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Abstract: The article investigates the behaviour of the multiplication table of the ring Zn. To count the number
of 1s appear on the main diagonal of the multiplication table of Zn, conclusively an explicit formula is induced
for any n ≥ 2.
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1. Introduction

I n finite algebra, Zn is playing a dominant role. They are gears for studying the integers. Congruences
modulo n is a fundamental relation in the integers and any statement concerning modulo n is equivalent

to a statement about Zn. Although it is easier or it provides better insight, to study a statement about the
congruences in the integers in terms of Zn. In general algebraic theories, Zn are the fundamental building
piles. All finite fields are constructed using Zp for some prime p. The algebraic systems Zn, were initially
studied in the nineteenth century without any view towards practical applications, simply because they had
a natural and necessary role to play the development of the algebra, they are now absolutely fundamental
in modern digital engineering, algorithms for digital communications, for error detection and correction, for
cryptography, and for digital signal processing, all employ Zn. The set Zn of integers modulo n forms a ring
under addition and multiplication. For multiplication, the set of congruence classes modulo n that are coprime
to n satisfy the axioms for an abelian group. Indeed, its quite captivating to deal with Zn.

In this paper, we discuss an interesting property about the multiplication table of Zn that is “how many
1s appears on the main diagonal of the multiplication table of Zn?”. By constructing some multiplication table
of Zn for the distinct values of n, and counting the number of 1s on the main diagonal, we observe it carefully
because we find it very interesting. Finally, an explicit formula is generalized to count the number of 1s on
the diagonals of the multiplication table of Zn, for any n. Starting with a Lemma which states that the number
of solutions of the equation X2 = 1 in a ring R is equal to the number of 1s appear on the main diagonal of
the multiplication table of R (Lemma 2.1). This idea comes after reviewing an article entitled, “ what is special
about the divisors of 24” [1]. The main theorem of this article stated that “ In the multiplication table of the ring
Zn, the 1s appears only on the diagonal (never off diagonal) if and only if n is a divisor of 24". Similar diagonal
property was also studied later in [2]. These studies appeals us to think more about the multiplication table of
Zn.

We draw many multiplication tables of Zn for different values of n to investigate some hidden properties.
Let’s have a look on the multiplication table of Z4, Z5, Z6, Z7 and Z8.

Table 1. Multiplication table of Z4

• 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Note that, multiplication Table 1 for Z4 has two 1s on diagonal, Z5 has two 1s on diagonal (Table 2),
similarly Z6, Z7 has two 1s on diagonal (Tables 3 and 4) but Z8 has four 1s on diagonal (Table 5). It appear
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Table 2. Multiplication table of Z5

• 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 3. Multiplication table of Z6

• 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Table 4. Multiplication table of Z7

• 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Table 5. Multiplication table of Z8

• 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

interesting to me to find an (explicit formula) algorithm to count the number of 1s on the main diagonal
of multiplication table of Zn for any n so that one can count the 1s on the main diagonal without actually
drawing the multiplication table. Initiating with a Lemma.

Throughout this paper all the rings are commutative with unity. Any unexplained material is standard as
in [3].

2. Main results

Lemma 1. The number of solutions of the equation X2 = 1 in a finite ring R is equal to the number of 1s appears on the
main diagonal of multiplication table of R.
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Table 6. Multiplication table of R

• - a -

a - 1 -
- - - -

Proof. Let a ∈ R be the solution of X2 = 1. Then a2 = 1. So the entry corresponding to (a, a), which is on main
diagonal, will be 1.

Conversely, if 1 appears on main diagonal then the entries opposite to 1 will be same element say a ∈ R.
That’s mean a · a = 1 and we have a, a solution of X2 = 1 in R (see Table 6).

Remark 1. In order to count the the number of 1s on main diagonal, it is enough to count the solution of the
equation X2 = 1 in Zn.

Theorem 2. Let R and S be rings. If X2 = 1 has m solutions in R and n solutions in S, then X2 = 1 has mn solution
in the ring R⊕ S.

Proof. If a ∈ R and b ∈ S be the solutions of X2 = 1, then (a, b) is a solution of X2 = 1 in R⊕ S. Therefore, if
S1 is the solution set of X2 = 1 in R and S2 is the solution set of X2 = 1 in S, then S1 × S2 is the solution set of
X2 = 1 in R⊕ S.
Hence, |S1 × S2| = |S1| × |S2| = m× n = mn.

Theorem 3. Exactly two 1s appear on the main diagonal of the multiplication table of Zp for any prime p.

Proof. By using Lemma 1, in order to count the number of 1s on the main diagonal it is enough to count the
solutions of the equation X2 = 1 in Zp. Let ā ∈ Zp be the solution of X2 = 1.
⇒ ā2 = 1̄⇒ ā2 − 1̄ = 0̄⇒ p|a2 − 1 = (a− 1)(a + 1)⇒ p|a− 1 or p|a + 1
⇒ a− 1 = 0̄ or a + 1 = 0̄⇒ ā− 1̄ = 0̄ or ā + 1̄ = 0̄⇒ ā = 1̄ or ā = −1̄ in Zp.

Theorem 4. Exactly two 1s appear on the main diagonal of the multiplication table of Zp2 , where p is odd prime.

Proof. By using Lemma 1, in order to count the number of 1s on the main diagonal it is enough to count the
solution of the equation X2 = 1 in Zp2 . Let ā ∈ Zp2 be the solution of X2 = 1. ⇒ ā2 = 1̄ ⇒ ā2 − 1̄ = 0̄
⇒ a2 − 1 ≡ 0 (mod p2) ⇒ p2 | a2 − 1 = (a − 1)(a + 1). Since an odd prime cannot divide a − 1 and a + 1
simultaneously, therefore, either (i) p2 | a− 1 and p2 6 | a + 1 or (ii) p2|a + 1 and p2 6 | a− 1. In the first case we
obtain ā− 1̄ = 0̄⇒ ā = 1̄ in Zp2 and in second case we obtain ā = −1̄ = n− 1 in Zp2 .

Theorem 5. Exactly two 1s appear on the main diagonal of the multiplication table of Zpk for any odd prime p and
positive integer k.

Proof. By using Lemma 1, in order to count the number of 1s on the main diagonal it is enough to count the
solution of the equation X2 = 1 in Zp2 . Let ā ∈ Zpk be the solution of X2 = 1. ⇒ ā2 = 1̄ ⇒ ā2 − 1̄ = 0̄

⇒ a2 − 1 ≡ 0 (mod pk) ⇒ pk | a2 − 1 = (a − 1)(a + 1). Since an odd prime cannot divide a − 1 and a + 1
simultaneously, therefore, either (i) pk | a− 1 and pk 6 | a + 1 or (ii) pk|a + 1 and pk 6 | a− 1. In the first case we
obtain ā− 1̄ = 0̄⇒ ā = 1̄ in Zpk and in second case we obtain ā = −1̄ = n− 1 in Zpk .

Theorem 6. Exactly four 1s appear on the main diagonal of the multiplication table of Z2k where k ≥ 3.

Proof. By using Lemma 1, in order to count the number of 1s on the main diagonal, it is enough to count the
solution of the equation X2 = 1 in Z2k . The congruence x2 ≡ 1 (mod 2k), where k is an integer, k ≥ 3, has
exactly four incongruent solutions, cf. [4, Exercise 9.1, Problem 18, Page 301].

Theorem 7. Let n = 2k pα1
1 · p

α2
2 . . . pαm

m , where 0 ≤ k ≤ 1, pis are distinct odd primes and αis ∈ Z+ for all i; 1 ≤ i ≤ m.
Then exactly 2m number of 1s appear on the main diagonal of the multiplication table of Zn.
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Proof. By Chinese Remainder Theorem, Zn ∼= Z2k ⊕ Zp
α1
1
⊕ Zpα2

2
⊕ · · · ⊕ Zpαm

m
. Therefore the number of 1s

on the main diagonal of the multiplication table of Zn is equal to the number of 1s on the main diagonal of
multiplication table of Z2k ⊕ Zp

α1
1
⊕ Zpα2

2
⊕ · · · ⊕ Zpαm

m
. Note that x2 ≡ 1 (mod 2) has exactly one solution.

Hence by applying Theorems 2 and 5 we get that

2× 2× · · · × 2︸ ︷︷ ︸
m−times

= 2m

1s appear on the main diagonal of multiplication table of Zn.

Theorem 8. Let n = 4 · pα1
1 · pα2

2 · · · p
αm
m , where p1, p2, . . . , pm are distinct odd primes and α1, α2, . . . , αm are

positive integers. Then exactly 2m+1 1s appear on the main diagonal of the multiplication table of Zn.

Proof. Using Chinese Remainder Theorem, Zn ∼= Z4 ⊕ Zp
α1
1
⊕ · · · ⊕ Zpαm

m
. So the number of 1s on the main

diagonal of the multiplication table of Zn is equal to the number of 1s appear on the main diagonal of Z4 ⊕
Zp

α1
1
⊕ · · · ⊕Zpαm

m
. By applying Theorems 2 and 6, we get that

2× (2× 2× · · · × 2︸ ︷︷ ︸
m−times

) = 2m+1

1s appear on the main diagonal of the multiplication table of Zn.

Theorem 9. Let n = 2k · pα1
1 · p

α2
2 · · · p

αm
m , where k ≥ 3 and p1, p2, . . . , pm are distinct odd primes and α1, α2, . . . , αm

are positive integers. Then exactly 2m+2 1s appear on the main diagonal of the multiplication table of Zn.

Proof. Using Chinese Remainder Theorem, Zn ∼= Z2k ⊕ Zp
α1
1
⊕ · · · ⊕ Zpαm

m
. So the number of 1s on the main

diagonal of the multiplication table of Zn is equal to the number of 1s appear on the main diagonal of Z2k ⊕
Zp

α1
1
⊕ · · · ⊕Zpαm

m
. By applying Theorems 2 and 5, and 6 we get that

4× (2× 2× · · · × 2︸ ︷︷ ︸
m−times

) = 2m+2

1s appear on the main diagonal of the multiplication table of Zn.

Remark 2. It is important to mention here that one can continue to extend above results for many other classes
of finite commutative rings.
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