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1. Introduction

S tochastic differential equation is an emerging field drawing attention from both theoretical and applied
disciplines, which has been successfully applied to problems in mechanical, electrical, physics,

economics and several fields in engineering. For details see [2,3] and the references therein. Recently a
large number of interesting results of stochastic equations have been reported in [4–8]. Stochastic differential
equations are used in the modeling of real life phenomena, where there is a need for an aspect of randomness
(see [9–11]).

Furthermore, several practical systems (such as sudden price variations due to market crashes,
earthquakes, hurricanes, epidemics, and so on) experiences some jump type stochastic perturbations. The
sample paths are not being continuous, thus it is seize considering stochastic processes with jumps in
describing the models. Generally, the jump models are derived from poisson random measure. The sample
paths of systems being right continuous possess left limits. In the recent trend, researchers are focusing more
on the theory and applications of impulsive stochastic functional differential equations with poisson jumps.
Precisely, existence and stability results on impulsive stochastic functional differential equations with poisson
jumps are found in [12–15] and the references therein. Successively, few works have been reported in the study
of stochastic differential equations with poisson jumps, refer to [13,14,16].

However, motivated by the above consideration, the aim of this paper is to establish the results on
existence and uniqueness for stochastic differential equation with Poisson jumps and delay of the form:

du(t) = [Au(t) + f (t, u(t− ρ(t)))]dt + g(t, u(t− δ(t)))dW(t) +
∫

Z
h(t, u(t− σ(t)), z)Ñ(dt, dz),

x0 = ξ ∈ Db
F0
([−τ, o], H). (1)

The mappings f : R+ ×D([−τ, o]; H)→ H, g : R+ ×D([−τ, o]; H)→ L0
2(K, H), h : R+ ×D([−τ, o]; H)×

Z → H are Borel measurable, ρ : R+ → [0, τ], δ : R+ → [0, δ], σ : R+ → [0, σ] are continuous.
This paper is organized as follows: In Section 2, we give some basic definitions and results, which will be

used in the sequel. In Section 3, the existence result for the system 1 is proved.

2. Preliminaries

Let H and K be a two real separable Hilbert space. Let L(H,K) denote the space of all bounded linear
operators from H into K, equipped with the usual operator norm ‖.‖ and we abbreviate this notation to L(H)

when H = K. In this paper, we always use the same symbol ‖.‖ to denote norms of operators regardless of the
spaces potentially involved when no confusion possibly arises. Let (Ω,F ,Ft≥0,P) be a complete probability
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space with a normal filtration Ft≥0 satisfying the usual conditions (i.e. it is increasing and right continuous
while F0 contains all P null sets).

Let {W(t) : t ≥ 0} denote a K-valued Wiener process defined on the probability space (Ω,F ,Ft≥0,P),
independent of poisson point process with covariance operator Q; that is, E 〈W(t), x〉K 〈W(s), y〉K = (t ∧
s) 〈Qx, y〉K, for all x, y ∈ K, where Q is a positive, self-adjoint, trace class operator on K. In particular, we
denote W(t) a K-valued Q-Wiener process with respect to Ft≥0. To define stochastic integrals with respect to
the Q-Wiener process W(t), we introduce the subspace K0 = Q

1
2 K of K endowed with the inner product:

〈u, v〉K0
=
〈

Q
−1
2 u, Q

−1
2 v
〉
K

as a Hilbert space. We assumed that there exists a complete orthonormal system ei in K, a bounded sequence
of positive real numbers λi such that Qei = λiei, i = 1, 2, 3, ... and a sequence βi(t)i>1 of independent standard

Brownian motions such that W(t) =
+∞
∑

i=1

√
λiβi(t)ei for t ≥ 0 and Ft = Fw

t , where Fw
t is the σ-algebra

generated by W(s) : 0 ≤ s ≤ t.
Suppose {p(t), t ≥ 0} is a σ-finite stationary Ft adapted Poisson point process taking values in

measurable space (U,BU). The random measure Np defind by Np ((o, t]×∧) := ∑
s∈(0,t]

I∧(P(s)) for ∧ ∈ B(U)

is called the Poisson random measure induced by P(.), thus, we can define the measure N by N(dt, dy) =

Np(dt, dy) − v(dy)dt, where y is the characteristic measure of Np, which is called the compensated Poisson
random measure. For a main source for the material on Poisson process and random measure we refer to
[17]. For a Borel set Z ∈ Bσ(H− {0}), we denote by P2([0, T] × Z;H) the space of all predicable mapping
H : [0, T]×Z×Ω→ H for which

∫ t
0

∫
Z E ‖H(t, v)‖2 dtλ(dz) < ∞. Then one can define the H- valued stochastic

integral ∫ t

0

∫
Z

H(t, v)N̄(dt, dz),

which is a centered square integrable martingale [18]. We always assume that W(t) and N̄ are independent
of F0. Also S = C([0, a]; X) denotes the space of all continuous functions with the norm ‖.‖C([0,a];X) =

supt∈[0,a] ‖x(t)‖X .
Consider the following Stochastic partial differential equation driven by Poisson jumps with delays:

du(t) = [Au(t) + f (t, u(t− ρ(t)))]dt + g(t, u(t− δ(t)))dW(t) +
∫

Z
h(t, u(t− σ(t)), z)Ñ(dt, dz).

The above equation is equivalent to the following integral equation:

u(t) = ξ(0) +
∫ t

0
Au(t)ds +

∫ t

0
f (s, u(s− ρ(s)))ds +

∫ t

0
g(s, u(s− δ(s)))dW(s)

+
∫ t

0

∫
Z

h(s, u(s− σ(s)), z)Ñ(ds, dz). (2)

This can be written the following form:

u(t) = f (t) +
∫ t

0
s′(t− s) f (s)ds (3)

where,

f (t) = ξ(0) +
∫ t

0
f (s, u(s− ρ(s)))ds +

∫ t

0
g(s, u(s− δ(s)))dW(s)

+
∫ t

0

∫
Z

h(s, u(s− σ(s)), z)Ñ(ds, dz).

Let us assume that the integral equation (3) has an associated resolvent operator {S(t)}t≥0 on H.

Definition 1. [1] A family (S(t))t≥0 ⊂ L(X) of bounded linear operators in X is called resolvent for (4)(or
solution operator for (4), if the following conditions are satisfied

(S1) S(t) is strongly continuous on R+ and S(0) = I,
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(S2) S(t) commutes with A, which means that S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and
t ≥ 0;

(S3) The resolvent equation holds

S(t)x = x +
∫ t

0
As(s)xds.

Definition 2. [1] A resolvent S(t) for (3) is called differentiable, if S(·)x ∈W1,1(R+; X) for each x ∈ D(A) and
there is φA ∈ L1

loc(R
+) such that ‖S′(t)x‖ ≤ φA(t)‖x‖D(A) a.e. on R+, for each x ∈ D(A), Where the notation

[D(A)] stands the domain of the operator A provided with the graph norm ‖x‖[D(A)] = ‖x‖+ ‖Ax‖.

Lemma 3. [1] Suppose (3) admits a differentiable resolvent S(t) and if f ∈ C([0, a];D(A)), then

u(t) = f (t) +
∫ t

0
S′(t− s) f (s)ds, t ∈ [0, a]

is a mild solution of (3).

In order to prove that the existence result of the stochastic partial differential equation with poisson jumps
and delays, we need the following assumptions:

(H1) The mapping f (t, .) and g(, .) satisfies the following Lipschitz and linear growth conditions, for any
x, y ∈ H and t ≥ 0

‖ f (t, x)− f (t, y)‖H ≤ L1 ‖x− y‖H ∀t ≥ 0, x, y ∈ H whereL1 > 0,

‖g(t, x)− g(t, y)‖H ≤ L1 ‖x− y‖H ∀t ≥ 0, x, y ∈ H whereL2 > 0.

(H2) The mapping h(t, .) satisfy global Lipschitz conditions, for any x, y ∈ H and t ≥ 0∫
Z
‖h(t, x, z)− h(t, y, z)‖2 v(dz) ≤ L2

3 ‖x− y‖2 , L3 > 0.

3. Existence and uniqueness results

In this section, we provide the existence results for (1), this problem is equivalent to the following integral
equation:

u(t) = ξ(0) +
∫ t

0
Au(t)ds +

∫ t

0
f (s, u(s− ρ(s)))ds +

∫ t

0
g(s, u(s− δ(s)))dW(s)

+
∫ t

0

∫
Z

h(s, u(s− σ(s)), z)Ñ(ds, dz).

By Lemma 2 and the above representation, the mild solution of (1) can be defined as follows:

Definition 4. A stochastic process {u(t), t ∈ [0, T]}, 0 ≤ T ≤ ∞, is called a mild solution of (1) if

1. u(t) is adapted to Ft, t ≥ 0;
2. u(t) ∈ H has cadlag paths on t ∈ [0, T] almost surely, and for arbitrary 0 ≤ t ≤ T,

u(t) = ξ(0) +
∫ t

0
f [s, u(s− ρ(s))]ds +

∫ t

0
g[s, u(s− δ(s))]dW(s)

+
∫ t

0

∫
Z

h[s, u(s− σ(s)), z]Ñ(dsdz) +
∫ t

0
s′(t− s)ξ(0)ds +

∫ t

0
s′(t− s)

∫ s

0
f [τ, x(τ − ρ(τ))]dτds

+
∫ t

0
s′(t− s)

∫ s

0
g[τ, u(τ − δ(τ))]dW(τ)ds +

∫ t

0
s′(t− s)

∫ s

0

∫
Z

h[τ, u(τ − σ(τ)), z]Ñ(dsdz)ds.

Theorem 5. Assume that (H1) and (H2)are hold, then the problem (1) is a unique mild solution.
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Proof. Define the operator Φ : S→ S by Φ(u)(t) = ξ(t) for t ∈ [−τ, 0] and for t ≥ 0, defined by

Φ(u)(t) = ξ(0) +
∫ t

0
f [s, u(s− ρ(s))]ds +

∫ t

0
g[s, u(s− δ(s))]dW(s)

+
∫ t

0

∫
Z

h[s, u(s− σ(s)), z]Ñ(dsdz) +
∫ t

0
s′(t− s)ξ(0)ds

+
∫ t

0
s′(t− s)

∫ s

0
f [τ, x(τ − ρ(τ))]dτds +

∫ t

0
s′(t− s)

∫ s

0
g[τ, u(τ − δ(τ))]dw(τ)ds

+
∫ t

0
s′(t− s)

∫ s

0

∫
Z

h[τ, u(τ − σ(τ)), z]Ñ(dsdz)ds.

First, we verify that Φ is p-th mean continuous on[0, ∞). Let u ∈ S, t1 ≥ 0 and |h| be sufficiently small,
then

E ‖(Φu)(t1 + h)− (Φu)(t1)‖P
H ≤ 7p−1

7

∑
i=1

E ‖Ii(t1 + h)− Ii(t1)‖P
H .

By using Hölders inequalities and the Burkholder-Davies-Gundy inequality, we have

E ‖I2(t1 + h)− I2(t1)‖P
H ≤ E

∥∥∥∥∫ t1+h

0
g[s, u(s− δ(s))]dW(s)−

∫ t1

0
g[s, u(s− δ(s))]dW(s)

∥∥∥∥P

H

≤ E
∥∥∥∥∫ t1+h

t1

g[s, u(s− δ(s))]dw(s)
∥∥∥∥P

H

≤ cpE

((∫ t1+h

t1

‖g[s, u(s− δ(s))]‖P
H

)2/p

ds

)p/2

≤ cp

(∫ t1+h

t1

E ‖g[s, u(s− δ(s))]‖P
H ds

)
→ 0 as h→ 0.

Next

E ‖I7(t1 + h)− I7(t1)‖P
H ≤ 2p−1E

∥∥ ∫ t1

0
s′(t1 + h− s)− s′(t1 − s)

[∫ s

0

∫
Z

h[τ, u(τ − σ(τ)), z]N̄(dτdz)
]

ds
∥∥P

H

+2p−1E
∥∥∥∥∫ t1+h

t1

s′(t1 + h− s)
∫ s

0

∫
Z

h[τ, u(τ − σ(τ)), z]N̄(dτdz)ds
∥∥∥∥P

H
→ 0 as h→ 0.

Similarly, we can verify that:

E ‖Ii(t1 + h)− Ii(t1)‖2
H → 0, i = 1, 3, 4, 5, 6 as h→ 0, (4)

where cp = (p(p− 1)/2)p/2. Thus Φ is indeed continuous in pth mean on [0, ∞).
Next, we show that Φ(S) ⊂ S. It follows from (1), then we have

E ‖(Φx)(t)‖P
H ≤ 8P−1E ‖ξ(0)‖P

H + 8P−1E
∥∥∥∥∫ t

0
f [s, u(s− ρ(s))]ds

∥∥∥∥
+8P−1E

∥∥∥∥∫ t

0
g[s, u(s− δ(s))]dW(S)

∥∥∥∥P

H
+ 8P−1E

∥∥∥∥∫ t

0

∫
Z

h[s, u(s− σ(s)), z]N̄(dsdz)
∥∥∥∥P

H

+8P−1E
∥∥∥∥∫ t

0
s′(t− s)ξ(0)ds

∥∥∥∥P

H
+ 8P−1E

∥∥∥∥∫ t

0
s′(t− s)

∫ s

0
f [τ, u(τ − ρ(τ))]dτds

∥∥∥∥P

H

+8P−1E
∥∥∥∥∫ t

0
s′(t− s)

∫ s

0
g[τ, u(τ − δ(τ))]dW(τ)ds

∥∥∥∥P

H

+8P−1E
∥∥∥∥∫ t

0
s′(t− s)

∫ s

0

∫
Z

h[τ, u(τ − σ(τ)), z]N̄(dτdz)ds
∥∥∥∥P

H
=

8

∑
i=1

Ji(t).
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Now we estimate Ji, i = 1, 2, . . . , 8, then we have

J1(t) ≤ ‖ξ‖P
D < ∞.

Now by (H1), we obtain

J2(t) ≤ E
[∫ t

0
‖ f [s, u(s− ρ(s))]‖H ds

]P
≤ Lp

1 ‖u‖
p
D T.

Now, from the Lemma (Da Prato and Zabczyk [4]) and by the (H1), we have

J3(t) ≤ cp

[∫ t

0

(
E ‖g[s, u(s− δ(s))]‖P

H

) 2
p ds

] p
2

≤ cpLP
2 ‖u‖

P
D T.

Similarly, by (H2), we obtain

J4(t) ≤ cp

[
E[
∫ t

0

∫
h
‖h(s, u(s− σ(s))), z]‖2

H dsv(dz)
] p

2
≤ cpLp

3

[∫ t

0
E ‖u(s− σ(s))‖2

H ds
] p

2
≤ cpLp

3 ‖u‖
P
D T

By (H1), (H2) and Well known Lemma (Da Prato and Zabczyk [4]), we have

J5(t) ≤ ‖ξ(0)‖ ‖φA‖L1([0,t];R+)

J6(t) ≤ LP
1

∫ t

0
φA(t− s)

∫ t

0
E ‖u(τ − ρ(τ))dτ‖p

H ds ≤ ‖ξ(0)‖ ‖φA‖L1([0,t];R+)

J7(t) ≤ cpLp
2

∫ t

0
φA(t− s)

∫ s

0
E ‖u(τ − δ(τ))‖P

H dτds ≤ cpLp
2 ‖u‖

p
D T ‖φA‖L1([0,t];R+)

J8(t) ≤ cpE
[∫ t

0
φA(t− s)

∫ s

0

∫
Z
‖h[τ, u(τ − σ(τ)), z]‖2 v(dz)ds

] p
2
≤ cpLp

3 ‖u‖
p
D T ‖φA‖L1([0,t];R+) .

From the above estimations, we have ‖(Φx)(t)‖ < ∞. So we conclude that Φ(S) ⊂ (S).
Next, we need to show that Φ is contraction mapping. Let u, v ∈ S, then we have

E sup
t∈[0,T]

‖(Φu)(t)− (Φv)(t)‖

≤ 6p−1 sup
t∈[0,T]

E
∥∥∥∥∫ t

0
( f [s, u(s− ρ(s))]− f [s, v(s− ρ(s))]) ds

∥∥∥∥P

H

+ 6p−1 sup
t∈[0,T]

E
∥∥∥∥∫ t

0
(g[s, u(s− δ(s))]− g[s, v(s− δ(s))]) dW(s)

∥∥∥∥P

H

+ 6p−1 sup
t∈[0,T]

E
∥∥∥∥∫ t

0

∫
Z
(h[s, u(s− σ(s)), z]− h[s, v(s− σ(s)), z]) Ñ(ds, dz)

∥∥∥∥P

H

+ 6p−1 sup
t∈[0,T]

E
∥∥∥∥∫ t

0
s′(t− s)

[∫ s

0
( f [τ, u(τ − ρ(τ))]− f [τ, v(τ − ρ(τ))]) dτ

]
ds
∥∥∥∥P

H

+ 6p−1 sup
t∈[0,T]

E
∥∥∥∥∫ t

0
s′(t− s)

[∫ s

0
(g[τ, u(τ − δ(τ))]− g[τ, v(τ − δ(τ))]) dW(τ)

]
ds
∥∥∥∥P

H

+ 6p−1 sup
t∈[0,T]

E
∥∥∥∥∫ t

0
s′(t− s)

[∫ s

0

∫
z
(h[τ, u(τ − σ(τ)), z]− h[τ, v(τ − σ(τ)), z]) Ñ(dτdz)

]
ds
∥∥∥∥P

H

≤ 6p−1 sup
t∈[0,T]

E ‖u(t)− v(t)‖P
H T ×

(
LP

1 ++cpLP
2 + LP

3

) [
1 + ‖φA‖L1[0,T];R+

]
.
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If T > 0 is sufficiently small, then we can ensure that(
LP

1 ++cpLP
2 + LP

3

) [
1 + ‖φA‖L1[0,T];R+

]
< 1.

We conclude that the operator Φ satisfies the contraction mapping principle and hence there exists a
unique mild solution of (1) on T ∈ [0, T].
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