## Article

# Analysis of the small oscillations of a heavy barotropic gas filling an elastic body with negligible density 

Hilal Essaouini ${ }^{1, *}$ and Pierre Capodanno ${ }^{2}$<br>1 Abdelmalek Essaâdi University, Faculty of Sciences, M2SM ER28/FS/05, 93030 Tetuan, Morocco.; hilal_essaouini@yahoo.fr<br>2 Université de Franche-Comté, 2B-Rue des Jardins, F- 25000 Besançon, France.; pierre.capodanno@neuf.fr<br>* Correspondence: hilal_essaouini@yahoo.fr

Received: 23 March 2019; Accepted: 20 October 2019; Published: 11 November 2019.


#### Abstract

In this work, we study the small oscillations of a system formed by an elastic container with negligible density and a heavy barotropic gas (or a compressible fluid) filling the container. By means of an auxiliary problem, that requires a careful mathematical study, we deduce the problem to a problem for a gas only. From its variational formulation, we prove that is a classical vibration problem.


Keywords: Barotropic gas, small oscillations, mixed boundary conditions, vibration problem, variational and spectral methods.

MSC: 76N10, 74B05 49R50, 47A75.

## 1. Introduction

The problem of the small oscillations of a heavy homogeneous inviscid liquid in an open rigid container has been the subject, from the pioneering work by Moiseyev [1], of numerous papers, that are analyzed in the books [2-4].

The same problem in the case of an elastic container is studied in the book [5]. Recently, we have solved the problem of the small oscillations of an heterogeneous liquid in an elastic container [6].

In this work, we study the problem of the small oscillations of a system formed by a heavy barotropic gas (or a compressible fluid) and an elastic body with negligible density, circumitance that can happen in the transport of fluids. At first, we establish the equations of motion of the system body-gas and the boundaries conditions. Afterwards, introducing an auxiliary problem, that requires a careful mathematical discussion, and that is the problem of the motion of the body when the motion of the gas is known, we show a linear operator depending on the elasticity of the body, that permits us to reduce the problem to a problem for the gas only. From the variational equation of this last problem, we prove that it is a classical vibration problem.

## 2. Position of the problem

We consider, in the field of the gravity, an elastic body with negligible density, that occupies in the equilibrium position a domain $\Omega^{\prime}$ bounded by a fixed external surface $S$ and an internal surface $\Sigma$. The interior $\Omega$ of this surface is completely filled by a heavy barotropic gas.

We choose orthogonal axes $O x_{1} x_{2} x_{3}, O x_{3}$ vertical directed upwards and we denote by $\vec{n}$ the unit vector normal to the surfaces. We are going to study the small oscillations of the system elastic body-gas about its equilibrium position, in the framework of the linear theory.

## 3. The equations of the problem

### 3.1. The equations of the elastic body with negligible density

Let $\overrightarrow{\hat{u}}^{\prime}\left(x_{i}\right)$ the (small) displacement of the particle of the body from the natural state to the equilibrium position. The equilibrium equations are:

$$
\begin{equation*}
0=\frac{\partial \sigma_{i j}^{\prime}\left(\overrightarrow{\hat{u}}^{\prime}\right)}{\partial x_{j}} \quad \text { in } \quad \Omega^{\prime} \quad(i, j=1,2,3) \tag{1}
\end{equation*}
$$



Figure 1. Model of the system
and the boundary conditions are

$$
\begin{equation*}
\overrightarrow{\hat{u}}_{\left.\right|_{S}}^{\prime}=0 \quad ; \quad \sigma_{i j}^{\prime}\left(\overrightarrow{\hat{u}}^{\prime}\right) n_{j}=-p_{0} n_{i} \quad \text { on } \quad \Sigma \tag{2}
\end{equation*}
$$

where $p_{0}$ is the pressure of the gas in the equilibrium position and where we have set:

$$
\sigma_{i j}^{\prime}\left(\overrightarrow{\hat{u}}^{\prime}\right)=\lambda^{\prime} \delta_{i j} \operatorname{div} \overrightarrow{\hat{u}}^{\prime}+2 \mu^{\prime} \epsilon_{i j}^{\prime}\left(\overrightarrow{\hat{u}}^{\prime}\right) \quad ; \quad \epsilon_{i j}^{\prime}\left(\overrightarrow{\hat{u}}^{\prime}\right)=\frac{1}{2}\left(\frac{\partial \hat{u}_{i}^{\prime}}{\partial x_{j}}+\frac{\partial \hat{u}_{j}^{\prime}}{\partial x_{i}}\right)
$$

$\lambda^{\prime}$ and $\mu^{\prime}$ are the Lame's coefficients; $\sigma_{i j}^{\prime}\left(\overrightarrow{\hat{u}}^{\prime}\right)$ and $\epsilon_{i j}^{\prime}\left(\overrightarrow{\hat{u}}^{\prime}\right)$ are the components of the stress tensor and the strain tensor respectively.

Now, let $\vec{u}^{\prime}\left(x_{i}, t\right)$ the displacement of a particle from its equilibrium position to its position at the instant $t$. We have

$$
0=\frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}+\vec{u}^{\prime}\right)}{\partial x_{j}} \quad \text { in } \quad \Omega^{\prime}
$$

and consequently

$$
\begin{equation*}
0=\frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right)}{\partial x_{j}} \quad \text { in } \quad \Omega^{\prime} \tag{3}
\end{equation*}
$$

and in the same manner

$$
\begin{equation*}
\vec{u}_{\left.\right|_{S}}^{\prime}=0 . \tag{4}
\end{equation*}
$$

Let $\vec{u}\left(x_{i}, t\right)$ the displacement of a particle of the gas from its equilibrium position to its position at the instant $t$; we must have the kinematic condition:

$$
\begin{equation*}
u_{n \mid \Sigma}^{\prime}=u_{n \mid \Sigma} \tag{5}
\end{equation*}
$$

where we have set $u_{n}=\vec{u} \cdot \vec{n}$.

### 3.2. The equations of the barotropic gas

Let $\rho^{*}, P$ the density and the pressure of the gas that are related by

$$
\begin{equation*}
P=\mathscr{P}\left(\rho^{*}\right), \tag{6}
\end{equation*}
$$

where $\mathscr{P}$ is a given smooth increasing function. If $\rho_{0}$ is the density in the equilibrium postion, we have

$$
p_{0}=\mathscr{P}\left(\rho_{0}\right)
$$

and the equilibrium equation

$$
\begin{equation*}
\overrightarrow{\operatorname{grad}} p_{0}=-\rho_{0} g \vec{x}_{3} \tag{7}
\end{equation*}
$$

Then, $p_{0}$ and $\rho_{0}$ are functions of $x_{3}$ only and we have

$$
\begin{equation*}
\frac{\mathrm{d} p_{0}\left(x_{3}\right)}{\mathrm{d} x_{3}}=-\rho_{0}\left(x_{3}\right) g \tag{8}
\end{equation*}
$$

Setting classically

$$
\begin{equation*}
c_{0}^{2}\left(x_{3}\right)=\mathscr{P}^{\prime}\left(\rho_{0}\left(x_{3}\right)\right), \tag{9}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
c_{0}^{2}\left(x_{3}\right) \rho_{0}^{\prime}\left(x_{3}\right)=-\rho_{0}\left(x_{3}\right) g . \tag{10}
\end{equation*}
$$

It is a differential equation of the first order that must be verified by $\rho_{0}\left(x_{3}\right)$. The equation of the motion of the gas are, besides (6):

$$
\begin{align*}
& \rho^{*} \ddot{\vec{u}}=-\overrightarrow{\operatorname{grad}} P-\rho^{*} g \vec{x}_{3} \quad \text { (Euler's equation) }  \tag{11}\\
& \frac{\partial \rho^{*}}{\partial t}+\operatorname{div}\left(\rho^{*} \dot{\vec{u}}\right)=0 \quad \text { (continuity equation) } \tag{12}
\end{align*} \text { in } \Omega .
$$

Since, we study the small motions of the gas about its equilibrium position, we set

$$
\begin{aligned}
& \rho^{*}=\rho_{0}\left(x_{3}\right)+\tilde{\rho}\left(x_{i}, t\right)+\cdots, \\
& P=p_{0}\left(x_{3}\right)+p\left(x_{i}, t\right)+\cdots .
\end{aligned}
$$

The $\tilde{\rho}$ and the dynamic pressure $p$ are of the first order with respect to the amplitude of the oscillations, the dots represent terms of order greater than one. We have, at the first order

$$
\frac{\partial \tilde{\rho}}{\partial t}+\operatorname{div}\left(\rho_{0}\left(x_{3}\right) \dot{\vec{u}}\right)=0 ;
$$

integrating between the datum of the equilibrium position and the instant $t$, we have

$$
\begin{equation*}
\tilde{\rho}=-\operatorname{div}\left[\rho_{0}\left(x_{3}\right) \vec{u}\right] . \tag{13}
\end{equation*}
$$

Using (6), we have

$$
p_{0}\left(x_{3}\right)+p+\cdots=\mathscr{P}\left(\rho_{0}\left(x_{3}\right)+\tilde{\rho}+\cdots\right)
$$

and then

$$
\begin{equation*}
p=-c_{0}^{2}\left(x_{3}\right) \operatorname{div}\left[\rho_{0}\left(x_{3}\right) \vec{u}\right] . \tag{14}
\end{equation*}
$$

The Euler's Equation can be written

$$
\begin{aligned}
\rho_{0} \ddot{\vec{u}}+\cdots & =-\overrightarrow{\operatorname{grad}}\left(p_{0}+p+\cdots\right)-\left(\rho_{0}-\operatorname{div}\left(\rho_{0} \vec{u}\right)+\cdots\right) g \vec{x}_{3} \\
& =\overrightarrow{\operatorname{grad}}\left(c_{0}^{2} \operatorname{div}\left(\rho_{0} \vec{u}\right)\right)+g \operatorname{div}\left(\rho_{0} \vec{u}\right) \vec{x}_{3}+\cdots,
\end{aligned}
$$

and, using the equation (10), finally we get

$$
\begin{equation*}
\ddot{\vec{u}}=\overrightarrow{\operatorname{grad}}\left(\frac{c_{0}^{2}\left(x_{3}\right)}{\rho_{0}\left(x_{3}\right)} \operatorname{div}\left(\rho_{0}\left(x_{3}\right) \vec{u}\right)\right), \tag{15}
\end{equation*}
$$

which is the equation that contains $\vec{u}$ only.

### 3.3. The dynamic conditions on the surface $\Sigma_{t}$

Let $M$ a point of $\Sigma$. We denote by $M_{g}, M_{s}$ the particles of the gas and of the elastic body that are in $M$ at the instant $t=0$. These particles come in $M_{g}^{\prime}, M_{s}^{\prime}$ on $\Sigma_{t}$ at the instant $t$ :

$$
\overrightarrow{M M_{g}^{\prime}}=\vec{u} \quad ; \quad \overrightarrow{M M_{s}^{\prime}}=\vec{u}^{\prime}
$$

In linear theory, we admit that the unit vectors normal to $\Sigma_{t}$ in $M_{g}^{\prime}$ and $M_{s}^{\prime}$ are equipollent to the unit vector $\vec{n}$ normal in $M$ to $\Sigma$ and that the pressure of the gas $P$ in $M_{g}^{\prime}$ is equal to the pressure of the gas in $M^{\prime}$, intersection of $\Sigma_{t}$ with the normal in $M$ to $\Sigma$.


Figure 2. Configuations of $\Sigma$ and $\Sigma_{t}$

The dynamic conditions on $\Sigma_{t}$ are

$$
\sigma_{i j}^{\prime}\left(\overrightarrow{\hat{u}}^{\prime}+\vec{u}^{\prime}\right) n_{j}=-P\left(M^{\prime}, t\right) n_{i}
$$

Or, using the second condition (2):

$$
\sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) n_{j}=-\left[P\left(M^{\prime}, t\right)-p_{0}(M)\right] \cdot n_{i} \quad \text { on } \Sigma .
$$

We have

$$
P\left(M^{\prime}, t\right)=P\left(M+u_{n \mid \Sigma} \vec{n}, t\right)=\mathcal{P}(M, t)+\overrightarrow{\operatorname{grad}} P(M) \cdot u_{n \mid \Sigma} \vec{n}+\cdots
$$

Since $u_{n \mid \Sigma}$ is of the first order, we can, in linear theory, replace $\overrightarrow{\operatorname{grad}} P(M, t)$ by

$$
\overrightarrow{\operatorname{grad}} p_{0}=-\rho_{0} g \vec{x}_{3}
$$

so that

$$
P\left(M^{\prime}, t\right)=P(M, t)-\rho_{0} g u_{n \mid \Sigma} n_{3 \mid \Sigma}+\cdots
$$

and finally

$$
\begin{equation*}
\sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) n_{j}=\left[-p(M, t)+\rho_{\left.0\right|_{\Sigma}} g n_{3 \mid \Sigma} u_{n \mid \Sigma}\right] n_{i} \quad \text { on } \Sigma \tag{16}
\end{equation*}
$$

Let us call $\vec{T}_{t}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}$ the tangential stress and $T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}$ the normal stress; we have

$$
\begin{equation*}
\vec{T}_{t}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}=0 \quad ; \quad T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}=-p_{\mid \Sigma}+\rho_{0 \mid \Sigma} g n_{3 \mid \Sigma} u_{n \mid \Sigma} \tag{17}
\end{equation*}
$$

## 4. The auxiliary problem

## Step 1.

We introduce the following auxiliary problem:

$$
\begin{equation*}
-\frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right)}{\partial x_{j}}=0 \quad \text { in } \quad \Omega^{\prime} \quad ; \quad \vec{u}_{\left.\right|_{S}}^{\prime}=0 \quad ; \quad u_{n \mid \Sigma}^{\prime}=u_{n \mid \Sigma} \quad ; \quad \vec{T}_{t}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}=0 \tag{18}
\end{equation*}
$$

where $u_{n \mid \Sigma}$ is considered as a datum. It is the problem of the motion of an elastic body when the motion of the gas is known and we seek the solution of this auxiliary problem in the space.

$$
\widehat{\Xi}^{1}\left(\Omega^{\prime}\right) \stackrel{\text { def }}{=}\left\{\vec{u}^{\prime} \in \Xi^{1}\left(\Omega^{\prime}\right) \stackrel{\text { def }}{=}\left[H^{1}\left(\Omega^{\prime}\right)\right]^{3} ; \vec{u}_{\mid S}^{\prime}=0\right\}
$$

Then $u_{n \mid \Sigma}^{\prime} \in H^{1 / 2}(\Sigma)$ and consequently, we suppose that $u_{n \mid \Sigma} \in H^{1 / 2}(\Sigma)$.

## Step 2.

Let $\vec{\Phi}$ an element of $\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)$ such that $\Phi_{n \mid \Sigma}=u_{n \mid \Sigma} \in H^{1 / 2}(\Sigma)$.
In the following, we will see the construction of such $\vec{\Phi}$. We denote by $V_{0}$ the subspace of $\hat{\Xi}^{1}\left(\Omega^{\prime}\right)$ defined by

$$
V_{0}=\left\{\vec{v}_{0} \in \widehat{\Xi}^{1}\left(\Omega^{\prime}\right) \quad ; \quad v_{0 n \mid \Sigma}=0\right\}
$$

and we seek the solution $\vec{u}^{\prime}$ of the auxiliary problem in the form

$$
\vec{u}^{\prime}=\vec{\Phi}+\vec{v}_{0}
$$

The auxiliary problem (18) becomes a problem for $\vec{u}_{0} \in V_{0}$ :

$$
\begin{equation*}
-\frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right)}{\partial x_{j}}=\frac{\partial \sigma_{i j}^{\prime}(\vec{\Phi})}{\partial x_{j}} \text { in } \quad \Omega^{\prime} \quad ; \quad u_{0 n \mid \Sigma}=0 \quad ; \quad \vec{T}_{t}\left(\vec{u}_{0}^{\prime}\right)_{\mid \Sigma}=-\vec{T}_{t}(\vec{\Phi})_{\mid \Sigma} \tag{19}
\end{equation*}
$$

Let us seek a variational formulation of this problem. We have, for each $\vec{v}_{0} \in V_{0}$ :

$$
-\int_{\Omega^{\prime}} \frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right)}{\partial x_{j}} \cdot \bar{v}_{0 i} \mathrm{~d} \Omega^{\prime}=\int_{\Omega^{\prime}} \frac{\partial \sigma_{i j}^{\prime}(\vec{\Phi})}{\partial x_{j}} \cdot \bar{v}_{0 i} \mathrm{~d} \Omega^{\prime}
$$

or

$$
\begin{aligned}
& -\int_{\Omega^{\prime}}\left[\frac{\partial}{\partial x_{j}}\left[\sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) \bar{v}_{0 i}\right]-\sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}_{0}\right)\right] \mathrm{d} \Omega^{\prime} \\
& \quad=\int_{\Omega^{\prime}}\left[\frac{\partial}{\partial x_{j}}\left[\sigma_{i j}^{\prime}(\vec{\Phi}) \bar{v}_{0 i}\right]-\sigma_{i j}^{\prime}(\vec{\Phi}) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}_{0}\right)\right] \mathrm{d} \Omega^{\prime},
\end{aligned}
$$

or, using the Green's formula and denoting by $\vec{n}_{\mathrm{e}}$, the external normal unit vector to $\partial \Omega^{\prime}$ :

$$
\begin{aligned}
& -\int_{S} \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) n_{\mathrm{ej}} \bar{v}_{0 i} \mathrm{~d} S-\int_{\Sigma} \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) n_{\mathrm{ej}} \bar{v}_{0 i} \mathrm{~d} \Sigma+\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}_{0}\right) \mathrm{d} \Omega^{\prime} \\
& \quad=\int_{S} \sigma_{i j}^{\prime}(\vec{\Phi}) n_{\mathrm{ej}} \bar{v}_{0 i} \mathrm{~d} S+\int_{\Sigma} \sigma_{i j}^{\prime}(\vec{\Phi}) n_{\mathrm{ej}} \bar{v}_{0 i} \mathrm{~d} \Sigma-\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}(\vec{\Phi}) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}_{0}\right) \mathrm{d} \Omega^{\prime}
\end{aligned}
$$

The integrals on $S$ disappear since $\vec{v}_{0 \mid S}=0$ and the integrals on $\Sigma$ disappear by virtue of (19). The variational formulation of the problem for $\vec{u}_{0}$ is to find $\vec{u}_{0} \in V_{0}$ such that

$$
\begin{equation*}
\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}_{0}\right) \mathrm{d} \Omega^{\prime}=-\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}(\vec{\Phi}) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}_{0}\right) \mathrm{d} \Omega^{\prime} \quad \forall \vec{v}_{0} \in V_{0} \tag{20}
\end{equation*}
$$

Conversely, let $\vec{u}_{0}$ a function of $t$ with values in $V_{0}$ and verifying (20).
We have

$$
\int_{\Omega^{\prime}} \frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right)}{\partial x_{j}} \cdot \bar{v}_{0 i} \mathrm{~d} \Omega^{\prime}=\int_{\Omega^{\prime}}\left[\frac{\partial}{\partial x_{j}}\left[\sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) \bar{v}_{0 i}\right]-\sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}_{0}\right)\right] \mathrm{d} \Omega^{\prime}
$$

and an anlogous equation by replacing $\overrightarrow{u_{0}}$ by $\vec{\Phi}$.
Using (20), we obtain

$$
-\int_{\Omega^{\prime}} \frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right)}{\partial x_{j}} \cdot \bar{v}_{0 i} \mathrm{~d} \Omega^{\prime}+\int_{\Sigma} \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) n_{\mathrm{ej}} \bar{v}_{0 i} \mathrm{~d} \Sigma=\int_{\Omega^{\prime}} \frac{\partial \sigma_{i j}^{\prime}(\vec{\Phi})}{\partial x_{j}} \cdot \bar{v}_{0 i} \mathrm{~d} \Omega^{\prime}-\int_{\Sigma} \sigma_{i j}^{\prime}(\vec{\Phi}) n_{\mathrm{ej}} \bar{v}_{0 i} \mathrm{~d} \Sigma
$$

Taking $\vec{v} \in\left[\mathscr{D}\left(\Omega^{\prime}\right)\right]^{3} \subset V_{0}$, we have

$$
-\frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right)}{\partial x_{j}}=\frac{\partial \sigma_{i j}^{\prime}(\vec{\Phi})}{\partial x_{j}} \quad \text { in } \quad \mathscr{D}\left(\Omega^{\prime}\right)
$$

Taking into account of $v_{0 n \mid \Sigma}=0$, we have

$$
\int_{\Sigma} \vec{T}_{t}\left(\vec{u}_{0}\right) \cdot \vec{v}_{0 t \mid \Sigma} \mathrm{d} \Sigma=-\int_{\Sigma} \vec{T}_{t}(\vec{\Phi}) \cdot \vec{v}_{0 t \mid \Sigma} \mathrm{d} \Sigma
$$

and, since $\vec{v}_{0 t \mid \Sigma}$ is arbitrary

$$
\vec{T}_{t}\left(\vec{u}_{0}\right)_{\mid \Sigma}=-\vec{T}_{t}(\vec{\Phi})_{\mid \Sigma}
$$

and we find the auxiliary problem.
Let us return to its variational formulation (20). The left-hand side can be considered as a scalar product in $V_{0}$ :

$$
\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) \epsilon_{i j}^{\prime}\left(\overrightarrow{\vec{v}}_{0}\right) \mathrm{d} \Omega^{\prime}=\left(\vec{u}_{0}, \vec{v}_{0}\right)_{V_{0}}
$$

The associated norm $\left\|\vec{u}_{0}\right\|_{V_{0}}$ being classically equivalent in $V_{0}$ to the norm $\left\|\vec{u}_{0}\right\|_{1}$ of $\Xi^{1}\left(\Omega^{\prime}\right)$. Since $\vec{u}_{0} \in$ $V_{0} \subset \widehat{\Xi}^{1}\left(\Omega^{\prime}\right)$, we have

$$
\left(\vec{u}_{0}, \vec{v}_{0}\right)_{V_{0}}=\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}_{0}\right) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}_{0}\right) \mathrm{d} \Omega^{\prime}=\left(\vec{u}_{0}, \vec{v}_{0}\right)_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}
$$

Setting $\vec{v}_{0}=\vec{u}_{0}$, we have

$$
\left\|\vec{u}_{0}\right\|_{V_{0}}=\left\|\vec{u}_{0}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)} \quad \forall \vec{u}_{0} \in V_{0} .
$$

The variational Equation (20) can be written as

$$
\begin{equation*}
\left(\vec{u}_{0}, \vec{v}_{0}\right)_{V_{0}}=-\left(\vec{\Phi}, \vec{v}_{0}\right)_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)} \quad \forall \vec{v}_{0} \in V_{0} \tag{21}
\end{equation*}
$$

But, we have

$$
\left|\left(\vec{\Phi}, \vec{v}_{0}\right)_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}\right| \leq\|\vec{\Phi}\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}\left\|\vec{v}_{0}\right\|_{V_{0}}
$$

so that $-\left(\vec{\Phi}, \vec{v}_{0}\right)_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}$ is a continuous antilinear form on $V_{0}$.
Then, by the Lax-Milgram theorem, the precedent problem has one and only solution. Therefore, the problem (20) has one and one solution $\vec{u}_{0} \in V_{0}$ and the auxiliary problem has one and only one solution $\vec{u}^{\prime}$ in $\widehat{⿶}^{1}\left(\Omega^{\prime}\right)$. The Equation (21) can be written

$$
\left(\vec{u}^{\prime}, \vec{v}_{0}\right)_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}=0 \quad \forall \vec{v}_{0} \in V_{0}
$$

and the solution $\vec{u}^{\prime}$ of the auxiliary problem belongs to the orthogonal of $V_{0}$ in $\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)$.

## Step 3.

The solution $\vec{u}^{\prime}$ of the auxiliary problem does not depend on $\vec{\Phi}$, since $\vec{\Phi}$ is not in the terms of the problem. We are going to use this remark for giving a estimate of $\left\|\vec{u}^{\prime}\right\|_{\widehat{\Xi^{1}}\left(\Omega^{\prime}\right)}$.

We take, for $\vec{\Phi}$, a continuous lifting of $u_{n \mid \Sigma} \vec{n}$ in $\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)$; we have

$$
\|\vec{\Phi}\|_{\widehat{\Omega}^{1}\left(\Omega^{\prime}\right)} \leq c\left\|u_{n \mid \Sigma}\right\|_{H^{1 / 2}(\Sigma)} \quad(c>0)
$$

We have

$$
\left|\left(\vec{u}_{0}, \vec{v}_{0}\right)_{V_{0}}\right| \leq\|\vec{\Phi}\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}\left\|\vec{v}_{0}\right\|_{V_{0}}
$$

and then

$$
\left\|\vec{u}_{0}\right\|_{V_{0}} \leq\|\vec{\Phi}\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}
$$

and finally

$$
\left\|\vec{u}_{0}\right\|_{V_{0}} \leq c\left\|u_{n \mid \Sigma}\right\|_{H^{1 / 2}(\Sigma)}
$$

For the solution $\vec{u}^{\prime}$ of the auxiliary problem, we have

$$
\vec{u}^{\prime}=\vec{u}_{0}+\vec{\Phi}
$$

and then

$$
\begin{equation*}
\left\|\vec{u}^{\prime}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)} \leq 2 c\left\|u_{n \mid \Sigma}\right\|_{H^{1 / 2}(\Sigma)} \tag{22}
\end{equation*}
$$

## Step 4.

Finally, we study $T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}$ that is in the second dynamic condition (17) of the problem. We are going to show that it can be expressed by means of $u_{n \mid \Sigma}$. The solution $\vec{u}^{\prime}$ of our problem verifies:

$$
\frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right)}{\partial x_{j}}=0 \quad \text { in } \quad \Omega^{\prime}
$$

Let $\overrightarrow{\tilde{w}}^{\prime}$ an element of $\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)$. We have, by Green's formula and $\overrightarrow{\tilde{w}}_{\mid S}^{\prime}=0$ :

$$
0=-\int_{\Omega^{\prime}} \frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right)}{\partial x_{j}} \cdot \overline{\tilde{w}}_{i} \mathrm{~d} \Omega^{\prime}=-\int_{\Sigma} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) n_{\mathrm{ej}} \overline{\tilde{w}}_{i} \mathrm{~d} \Sigma+\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) \epsilon_{i j}^{\prime}\left(\overline{\tilde{w}}^{\prime}\right) \mathrm{d} \Omega^{\prime}
$$

Since the solution $\vec{u}^{\prime}$ of the initial problem verifies $\vec{T}_{t}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}=0$, the precedent equation gives:

$$
\begin{equation*}
\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) \epsilon_{i j}^{\prime}\left(\overline{\tilde{w}}^{\prime}\right) \mathrm{d} \Omega^{\prime}=-\int_{\Sigma} T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma} \overline{\tilde{w}}_{n \mid \Sigma}^{\prime} \mathrm{d} \Sigma, \quad \forall \overrightarrow{\tilde{w}}^{\prime} \in \widehat{\Xi}^{1}\left(\Omega^{\prime}\right) . \tag{23}
\end{equation*}
$$

On the other hand, if $\vec{v}^{\prime} \in\left[\mathscr{D}\left(\Omega^{\prime}\right)\right]^{3}$, we have

$$
0=-\left\langle\frac{\partial \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right)}{\partial x_{j}}, v_{i}^{\prime}\right\rangle=\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) \frac{\partial \bar{v}_{i}^{\prime}}{\partial x_{j}} \mathrm{~d} \Omega^{\prime}
$$

by virtue of the definition of the distributional derivatives. Therefore, we have

$$
\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}^{\prime}\right) \mathrm{d} \Omega^{\prime}=0 \quad \forall \vec{v}^{\prime} \in\left[\mathscr{D}\left(\Omega^{\prime}\right)\right]^{3}
$$

and by density

$$
\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) \epsilon_{i j}^{\prime}\left(\overline{\vec{v}}^{\prime}\right) \mathrm{d} \Omega^{\prime}=0 \quad \forall \vec{v}^{\prime} \in \Xi^{1}\left(\Omega^{\prime}\right)
$$

Now, we are going to particularize $\overrightarrow{\tilde{w}}^{\prime}$. Let call $w_{n \mid \Sigma}^{\prime}$ a function defined on $\Sigma$ and belonging to $H^{1 / 2}(\Sigma)$ and let take for $\overrightarrow{\tilde{w}}^{\prime}$ a lifting of $w_{n \mid \Sigma}^{\prime} \vec{n}$ in $\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)$ (so that we have $\tilde{w}_{n \mid \Sigma}^{\prime}=w_{n \mid \Sigma}^{\prime}$ ). We set

$$
\begin{equation*}
\ell\left(\overrightarrow{\tilde{w}}^{\prime}\right)=\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) \epsilon_{i j}^{\prime}\left(\overline{\overline{\tilde{w}}^{\prime}}\right) \mathrm{d} \Omega^{\prime} \tag{24}
\end{equation*}
$$

Since the difference between lifting belongs to $\Xi^{1}\left(\Omega^{\prime}\right)$, the right-hand side doesn't depend on the lifting $\overrightarrow{\tilde{w}}^{\prime}$. Therefore, $\ell$ depends on $w_{n \mid \Sigma}^{\prime}$. Let choose for $\overrightarrow{\tilde{w}}^{\prime}$ a continuous lifting of $w_{n \mid \Sigma}^{\prime} \vec{n}$; for this lifting, we have

$$
\left\|\overrightarrow{\tilde{w}}^{\prime}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)} \leq \alpha\left\|w_{n \mid \Sigma}^{\prime} \vec{n}\right\|_{\left(H^{1 / 2}(\Sigma)\right)^{3}}, \quad(\alpha>0)
$$

and, if the components of $\vec{n}$ are sufficiently smooth:

$$
\left\|\overrightarrow{\tilde{w}}^{\prime}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)} \leq \beta\left\|w_{n \mid \Sigma}^{\prime}\right\|_{H^{1 / 2}(\Sigma)}, \quad(\beta>0)
$$

But, we have

$$
\left|\ell\left(\overrightarrow{\tilde{w}}^{\prime}\right)\right| \leq\left\|\vec{u}^{\prime}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)} \cdot\left\|\overrightarrow{\tilde{w}}^{\prime}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}
$$

and consequently

$$
\begin{equation*}
\left|\ell\left(\overrightarrow{\tilde{w}}^{\prime}\right)\right| \leq \beta\left\|\vec{u}^{\prime}\right\|_{\hat{\Xi}^{1}\left(\Omega^{\prime}\right)} \cdot\left\|w_{n \mid \Sigma}^{\prime}\right\|_{H^{1 / 2}(\Sigma)} \tag{25}
\end{equation*}
$$

Then, since $\ell$ depends on $w_{n \mid \Sigma^{\prime}}^{\prime}$ it is a continuous antilinear functional on $H^{1 / 2}(\Sigma)$, i.e an element of $\left[H^{1 / 2}(\Sigma)\right]^{\prime}$. Taking into account of $\tilde{w}_{n \mid \Sigma}^{\prime}=w_{n \mid \Sigma}^{\prime}$, the equation (23) can be written

$$
\int_{\Sigma} T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma} \cdot \bar{w}_{n \mid \Sigma}^{\prime} \mathrm{d} \Sigma=-\ell\left(\overrightarrow{\tilde{w}}^{\prime}\right)
$$

so that the normal stress $T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}$ can be considered as an element of $\left(H^{1 / 2}(\Sigma)\right)^{\prime}$. Therefore, we have

$$
\begin{aligned}
& \left|\left\langle T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}, w_{n \mid \Sigma}^{\prime}\right\rangle_{\left(H^{1 / 2}(\Sigma)\right)^{\prime}, H^{1 / 2}(\Sigma)}\right| \leq \beta\left\|\vec{u}^{\prime}\right\|_{\hat{\Xi}^{1}\left(\Omega^{\prime}\right)} \cdot\left\|w_{n \mid \Sigma}^{\prime}\right\|_{H^{1 / 2}(\Sigma)} \\
& \forall w_{n \mid \Sigma}^{\prime} \in H^{1 / 2}(\Sigma)
\end{aligned}
$$

and then

$$
\left\|T_{n}\left(\vec{u}^{\prime}\right)\right\|_{\left(H^{1 / 2}(\Sigma)\right)^{\prime}} \leq \beta\left\|\vec{u}^{\prime}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}
$$

Using (22), we obtain finally

$$
\left\|T_{n}\left(\vec{u}^{\prime}\right)\right\|_{\left(H^{1 / 2}(\Sigma)\right)^{\prime}} \leq \delta\left\|u_{n \mid \Sigma}\right\|_{H^{1 / 2}(\Sigma)} \quad(\delta=2 c \beta)
$$

Consequently, there exists a continuous linear operator $\widehat{T}$ from $H^{1 / 2}(\Sigma)$ into $\left(H^{1 / 2}(\Sigma)\right)^{\prime}$ such that

$$
\begin{equation*}
\widehat{T} u_{n \mid \Sigma}=-T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma} \tag{26}
\end{equation*}
$$

So, we have expressed linearly $T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}$ by means of $u_{n \mid \Sigma}$. The linear operator $\widehat{T}$ depends on the elasticity of the body. We are going to prove that it has properties of symmetry and positivity. We introduce the analogous problem: to find $\overrightarrow{\tilde{u}}^{\prime} \in \widehat{\Xi}^{1}\left(\Omega^{\prime}\right)$ verifying

$$
\begin{equation*}
-\frac{\partial \sigma_{i j}^{\prime}\left(\overrightarrow{\vec{u}}^{\prime}\right)}{\partial x_{j}}=0 \text { in } \Omega^{\prime} ; \overrightarrow{\tilde{u}}_{\mid s}^{\prime}=0 ; \tilde{u}_{n \mid \Sigma}^{\prime}=\tilde{u}_{n \mid \Sigma} \in H^{1 / 2}(\Sigma) ; \vec{T}_{t}\left(\vec{u}^{\prime}\right)_{\mid \Sigma}=0 \tag{27}
\end{equation*}
$$

In (23), we replace $\overrightarrow{\tilde{w}}^{\prime}$ by $\overrightarrow{\tilde{u}}^{\prime}$ and we have

$$
\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) \epsilon_{i j}^{\prime}\left(\overline{\overline{\tilde{u}}^{\prime}}\right) \mathrm{d} \Omega^{\prime}=-\int_{\Sigma} T_{n}\left(\vec{u}^{\prime}\right)_{\mid \Sigma} \overline{\tilde{u}}_{n \mid \Sigma}^{\prime} \mathrm{d} \Sigma=\left\langle\widehat{T} u_{n \mid \Sigma}, \tilde{u}_{n \mid \Sigma}^{\prime}\right\rangle
$$

and since $\tilde{u}_{n \mid \Sigma}^{\prime}=\tilde{u}_{n \mid \Sigma}$ :

$$
\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) \epsilon_{i j}^{\prime}\left(\overline{\vec{u}}^{\prime}\right) \mathrm{d} \Omega^{\prime}=\left\langle\widehat{T} u_{n \mid \Sigma}, \tilde{u}_{n \mid \Sigma}\right\rangle
$$

Inverting roles of $\vec{u}^{\prime}$ and $\overrightarrow{\vec{u}}^{\prime}$, we obtain

$$
\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\overrightarrow{\vec{u}}^{\prime}\right) \epsilon_{i j}^{\prime}\left(\overline{\vec{u}}^{\prime}\right) \mathrm{d} \Omega^{\prime}=\left\langle\widehat{T} \tilde{u}_{n \mid \Sigma}, u_{n \mid \Sigma}\right\rangle
$$

By virtue of the classical symmetry of the left-hand side, we obtain the property of hermitian symmetry

$$
\left\langle\widehat{T} u_{n \mid \Sigma}, \tilde{u}_{n \mid \Sigma}\right\rangle=\overline{\left\langle\widehat{T} \tilde{u}_{n \mid \Sigma}, u_{n \mid \Sigma}\right\rangle}
$$

Now, setting $\overrightarrow{\tilde{u}}^{\prime}=\vec{u}^{\prime}$, we have

$$
\left\langle\widehat{T} u_{n \mid \Sigma}, u_{n \mid \Sigma}\right\rangle=\int_{\Omega^{\prime}} \sigma_{i j}^{\prime}\left(\vec{u}^{\prime}\right) \epsilon_{i j}^{\prime}\left(\overrightarrow{\bar{u}}^{\prime}\right) \mathrm{d} \Omega^{\prime}=\left\|\vec{u}^{\prime}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)}^{2} .
$$

By virtue of a trace theorem, we have

$$
\left\|u_{n \mid \Sigma}\right\|_{H^{1 / 2}(\Sigma)} \leq C\left\|\vec{u}^{\prime}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)} \quad(C>0) .
$$

so that we have

$$
\left\langle\widehat{T} u_{n \mid \Sigma}, u_{n \mid \Sigma}\right\rangle \geq C^{-2}\left\|u_{n \mid \Sigma}^{\prime}\right\|_{H^{1 / 2}(\Sigma)}^{2}
$$

and, since $u_{n \mid \Sigma}^{\prime}=u_{n \mid \Sigma}$, the relation of positivity

$$
\left\langle\widehat{T} u_{n \mid \Sigma}, u_{n \mid \Sigma}\right\rangle \geq C^{-2}\left\|u_{n \mid \Sigma}\right\|_{H^{1 / 2}(\Sigma)}^{2}
$$

The second dynamic condition (17) can be written as:

$$
\begin{equation*}
p_{\mid \Sigma}=\widehat{T} u_{n \mid \Sigma}+\rho_{\left.0\right|_{\Sigma}} g n_{3 \mid \Sigma} u_{n \mid \Sigma} \tag{28}
\end{equation*}
$$

So, we have reduced ou problem to a problem for a gas only:

$$
\begin{gather*}
\ddot{\vec{u}}=\overrightarrow{\operatorname{grad}}\left(\frac{c_{0}^{2}\left(x_{3}\right) \operatorname{div}\left[\rho_{0}\left(x_{3}\right) \vec{u}\right]}{\rho_{0}\left(x_{3}\right)}\right) .  \tag{29}\\
-c_{0}^{2} \operatorname{div}\left(\rho_{0} \vec{u}\right)_{\mid \Sigma}=\widehat{T} u_{n \mid \Sigma}+\rho_{\left.0\right|_{\Sigma}} g n_{3 \mid \Sigma} u_{n \mid \Sigma} . \tag{30}
\end{gather*}
$$

Afterwards, the auxiliary problem gives $\vec{u}^{\prime}$, i.e. the motion of the elastic body.

## 5. Variational formulation of the problem

We consider a field of a admissible displacements $\overrightarrow{\vec{u}}\left(x_{i}\right)$, smooth in $\Omega$ and such that $\overrightarrow{\vec{u}}=\overrightarrow{\operatorname{grad}} \tilde{\varphi}$. We have

$$
\begin{aligned}
\int_{\Omega} \rho_{0} \ddot{\vec{u}} \cdot \overline{\tilde{u}} \mathrm{~d} \Omega & =\int_{\Omega} \rho_{0} \overrightarrow{\operatorname{grad}}\left(\frac{c_{0}^{2} \operatorname{div}\left(\rho_{0} \vec{u}\right)}{\rho_{0}}\right) \cdot \overline{\vec{u}} \mathrm{~d} \Omega \\
& =\int_{\Sigma} c_{0}^{2} \operatorname{div}\left(\rho_{0} \vec{u}\right) \cdot \overline{\tilde{u}}_{n \mid \Sigma} \mathrm{d} \Sigma-\int_{\Omega} \frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \vec{u}\right) \operatorname{div}\left(\rho_{0} \overline{\tilde{\tilde{u}}}\right) \mathrm{d} \Omega
\end{aligned}
$$

and then

$$
\left.\begin{array}{r}
\int_{\Omega} \rho_{0} \ddot{\vec{u}} \cdot \overline{\overrightarrow{\tilde{u}}} \mathrm{~d} \Omega+\int_{\Omega} \frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \vec{u}\right) \operatorname{div}\left(\rho_{0} \overline{\overrightarrow{\tilde{u}}}\right) \mathrm{d} \Omega  \tag{31}\\
\quad+\int_{\Sigma}\left(\widehat{T} u_{n \mid \Sigma}+\rho_{\left.0\right|_{\Sigma}} g n_{3 \mid \Sigma} u_{n \mid \Sigma}\right) \overline{\tilde{u}}_{n \mid \Sigma} \mathrm{d} \Sigma=0
\end{array}\right\}
$$

Conversely, let $\vec{u}$ a function of $t$ with values in the field of the admissible displacements and verifying (31). We obtain easily from (31)

$$
\left.\begin{array}{rl}
0= & \int_{\Omega} \rho_{0}\left[\ddot{\vec{u}}-\overrightarrow{\operatorname{grad}}\left(\frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \vec{u}\right)\right)\right] \cdot \overrightarrow{\operatorname{grad}} \overline{\tilde{\varphi}} \mathrm{d} \Omega \\
& +\int_{\Sigma}\left[c_{0}^{2} \operatorname{div}\left(\rho_{0} \vec{u}\right)+\widehat{T} u_{n \mid \Sigma}+\rho_{0 \mid \Sigma} g n_{3 \mid \Sigma} u_{n \mid \Sigma}\right] \frac{\partial \overline{\tilde{\varphi}}}{\partial n}{ }_{\mid \Sigma} \mathrm{d} \Sigma
\end{array}\right\} \forall \overrightarrow{\tilde{u}}=\overrightarrow{\operatorname{grad}} \tilde{\varphi}
$$

or

$$
\left.\begin{array}{rl}
0 & =\int_{\Sigma} \overline{\tilde{\varphi}} \cdot \rho_{0}\left[\ddot{\vec{u}}-\overrightarrow{\operatorname{grad}}\left(\frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \vec{u}\right)\right)\right] \cdot \vec{n}_{\mid \Sigma} \mathrm{d} \Sigma \\
& -\int_{\Sigma}\left[c_{0}^{2} \operatorname{div}\left(\rho_{0} \vec{u}\right)+\widehat{T} u_{n \mid \Sigma}+\rho_{0 \mid \Sigma} g n_{3 \mid \Sigma} u_{n \mid \Sigma}\right] \frac{\partial \overline{\tilde{\varphi}}}{\partial n}{ }_{\mid \Sigma} \mathrm{d} \Sigma  \tag{32}\\
& -\int_{\Omega} \operatorname{div}\left[\rho_{0}\left(\ddot{\vec{u}}-\overrightarrow{\operatorname{grad}}\left(\frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \vec{u}\right)\right)\right)\right] \cdot \overline{\tilde{\varphi}} \mathrm{d} \Omega .
\end{array}\right\}
$$

Taking $\tilde{\varphi} \in \mathscr{D}(\Omega)$ and setting

$$
\vec{\Phi}_{0}=\rho_{0} \overrightarrow{\operatorname{grad}}\left[\ddot{\varphi}-\frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \overrightarrow{\operatorname{grad}} \varphi\right)\right]
$$

we have

$$
\begin{equation*}
\operatorname{div} \vec{\Phi}_{0}=0 \quad \text { in } \Omega \tag{33}
\end{equation*}
$$

Taking $\tilde{\varphi}_{\mid \Sigma}$ arbitrary and $\left.\frac{\partial \tilde{\varphi}}{\partial n}\right|_{\Sigma \Sigma}=0$, we obtain

$$
\rho_{0}\left[\ddot{\vec{u}}-\overrightarrow{\operatorname{grad}}\left(\frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \vec{u}\right)\right)\right] \cdot \vec{n}=0 \quad \text { on } \quad \Sigma
$$

or

$$
\begin{equation*}
\vec{\Phi}_{0} \cdot \vec{n}=0 \quad \text { on } \quad \Sigma \tag{34}
\end{equation*}
$$

Finally, taking $\left.\frac{\partial \tilde{\varphi}}{\partial n} \right\rvert\, \Sigma$ arbitrary, we have

$$
c_{0}^{2} \operatorname{div}\left(\rho_{0} \vec{u}\right)_{\mid \Sigma}+\widehat{T} u_{n \mid \Sigma}+\rho_{\left.0\right|_{\Sigma}} g n_{3 \mid \Sigma} u_{n \mid \Sigma}=0,
$$

i.e the dynamic condition (30). Since

$$
\vec{\Phi}_{0}=\rho_{0} \overrightarrow{\operatorname{grad}} \Psi, \quad \text { with } \quad \Psi=\ddot{\varphi}-\frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \overrightarrow{\operatorname{grad}} \varphi\right)
$$

the Equations (33) and (34) give

$$
\begin{equation*}
\operatorname{div}\left(\rho_{0} \overrightarrow{\operatorname{grad}} \Psi\right)=0 \quad \text { in } \quad \Omega ; \left.\quad \frac{\partial \Psi}{\partial n} \right\rvert\, \Sigma=0 \tag{35}
\end{equation*}
$$

This Weumann problem has for solution only $\Psi=$ constant and consequently

$$
\ddot{\vec{u}}-\overrightarrow{\operatorname{grad}}\left(\frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \vec{u}\right)\right)=0
$$

## 6. The problem is a classical vibration problem

## Step 1.

We precise the field of the admissible displacements by introducing the space $V$ :

$$
V=\left\{\begin{array}{l}
\overrightarrow{\tilde{u}} \in \mathscr{L}^{2}(\Omega) \stackrel{\text { def }}{=}\left[L^{2}(\Omega)\right]^{3} ; \overrightarrow{\tilde{u}}=\overrightarrow{\operatorname{grad}} \tilde{\varphi} ; \tilde{\varphi} \in \widetilde{H}^{1}(\Omega) ; \operatorname{div}\left(\rho_{0} \overrightarrow{\tilde{u}}\right) \in L^{2}(\Omega) ; \\
\left.\frac{\partial \tilde{\varphi}}{\partial n} \right\rvert\, \Sigma \\
=\tilde{u}_{n \mid \Sigma} \in H^{1 / 2}(\Sigma)
\end{array}\right\},
$$

equipped with the hilbertian norm defined by

$$
\|\vec{u}\|_{V}^{2}=\int_{\Omega} \rho_{0}|\vec{u}|^{2} \mathrm{~d} \Omega+\int_{\Omega}\left|\operatorname{div}\left(\rho_{0} \vec{u}\right)\right|^{2} \mathrm{~d} \Omega+\left\|u_{n \mid \Sigma}\right\|_{H^{1 / 2}(\Sigma)}^{2}
$$

and the space $H$ completion of $V$ for the norm associated to the scalar product

$$
(\vec{u}, \overrightarrow{\tilde{u}})_{H}=\int_{\Omega} \rho_{0} \vec{u} \cdot \overline{\tilde{u}} \mathrm{~d} \Omega
$$

Setting

$$
a(\vec{u}, \overrightarrow{\vec{u}})=\int_{\Omega} \frac{c_{0}^{2}}{\rho_{0}} \operatorname{div}\left(\rho_{0} \vec{u}\right) \operatorname{div}\left(\rho_{0} \overline{\vec{u}}\right) \mathrm{d} \Omega+\int_{\Sigma}\left(\widehat{T} u_{n \mid \Sigma}+\rho_{0 \mid \Sigma} g n_{3 \mid \Sigma} u_{n \mid \Sigma}\right) \overline{\tilde{u}}_{n \mid \Sigma} \mathrm{d} \Sigma,
$$

we obtain the precise variational formulation of the problem. To find $\vec{u}(\cdot) \in V$ such that

$$
(\ddot{\vec{u}}, \overrightarrow{\tilde{u}})_{H}+a(\vec{u}, \overrightarrow{\tilde{u}})=0 \quad \forall \overrightarrow{\tilde{u}} \in V .
$$

## Step 2.

Let us study the hermitian sesquilinear form

$$
\mathscr{C}\left(u_{n \mid \Sigma}, \tilde{u}_{n \mid \Sigma}\right) \stackrel{\text { def }}{=} \int_{\Sigma}\left(\widehat{T} u_{n \mid \Sigma}+\rho_{0 \mid \Sigma} g n_{3 \mid \Sigma} u_{n \mid \Sigma}\right) \overline{\tilde{u}}_{n \mid \Sigma} \mathrm{d} \Sigma
$$

$\mathscr{C}$ is continuous on $H^{1 / 2}(\Sigma) \times H^{1 / 2}(\Sigma)$ and we have:

$$
\mathscr{C}\left(u_{n \mid \Sigma}, u_{n \mid \Sigma}\right) \geq\left(C^{-2}-\max \rho_{0 \mid \Sigma} g\right)\left\|u_{n \mid \Sigma}\right\|_{H^{1 / 2}(\Sigma)}^{2}
$$

In the following, we suppose that $\mathscr{C}$ is coercive, i.e

$$
C^{-2}-\max \rho_{0 \mid \Sigma} g>0
$$

(for example, if $\max \rho_{0 \mid \Sigma}$ is sufficiently small).
Then, $\left[\mathscr{C}\left(u_{n \mid \Sigma}, u_{n \mid \Sigma}\right)\right]^{1 / 2}$ defines on $H^{1 / 2}(\Sigma)$ a norm that is equivalent to the classical norm of $H^{1 / 2}(\Sigma)$.

## Step 3.

In order to prove that the problem is a classical vibration problem, we use the method that is introduced in [7]. We must prove that
a) $[a(\vec{u}, \vec{u})]^{1 / 2}$ defines on $V$ a norm equivalent to $\|\vec{u}\|_{V}$.
b) The imbedding $V \subset H$, obviously dense and continuous, hence compact. We omit the proof that is strictly identical to the proof in [7], p66-68. Therefore there exists a denumerable infinity of positive real eigenvalues $\omega_{p}^{2}$ :

$$
0<\omega_{1}^{2} \leq \omega_{2}^{2} \leq \cdots \leq \omega_{p}^{2} \leq \cdots ; \omega_{p}^{2} \rightarrow+\infty \text { when } p \rightarrow+\infty
$$

The eigenelements $\left\{\vec{u}_{p}\right\}$ form an orthonormal basis in $H$ and an orthogonal basis in $V$ equipped with the scalar product $(\vec{u}, \overrightarrow{\tilde{u}})_{V}$.
To each eigenmotion $\left\{\vec{u}_{p}\right\}$ of the gas corresponds an eigenmotion $\left\{\vec{u}_{p}^{\prime}\right\}$ of the elastic body verifying

$$
\left\|\vec{u}_{p}^{\prime}\right\|_{\widehat{\Xi}^{1}\left(\Omega^{\prime}\right)} \leq 2 c\left\|u_{n p \mid \Sigma}\right\|_{H^{1 / 2}(\Sigma)} .
$$

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflicts of Interest: "The authors declare no conflict of interest."

## References

[1] Moiseyev, N. N. (1952). About the oscillations of an ideal incompressible liquid in a container. In Doklady AN SSSR (Vol. 85, pp. 1-20).
[2] Kopachevsky, N. D., \& Krein, S. (2012). Operator Approach to Linear Problems of Hydrodynamics: Volume 2: Nonself-adjoint Problems for Viscous Fluids (Vol. 146). Birkhäuser.
[3] Moiseyev, N. N., \& Rumyantsev, V. V. (2012). Dynamic stability of bodies containing fluid (Vol. 6). Springer Science \& Business Media.
[4] Morand, H.J-P., \& Ohayon, R. (1992). Interactions fluides-structures-Masson. Paris.
[5] Rapoport, I.M. (1968). Rapoport, I. M. (2012). Dynamics of elastic containers: partially filled with liquid (Vol. 5). Springer Science \& Business Media.
[6] Essaouini, H., El Bakkali, L., \& Capodanno, P. (2017). Mathematical study of the three dimensional oscillations of a heavy almost homogeneous liquid partially filling an elastic container. Electronic Journal of Mathematical Analysis and Applications, 5 (1), 64-80.
[7] Hubert, J. S. (2012). Vibration and coupling of continuous systems: asymptotic methods. Springer Science \& Business Media.
(C) 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

