)λV + ρC− (σ + γ1 + µ)I,

dC
dt

= σI − (ρ + γ2 + µ + α)C,

dR
dt

= γ1 I + γ2C− µR.



(1)

The initial conditions of our system are: S(0) > 0 and V(0), I(0), C(0), R(0) ≥ 0. Since the model
sub-divides the total population into five different compartments, it implies that

N(t) = S(t) + V(t) + I(t) + C(t) + R(t).

Hence, the rate at which the total population is changing over a period of time is thus

dN
dt

= π − µN − αC ≤ π − µN. (2)

3. Model Analysis

3.1. Positivity and boundedness of solutions

For the model system (1) to be epidemiologically meaningful, we prove that all state variables are
non-negative. Since it is irrational to have a negative population density and system (1) describes the dynamics
of the human population; we show that all state variables are positive and the solutions of system (1) with
positive initial conditions will remain positive for fall t > 0. The following lemma is applied.

Lemma 1. Given that the initial solutions and parameters of system (1) are positive, the solutions S(t), V(t), I(t), C(t)
and R(t) are non-negative for all t > 0.

Proof. We define
t̂ = sup{t > 0 : S(t) > 0 and V(t), I(t), C(t), R(t) ≥ 0}.

This implies that
S(t) > 0, and V(t), I(t), C(t), R(t) ≥ 0 ∀ t ∈ [0, t̂).

Considering the first equation in system (1) we have:

dS
dt

= π + ωV − (λ + θ + µ)S.

Since π and ω are positive, we have

dS
dt
≥ −(λ + θ + µ)S(t), ∀ t ∈ [0, t̂).

Separating variables, we obtain

dS
S
≥ −(λ + θ + µ)dt.

We integrate both sides between 0 and t̂ to have,

∫ t̂

0

dS
S
≥
∫ t̂

0
−(λ + θ + µ)dt,
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so that

S(t̂) ≥ S(0) exp
[
−
(

θ t̂ + µt̂ +
∫ t̂

0
λdt
)]

> 0.

From the second equation of system (1) we obtain,

dV
dt

= θS− (ω + (1− ε)λ + µ)V,

=⇒ dV
dt
≥ −(ω + (1− ε)λ + µ)V(t), ∀t ∈ [0, t̂).

Through integration we have

V(t̂) ≥ V(0) exp
[
−
(

ωt̂ + µt̂ +
∫ t̂

0
(1− ε)λdt

)]
≥ 0.

Similarly for the third equation of system (1) we get,

I(t̂) ≥ I(0) exp
[
− t̂(σ + γ1 + µ)

]
≥ 0.

For the fourth equation of system (1) we also have,

C(t̂) ≥ C(0) exp[−t̂(ρ + γ2 + µ + α)] ≥ 0.

Lastly, from the fifth equation of system (1) we obtain,

R(t̂) ≥ R(0) exp[−µt̂] ≥ 0.

In conclusion, S(t) > 0 and V(t), I(t), C(t), R(t) ≥ 0 for all t > 0 given that:

S(0) > 0 and V(0), I(0), C(0), R(0) ≥ 0.

The biologically feasible region D = {(S, V, I, C, R) ∈ R5
+ : N ≤ π

µ } is defined such that summing all
the equations of system (1) gives (2). Applying the integration factor method which is used for solving linear
first-order differential equations on Equation (2) we have,

N(t) =
π

µ
+
(

N(0)− π

µ

)
e−µt.

Hence, as t −→ ∞, N(t) −→ π

µ
. Therefore every solution N(t) of equation (2) satisfies the condition below:

0 ≤ N(t) ≤ N(0)e−µt +
π

µ
(1− e−µt),

where N(0) is the sum of all the initial conditions of the variables of our model. If N(0) ≤ π

µ
, then the total

population at time t is bounded above by
π

µ
. Therefore, for any solution {S(t) > 0, V(t), I(t), C(t), R(t) ≥ 0} at

t > 0 of system (1) that begins in R5
+, it either remains in or approaches D asymptotically. Hence, the region D

is positively invariant and attracting with respect to system (1).

3.2. Disease-free equilibrium E0

At the disease free equilibrium, there is no disease in the system. As a result, there will be no transmission
of the disease for an uninfected lesbian and bisexual women to be infected. Also, the absence of transmission
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of the disease means there will be no recovery. However, vaccination is impose on the susceptible individuals.
Thus, the disease-free equilibrium is given by

E0 =
(

π(ω + µ)
µ(θ + ω + µ)

,
θπ

µ(θ + ω + µ)
, 0, 0, 0

)
. (3)

3.3. Basic reproduction number

It can be defined in this context as the expected number of secondary cases, produced by one infectious
individual in a totally susceptible or disease free population [14]. It is obtained as

R0 =
β[[ω + µ + θ(1− ε)](ρ + γ2 + µ + α)]

(θ + ω + µ)[(σ + γ1 + µ)(ρ + γ2 + µ + α)− σρ]
+

βησ[ω + µ + θ(1− ε)]
(θ + ω + µ)[(σ + γ1 + µ)(ρ + γ2 + µ + α)− σρ]

. (4)

The basic reproduction number is observed to be the sum of two terms (RHPV + RC) corresponding to what
each of the infected compartments (HPV infection and cancer) are contributing to the epidemic. When β = 0;
R0 = 0; no HPV or cancer in the reproduction. When σ = 0, i.e. when no one progresses to cervical cancer, we
only have the reproduction of HPV infection (i.e. RHPV). Thus, we cannot have cervical cancer without HPV
infection so the reproduction number for cervical cancer cannot stand alone.

3.4. Stability analysis of disease-free equilibrium

The stability analysis of the disease-free equilibrium point, E0, will be investigated in this section.

Theorem 2. The disease-free equilibrium, E0, is locally asymptotically stable when R0 < 1 and unstable otherwise.

Proof. The proof of the theorem is investigated by the linearization method. The Jacobian matrix associated
with the model system (1) at the disease-free equilibrium is given by:

J(E0) =



−(θ + µ) ω − β(ω + µ)
(θ + ω + µ)

− βη(ω + µ)
(θ + ω + µ)

0

θ −(ω + µ)
β(θ − εθ)

(θ + ω + µ)
βη(θ − εθ)
(θ + ω + µ)

0

0 0
β(ω + µ + θ(1− ε))

(θ + ω + µ)
− (σ + γ1 + µ)

βη(ω + µ + θ(1− ε))
(θ + ω + µ)

+ ρ 0

0 0 σ −(ρ + γ2 + µ + α) 0
0 0 γ1 γ2 −µ


.

Expanding the characteristic equation |J(E0)− λI|= 0 by the last column, we obtain the eigenvalue of J(E0) :
λ1 = −µ. The other four eigenvalues are the eigenvalues of the 4× 4 matrix given by:

J1(E0) =



−(θ + µ) ω − β(ω + µ)
(θ + ω + µ)

− βη(ω + µ)
(θ + ω + µ)

θ −(ω + µ)
β(θ − εθ)

(θ + ω + µ)
βη(θ − εθ)
(θ + ω + µ)

0 0
β(ω + µ + θ(1− ε))

(θ + ω + µ)
− (σ + γ1 + µ)

βη(ω + µ + θ(1− ε))
(θ + ω + µ)

+ ρ

0 0 σ −(ρ + γ2 + µ + α)


.

J1(E0) =


A B

0 C

 , where A =


−(µ + θ) ω

θ −(µ + ω)

 , B =


− β(ω+µ)

θ+ω+µ − βη(ω+µ)
(θ+ω+µ)

β(θ−εθ)
(θ+ω+µ)

βη(θ−εθ)
(θ+ω+µ)
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and

C =


β(ω + µ + θ(1− ε))

(θ + ω + µ)
− (σ + γ1 + µ)

βη(ω + µ + θ(1− ε))
(θ + ω + µ)

+ ρ

σ −(ρ + γ2 + µ + α)

 .

The eigenvalues of J1(E0) are the eigenvalues of A and C. The characteristic equation of A and C is given by

A =λ2 + λ(µ + θ)(µ + ω) + µ(µ + ω + θ) > 0. (5)

C =λ2 +
[

(ρ + γ2 + µ + α) + (σ + γ1 + µ)− β(ω + µ + θ(1− ε))
(θ + ω + µ)

]
λ + D, (6)

where

D =
[

(σ + γ1 + µ)(ρ + γ2 + µ + α)− β(ω + µ + θ(1− ε))(ρ + γ2 + µ + α)
(θ + ω + µ)

− βησ(ω + µ + θ(1− ε))
(θ + ω + µ)

− σρ

]
.

From C= λ2 + λ1 A11 + A12, we have;

A11 = (σ + γ1 + µ)
[

1−
(

β(ω + µ + θ(1− ε))
(σ + γ1 + µ)(θ + ω + µ)

)]
+ (ρ + γ2 + µ + α),

A12 = (σ + γ1 + µ)(ρ + γ2 + µ + α)− β(ω + µ + θ(1− ε))(ρ + γ2 + µ + α)
(θ + ω + µ)

− βησ(ω + µ + θ(1− ε))
(θ + ω + µ)

− σρ

= [(σ + γ1 + µ)(ρ + γ2 + µ + α)− σρ][1− R0].

Applying the Routh-Hurwitz criteria for n = 2, we observe that the characteristic equation of (5) has its
coefficients > 0. The Routh-Hurwitz conditions are such that A11 and A12 be greater than zero. Similarly,
equation () is a 2nd degree polynomial with real constant coefficients given by A11 and A12. If R0 < 1, then

from A11 we have
β(ω + µ + θ(1− ε))

(θ + ω + µ)(σ + γ1 + µ)
< 1 which implies that A11 > 0. Moreover, if R0 < 1, then A12 > 0.

This shows that the disease-free equilibrium is locally asymptotically stable if R0 < 1.

3.5. Gloal stability analysis of disease-free equilibrium

Next we apply the approach by [15] to prove the global stability of the disease-free equilibrium. From
equation (1), the system of equations can be rewritten as

dx
dt

= F(x, I), (7)

dI
dt

= G(x, I), G(x, 0) = 0. (8)

Where x ∈ R3 = (S, V, R) denotes the number of uninfected individuals. While I ∈ R2 = (I, C) denotes the
number of infected individuals. The conditions for global stability of our disease-free equilibrium is given by:

(H1) For
dx
dt

= F(x, 0), x∗ is globally asymptotically stable.

(H2) G(x, I) = WI− Ĝ(x, I), Ĝ(x, I) ≥ 0 f or (x, I) ∈ D, (9)

where W = DIG(x, 0) is an M-matrix, that is, the off diagonal entries of W are non-negative and D is the region
where the system of equations of the model makes epidemiological meaningful. If the conditions above are
satisfied using our system (1), then the following theorem holds:

Theorem 3. The disease-free equilibrium E0 =
(

π(ω + µ)
µ(θ + ω + µ)

,
πθ

µ(θ + ω + µ)
, 0, 0, 0

)
is globally asymptotically stable

if R0 < 1 and that equation (9) is satisfied.
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From Equations (8) and (9), we have

Ĝ(x, I) = (G−U)I− dI
dt

, where (G−U) = W.

This implies that

(G−U) =

 β(ω + µ + θ(1− ε))
(θ + ω + µ)

− (σ + γ1 + µ)
βη((ω + µ) + θ(1− ε))

(θ + ω + µ)
+ ρ

σ −(ρ + γ2 + µ)

 . (10)

and

Ĝ(x, I) =



βI
(

ω + µ

θ + ω + µ
− S

N

)

βI
(

θ

θ + ω + µ
− V

N

)
0


.

From equation (10), the matrix is stable if and only if the trace of (10) is less than zero and the determinant of
(10) is greater than zero [16]. Hence, we have

β(ω + µ + θ(1− ε))
(2µ + ρ + θ + γ1 + γ2)

< 1,

and

β(ω + µ + θ(1− ε))(ρ + γ2 + µ) + βησ(ω + µ + σ(1− ε))
(θ + ω + µ)[(σ + γ1 + µ)(ρ + γ2 + µ)− σρ]

< 1. (11)

The left hand side of equation (11) is equal to the basic reproduction, it implies that all eigenvalues of (10)

have negative real parts for
β(ω + µ + θ(1− ε))

(2µ + ρ + θ + γ1 + γ2)
< 1 making R0 < 1. It follows that the matrix (10) is stable

for R0 < 1. Moreover, using equation (2) indicate that as t −→ ∞, (I, C) −→ (0, 0). Hence, the disease-free
equilibrium is globally asymptotically stable if R0 < 1.

3.6. Existence of the disease persistent steady states

To determine the disease persistent steady states, we let S∗, V∗, I∗, C∗ and R∗ be the endemic equilibrium
points. It is achieved by setting all the equations of system (1) to zero and expressing the state variables in
terms of the force of infection given as λ. Hence, we obtain

S∗ =
π

θ + λ∗ + µ
− πθω

(θ + λ∗ + µ)(((−1 + ε)λ∗ − µ)(θ + λ∗ + µ)− (λ∗ + µ)ω)
,

V∗ = − θπ

((−1 + ε)λ∗ − µ)(θ + λ∗ + µ)− (λ∗ + µ)ω
,

I∗ =
λ∗π((−1 + ε)θ + (−1 + ε)λ∗ − µ−ω)(α + µ + ρ + γ2)

(((−1 + ε)λ∗ − µ)(θ + λ∗ + µ)− (λ∗ + µ)ω)(♣)
,

C∗ =
σπλ∗((−1 + ε)θ + (−1 + ε)λ∗ − µ−ω)

(((−1 + ε)λ∗ − µ)(θ + λ∗ + µ)− (λ∗ + µ)ω)(♣)
,

R∗ = −λ∗π((−1 + ε)θ + (−1 + ε)λ∗ − µ−ω)(σγ2 + γ1(α + µ + ρ + γ2))
µ(θ(λ∗ − ελ∗ + µ) + (λ∗ + µ)(λ∗ − ελ∗ + µ + ω))(♣)

,



(12)

where

♣ = (α + µ)(σ + µ) + µρ + (σ + µ)γ2 + γ1(α + µ + ρ + γ2).

The existence of the steady states described in equation (12) is made complete by the following two scenarios;
Case 1. λ∗ = 0; this is attributed to the disease-free state shown in equation (3) which shows the situation
where there is no infection.
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Case 2. λ∗ 6= 0; the case in which there is the presence of an infection. Substituting the expressions for I∗ and C∗

into the expression for the force of infection and performing some algebraic manipulation and simplification
we obtain the following polynomial

U2λ∗2 + U1λ∗ + U0 = 0, (13)

where
U2 =(−1 + ε)(♣),

U1 =µ(−β(−1 + ε)(ση + µ + ρ) + (σ + µ + ρ)((−1 + ε)θ + (−2 + ε)µ−ω))

+ α(σ((−1 + ε)θ + (−2 + ε)µ−ω) + µ(β− βε + (−1 + ε)θ + (−2 + ε)µ−ω))

+ (σ((−1 + ε)θ + (−2 + ε)µ−ω) + µ(β− βε + (−1 + ε)θ + (−2 + ε)µ−ω))γ2

+ ((−1 + ε)θ + (−2 + ε)µ−ω)γ1(α + µ + ρ + γ2),

U0 =− µ(θ + ω + µ)[(µ(σ + µ + ρ + α) + γ2(σ + µ + ρ + γ1) + γ1(α + µ))][1− R∗0],

=µ(θ + ω + µ)[−(µ(σ + µ + ρ + α)− γ2(σ + µ + ρ + γ1)− γ1(α + µ))][R∗0 − 1],


(14)

with R∗0 = R2
0 + 2R1(1− R0). It can clearly be seen that since ε ∈ (0, 1), then U2 in (14) is always negative while

that of γ1 can be greater than or less than zero but that of U0 is positive whenever R∗0 > 1 and negative if
R∗0 < 1. The sign of U1 and U0 will decide the positivity of solution for Equation (14). If we let R∗0 < 1, then
there is the existence of two roots for U1 < 0 in Equation (14); one been positive and the other negative. For
U0 < 0; if R∗0 < 1, then a unique non-zero solution exists. Therefore, equilibria depends continually on R∗0 as it
changes. Hence, it shows that there exist an interval to the left of R∗0 on which there are two positive equilibria
given by

(λ∗1,2) =
−U1 ±

√
21 − 4U2U0

2U2
.

For U0 < 0 there is no positive solution for Equation (14) and as a result no endemic equilibria. Thus, we
establish the following;

Theorem 4. The model system (1):

1. has a unique endemic equilibrium for U0 > 0 if and only if R∗0 > 1;
2. has the existence of two equilibria if and only if U1 < 0 for R∗0 < 1;
3. otherwise has no endemic equilibrium.

3.7. Bifurcation analysis

The model system (1) shows the existence of a backward bifurcation phenomenon. To establish this we use
the centre manifold theory in [17] by taking into account β (the transmission rate) as the bifurcation parameter
at R0 = 1 so that

β = β∗ =
(θ + ω + µ)[(σ + γ1 + µ)(ρ + γ2 + µ + α)− σρ]

[ω + µ + θ(1− ε)](ρ + γ2 + µ + α) + ησ[ω + µ + θ(1− ε)]
.

The variables in the model system (1) undergoes the following variations so that S = x1, V = x2, I = x3, C = x4,
R = x5 and x = (x1, x2, x3, x4, x5)T be the vector. Hence, the model system (1) can be formulated in the form
dx
dt = f(x); where f = ( f1, f2, f3, f4, f5)T . From system (1), we obtain the following:

dx1

dt
= f1 = π + ωx2 − (βx1x3 + βηx1x4)− x1(θ + µ).

dx2

dt
= f2 = θx1 − (βx2x3 + βηx2x4) + (βεx2x3 + βηεx2x4)− x2(µ + ω).

dx3

dt
= f3 = βx1x3 + βηx1x4 + (βx2x3 + βηx2x4)− (βεx2x3 + βηεx2x4) + ρx4 − x3(σ + γ1 + µ).

dx4

dt
= f4 = σx3 − x4(ρ + γ2 + µ + α).

dx5

dt
= f5 = γ1x3 + γ2x4 − µx5.



(15)
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Evaluating (15) at the Jacobian matrix for the disease free state denoted by Jβ∗ (E0) gives

Jβ∗ (E0) =



−(θ + µ) ω − β∗(ω+µ)
θ+ω+µ − β∗η(ω+µ)

θ+ω+µ 0

θ −(ω + µ) β∗θ(1−ε)
θ+ω+µ

β∗ηθ(1−ε)
θ+ω+µ 0

0 0 β∗((1−ε)θ+µ+ω)
θ+ω+µ − (σ + γ1 + µ) β∗η((1−ε)θ+ω+µ)

θ+ω+µ + ρ 0

0 0 σ −(ρ + γ2 + µ + α) 0

0 0 γ1 γ2 −µ


,

which has one of its eigenvalues to be zero with the remaining eigenvalues having negative real parts. As a
result, it is prudent to apply the center manifold theory in [17]. Hence, there is the need to determine the value
for a and b. To do so, the left and right eigenvector of Jβ∗ (E0) which is given by v = (v1, v2, v3, v4, v5)T and
w = (w1, w2, w3, w4, w5)T respectively are determined. For the left eigenvector, we obtain

v1 = v2 = v5 = 0, v3 = 1, and v4 =
ρ + η(µ + σ) + ηγ1

µ + ρ + ησ + γ2 + α
,

and for the right eigenvector, we get

w1 = − ((−(1− ε)θω + (µ + ω)2)(µ(µ + ρ + α) + (µ + α)σ + (µ + σ)γ2 + γ1(α + µ + ρ + γ2)))
µ(θ + µ + ω)(θ − εθ + µ + ω)(α + µ + ρ + γ2)

,

w2 = − (θ((−1 + ε)θ + εµ + ω)(µ(µ + ρ + α) + (µ + α)σ + (µ + σ)γ2 + γ1(α + µ + ρ + γ2)))
µ(θ + µ + ω)(θ − εθ + µ + ω)(α + µ + ρ + γ2)

,

w3 = 1, w4 =
σ

µ + ρ + γ2 + α
, w5 =

γ1 +
σγ2

µ + ρ + γ2 + α

µ
.

To complete the application of the theory, the second partial derivative of f at the disease free equilibrium point
is computed. Hence, we have:

∂2 f1

∂x1∂x3
=

∂2 f1

∂x3∂x1
= −β∗,

∂2 f1

∂x1∂x4
=

∂2 f1

∂x4∂x1
= −β∗η,

∂2 f2

∂x2∂x3
=

∂2 f2

∂x3∂x2
= −β∗ + β∗ε,

∂2 f2

∂x2∂x4
=

∂2 f2

∂x4∂x2
= −β∗η + β∗ηε,

∂2 f3

∂x3∂x1
=

∂2 f3

∂x1∂x3
= β∗,

∂2 f3

∂x1∂x4
=

∂2 f3

∂x4∂x1
= β∗η,

∂2 f3

∂x2∂x3
=

∂2 f3

∂x3∂x2
= β∗ − β∗ε,

∂2 f3

∂x2∂x4
=

∂2 f3

∂x4∂x2
= β∗η − β∗ηε, and

∂2 f1

∂x3∂β∗
= − π(ω + µ)

µ(θ + ω + µ)
,

∂2 f2

∂x3∂β∗
= −

[
θπ

µ(θ + ω + µ)

]
(1− ε),

π(ω + µ)
µ(θ + ω + µ)

+
[

θπ

µ(θ + ω + µ)

]
(1− ε).

The computation of a and b which depicts the behaviour of the bifurcation at R0 = 1 is obtained as follows:

a =
n

∑
k,i,j=1

vkwiwj
∂2 fi

∂xi∂xj
(0, 0).

b =
n

∑
k,i,j=1

vkwi
∂2 fk

∂xi∂β(0, 0)
.

Since the components of v1 = v2 = v5 = 0, it implies that the derivatives of f1, f2 and f5 is not needed. Hence,
we obtain the following for a and b:

a = v3[w1w3(β∗) + w1w4(β∗η) + w2w3β∗(1− ε) + w2w4β∗η(1− ε)]

b = v3

[
w3

(
π(ω + µ)

µ(θ + ω + µ)
+

θπ

µ(θ + ω + µ)
(1− ε)

)
+ w4

(
π(ω + µ)

µ(θ + ω + µ)
+

ηθπ

µ(θ + ω + µ)
(1− ε)

)]
.
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After performing some rigorous calculations and manipulations, it thus follows that

a =
(−(1− ε)2θ2 − (1− ε)εθµ− (µ + ω)2)(ησ + (α + µ + ρ + γ2))X 2

µ(θ(1− ε) + µ + ω)2(α + µ + ρ + γ2)2(α + µ + ρ + ησ + γ2)

b =
π(σ(η(θ(1− ε) + µ + ω) + ((1− ε)θ + µ + ω)(α + µ + ρ + γ2))

µ(θ + µ + ω)(α + ρ + µ + γ2)
> 0,

where

X = (µ(α + µ + ρ) + (α + µ)σ + (µ + σ)γ2 + γ1(α + µ + ρ + γ2)).

Since the square of any number is positive, it follows that a is positive. For a > 0 and b > 0, it implies that the
condition for backward bifurcation for Theorem 4.1 in [17] is satisfied.

We further carry out the bifurcation analysis numerically by studying the behaviour of the system (1)
based on the results in (13) over the chosen parameter values. It is prudent to note that it is difficult to
numerically simulate the existence of bi-stability. This is because a small interval of R0 is required for the
occurrence of backward bifurcation and thus a very small range of parameters has to be chosen.

Figure 2. Description of the backward bifurcation of the model system (1) with β chosen as the bifurcation
parameter.

Figure 2 depicts the qualitative backward bifurcation diagram which describe the behaviour of the
reproduction number when equated to 1 and β chosen as the bifurcation parameter. The diagram shows that;
if R0 is below unity then eradicating the disease depends on the size of the population under consideration.
However, reducing the saddle node bifurcation value R∗0 ; which is obtained by setting the discriminant of the
polynomial (13) to zero to obtain

R∗0 = 1−
U 2

1
4U2(µT1)(µT2 + γ2T3 + γ1T4)

,

where

T1 = (θ + µ + ω), T2 = (α + σ + µ + ρ), T3 = (σ + µ + ρ), T4 = (α + µ + γ2),

may result to controlling the disease. However, this can be guaranteed only when the disease-free equilibrium
is globally asymptotically stable. For the backward bifurcation curve to disappear, there should be an increase
in the efficacy rate of the vaccine given to individuals most importantly to a value say one. The biological
meaning is that with an increase in the efficacy rate which corresponds with the disappearance of the backward
bifurcation curve, lowering R0 < 1 will be sufficient to eliminate the disease from the population. Thus, R0 < 1
would be sufficient to make the disease-free equilibrium globally stable. This is shown from the forward
bifurcation curve in Figure 3.
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Figure 3. Description of the forward bifurcation of system (1).

4. Numerical Simulation

We investigate the dynamics of system (1) numerically by using a set of reasonable approximate
parameter values obtained from literature and tabulated in Table 1. The initial conditions are given by:
S(0) = 380000, V(0) = 100000, I(0) = 10000, C(0) = 10000 and R(0) = 0. The system was simulated using
convenient programming language.

Table 1. Numerical values of parameters used for the simulation.

Parameter Value (year−1) Source
π 0.028× 500000 [18]
σ 0.2 [18]
β 0.8 [2,18]

γ1 0.1 [18]
θ 0.9 [18]

γ2 0.1 [18]
η 0.3 [18]
ρ 0.06 [18]
ε 1 [18]
µ 0.1 [12]
ω 0.3 [12]
α 0.03 [13]

4.1. Numerical results in the presence of vaccination

Here, we consider approximate values of important parameters to be able to predict the behaviour of
the reproduction number of infection by considering the flow of the state variables. Figure 4 shows how the
reproduction number R0 evolve with a vaccination rate θ = 0.9 and the efficacy rate of the vaccine at 1. We note
that the presence of vaccination with a stronger efficacy decreases the reproduction number below unity and
shows the importance of vaccination in the fight against HPV. With parameter values of π = 0.028× 500000,
β = 0.8, θ = 0.9, η = 0.3, ε = 1, ω = 0.3, σ = 0.2, γ1 = 0.1, γ2 = 0.1, ρ = 0.06, α = 0.03 and µ = 0.1, we
observe that the system settles at the disease-free state with R0 = 0.8562. At the disease-free state, the infectives
tend to zero. However, due to recruitment of individuals into the susceptible population and the presence of
individuals being vaccinated; the recovered population increases but the absence of infection means there will
be no transmission of the disease and thus no recovery. The susceptible compartment shows a downward
sloping curve. It shows the effect the presence of vaccination has on the number of susceptible individuals. A
decrease in the number of susceptible individuals indicates that majority are vaccinated. However, the curve
asymptotically approaches zero. The presence and application of vaccines causes the vaccinated individuals
to increase. The curve of the vaccinated compartment slopes downward when the effectiveness or strength of
the vaccine has been achieved for a period of time, say three years from Figure 4(b).
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(a) Susceptible individuals (b) Vaccinated individuals

(c) Infected individuals (d) Individuals with cancer

(e) Recovered individuals

Figure 4. Simulation results of the behaviour of the state variables in the presence of vaccination which causes
the model system to settle at the disease-free equilibrium state.

4.2. Effect of vaccination on infected and cancer population

(a) (b)

Figure 5. Simulation results showing the effect of varying the vaccination rate; (θ), on (a) the infected individuals
and (b) individuals with cancer population.



Open J. Math. Sci. 2019, 3, 217-233 229

Figure 5 shows the changes that occurs in the population with time when vaccination is incorporated. It
gives a clear indication on the role vaccination plays in reducing HPV in the population. Figure 5(a) shows
the changes that occurs in the infected population while Figure 5(b) shows the changes that occurs in the
population of individuals who progressed to develop cancer. It is notice from this figure that as the vaccination
rate (θ) increases from 0.3, to 0.7 and further to 0.9, both the infected individuals as well as individuals who
progress to develop cancer reduces as indicated by the blue, black and red lines respectively. This implies
that majority of the individuals in the susceptible population have been vaccinated causing a reduction in the
number of individuals who get infected with HPV.

4.3. Effect of waning vaccination on susceptible, infected and cancer population

(a) (b)

(c)

Figure 6. Simulation results showing the effect of varying the rate at which individuals wane their vaccine
(ω) on (a) the susceptible individuals, (b) infected individuals and (c) individuals with cancer. The parameter
θ = 0.3, 0.5 and 0.9 respectively represent the red, black and blue curve.

Figure 6, depicts the effect of what happens when an individual wanes their vaccine and further affirm the
role vaccination plays in reducing the incidence of HPV infection in the population. A change or modification
in the behaviour of an individual in the susceptible population leads to an increase in the chances of that
individual being infected with HPV. It can be seen that for a waning rate of 0.3 there is a lower chance of
an individual been infected with HPV. However, when the waning rate increases from 0.3 to 0.9, the chance
of been infected also increases. Similarly, an increase in the rate at which an infected individual wane their
vaccine leads to a higher probability of progressing to develop cervical cancer and vice versa. Furthermore,
an individual with cancer who wanes their vaccine have a lower chance of getting treated and vice versa.
Generally, as the waning rate increases the number of susceptible individuals who becomes infected as well as
individuals who are infected progressing to develop cancer and those with cancer not being treated increases.



Open J. Math. Sci. 2019, 3, 217-233 230

4.4. Variation of cancer population under different rate of ρ

For the given parameter values β = 0.8, θ = 0.4, η = 0.3, ε = 0.7, σ = 0.2, γ1 = 0.1, γ2 = 0.1, µ = 0.1 and
varying ρ (the number of individuals who receive cancer treatment), we determine the effect of ρ on the cancer
compartment.

Figure 7. shows the changes in the number of individuals with cervical cancer for different values of the
treatment rate ρ.

Figure 7 tracks the changes in the population of individuals who progress to develop cervical cancer. If
individuals with cancer are not treated, that is, when we set ρ = 0, then the reproduction number increases
and the endemic equilibrium population of these individuals also increases. However, when we increase
the number of individuals who are treated say ρ = 0.1, ρ = 0.3 and ρ = 0.45, we observe a decrease in
the compartment of individuals with cervical cancer. This is because for a higher values of treatment there
is a decrease in the available number of individuals with cervical cancer. However, the individuals with
cancer begins to increase when the additions from the number of individuals who are infected with HPV
start increasing.

4.5. Variation of infected population under different rate of ε

Figure 8 tracks the changes that occurs in the population of infected individuals with HPV using different
efficacy rate; which shows the strength of the vaccine. For ε = 0.1, we observe an increase in the number of
individuals who are infected with HPV. However, when the efficacy rate of the vaccine is increased from 0.1 to
0.4 and further to 0.7, it is seen that the number of individuals in the infected population decreases; a situation
which indicates that most individuals are been treated from the disease and this assertion is confirm from
Figure 7 where an increase in the treatment rate (ρ) corresponds with a decrease in the number of individuals
who progress to develop cervical cancer.

Figure 8. shows the changes in the number of infected individuals for different values of ε.
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4.6. Sensitivity analysis

Sensitivity analysis was performed to determine parameters which contribute to the variability of the
HPV infection using the reproduction number as an index case. To determine which parameter have high
influence on the reproduction number, the partial Rank Correlation Coefficients (PRCCs) is performed to
determine the sensitivity analysis for each parameter value sampled by the LHS scheme. The tornado plot
for the normalised sensitivity index after performing a 1000 simulation run is shown in Figure 9.

Figure 9. shows tornado plot of PRCCs of parameters that influence R0 using values in Table 1.

From Figure 9, parameters with positive PRCCs will increase R0 when they are increased, while
parameters with negative PRCCs will decrease R0 when they are increased. This implies that when the
efficacy rate as well as individuals who receives vaccination are increase, the rate at which the disease will
be transmitted from one individual to the other will decrease leading to a corresponding decrease in the value
of R0. Similarly, an increase in the rate at which individuals wanes their vaccine as well as an increase in the
transmission rate will increase the value of the rate of R0.

The contour plot in Figure 10 illustrate the relationship between the treatment rate (ρ) and effective contact
rate (β). The figure shows a positive correlation between the transmission and treatment rate in the sense that,
an increase in the transmission of the disease will call for more treatment of individuals who are infected and
vice versa. This means that for a higher treatment rate, the number of individuals who are treated increases and
thus the number of individuals with cervical cancer decreases. The results indicate that if no policy measures
are put in place to control the transmission (effective) contact rate, the spread of the infection will lead to an
increase in the number of individuals who are infected and subsequently leads to an increase in the number of
individuals who progress to develop cervical cancer.

Figure 10. Contour plot showing the effect of parameters β and ρ on R0.

Similarly, from Figure 11, it is observe that the parameters θ and σ have a negative correlation. This has to
do with the fact that as more individuals receives vaccination, the tendency of those individuals progressing
to develop cervical cancer decreases.
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Figure 11. Contour plot for R0 as a function of θ and σ.

5. Discussion

In this paper, we analyzed a mathematical model for the transmission dynamics of HPV infection with
vaccination as a control measure. Individuals who are susceptible are vaccinated and those who progress to
develop cervical cancer undergo treatment. The reproduction number was used to ascertain the increase and
decrease of infection among individuals in the population. Numerical results show that when we increase the
proportion of individuals who are vaccinated, the reproduction number can be reduced below unity. Thus, R0

decreases with the vaccination rate indicating that, vaccination is useful in controlling the HPV infection. The
basic reproduction number, R0, is directly proportional to the effective contact rate and indirectly proportional
to the number of individuals who recover from cancer, those who die naturally and those who are vaccinated.
The model system studied, however, indicated that R0 which happens to be the threshold is not enough to
control the spread of HPV infection. This is because, the result of the stability analysis investigated show that
the model exhibit a local asymptotic stability under certain conditions at the disease-free equilibrium provided
R0 < 1 while the stability of the endemic equilibrium examined using the centre manifold theory proved the
existence of a backward bifurcation phenomenon under certain conditions.

Sensitivity analysis performed on the parameters in the reproduction number show that parameters; β,
η, ω and ρ, has a positive relationship while parameters; α, µ, γ1, γ2, σ, ε and θ has a negative relationship
with R0. The model system was observed to settle at the disease-free state when ε = 1 and θ (vaccination
rate) having a value greater than 0.4. Thus, vaccination plays a key role in the attempt to help eradicate the
transmission of HPV infection. Hence, it is important to incorporate vaccination as a control measure in the
fight against cervical cancer due to HPV.

Although the eradication of HPV infection remains a challenge, the fact that cervical cancer is a
preventable disease gives hope in the quest to help eradicate it. Based on the findings of this study, we suggest
that effective vaccination control strategy should be included on governments HPV control programmes.
Vaccines with strong efficacy should be used in order to reduce the transmission of HPV infection since
vaccination has a greater impact on the reduction of the disease. However, this reduction also depends on
the efficacy of the vaccine.
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