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Abstract: Inspired by the observation that adjacent vertices need possess their own characteristics in terms of
total coloring, we study the smarandachely adjacent vertex total coloring (abbreviated as SAVTC) of a graph
G, which is a proper total coloring of G such that for every vertex u and its every neighbor v, the color-set of
u contains a color not in the color-set of v, where the color-set of a vertex is the set of colors appearing at the
vertex or its incident edges. The minimum number of colors required for an SAVTC is denoted by χsat(G).
Compared with total coloring, SAVTC would be more likely to be developed for potential applications in
practice. For any graph G, it is clear that χsat(G) ≥ ∆(G) + 2, where ∆(G) is the maximum degree of G.
We, in this work, analyze this parameter for general subcubic graphs. We prove that χsat(G) ≤ 6 for every
subcubic graph G. Especially, if G is an outerplanar or claw-free subcubic graph, then χsat(G) = 5.
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1. Introduction

A ll graphs considered in this paper are simple and undirected. The terminology and notation used but
undefined here can be found in [1]. Let G be a graph with vertex set V(G) and edge set E(G). We use

dG(v) to denote the degree of a vertex v in G. A vertex v is called a t-vertex (t−-vertex or t+-vertex) of G if
dG(v)=t (dG(v) ≤ t or dG(v) ≥ t). We refer to t-vertices, t−-vertices and t+-vertices adjacent to v as t-neighbors,
t−-neighbors and t+-neighbors of v, respectively. Let ∆(G) and δ(G) denote the maximum degree and minimum
degree of G, respectively. The open neighborhood of v, written as NG(v), is defined as the set of vertices adjacent
to v in G, i.e. NG(v) = {u|uv ∈ E(G)}. For any V′ ⊂ V(G) and E′ ∈ E(G), we use G − V′ (resp. G − E′) to
denote the graph obtained from G by deleting vertices in V′ and their incident edges (resp. by removing edges
in E′). For any integers a, b with a < b, let [a, b]={a, a + 1, . . . , b}.

We, for convenience, denote by T(G) the set of vertices and edges of a graph G, i.e. T(G) = V(G)∪ E(G).
Let k be a positive integer, and f a mapping from T(G) to [1, k]. If f satisfies the following coloring conditions:

(1) f (u) 6= f (v) for any uv ∈ E(G),
(2) f (u) 6= f (e) for every vertex u and every edge e incident with u,
(3) f (e) 6= f (e′) for every pair e, e′ of adjacent edges,

then we call f a proper total k-coloring of G. For any v ∈ V(G), we call C f (v) the color-set of v (under f ),
which denotes the set of colors of v and its incident edges under f . Furthermore, let C f (x) = [1, k] \ C f (x). To
distinguish the color-sets of two adjacent vertices from the perspective of proper total coloring, Zhang et al.[2]
introduced the concept of adjacent vertex distinguishing total coloring (or AVDTC simply), which is a proper
total coloring f with the constraint (4) as follows:

(4) C f (u) 6= C f (v) for every uv ∈ E(G).

The minimum number k such that G has a k-AVDTC is the adjacent vertex distinguishing total chromatic
number of G, denoted by χat(G). As for this parameter, a famous conjecture says that every graph G has an
adjacent vertex distinguishing total coloring using at most ∆(G) + 3 colors, i.e. χat(G) ≤ ∆(G) + 3. This
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conjecture has been confirmed for special families of graphs, e.g. graphs with maximum degree 3 [3–5],
graphs without K4-minor [6], graphs with smaller maximum average degree and large maximum degree
[7,8], outerplane graphs [9], 2-degenerate graphs [10], graphs with maximum degree 4 [11], generalized
Mycielski graphs [12], etc. In [13], a stronger version of AVDTC called smarandachely adjacent vertex total coloring
(abbreviate to SAVTC) is studied. A k-SAVTC of a graph G is a proper total k-coloring that satisfies coloring
condition (5) as below:

(5) C f (u) \ C f (v) 6= ∅ and C f (v) \ C f (u) 6= ∅ for every uv ∈ E(G).

We refer to the smallest number k such that G has a k-SAVTC as the smarandachely adjacent vertex total
chromatic number of G, denoted by χsat(G). Clearly, condition (5) is a stronger version of condition (4). That is,
if f is a k-SAVTC of G, then f is a k-AVDTC of G, whereas the converse is not necessarily true. For example,
when a graph G contains no adjacent vertices with maximum degree, it is possible that χat(G) = ∆(G) + 1, e.g.
the star graph Sn, n ≥ 3. However, by coloring condition (5), one can readily check that χsat(G) ≥ ∆(G) + 2
for all graphs G.

Therefore, such a parameter is independent, interesting and meaningful. In [13], Zhang proposed the
following conjecture.

Conjecture 1. [13] For any graph G, χsat(G) ≤ ∆(G) + 3.

Observe that for two adjacent vertices u, v ∈ V(G) such that dG(u) ≤ dG(v), to check that C f (u) and
C f (v) satisfy the coloring condition (5) under a total coloring f of G, it is sufficient to examine whether there is
an element c such that c ∈ C f (u) and c /∈ C f (v). Therefore, we have the following lemma, which demonstrates
the relation between χat(G) and χsat(G) for regular graphs G.

Lemma 2. Let G be a regular graph. Then, χat(G) = χsat(G).

To verify our results in this paper, we first introduce a simple but useful lemma as follows.

Lemma 3. Let A, B be two sets containing p and q elements, respectively. If p ≤ q− 1 and A \ B 6= ∅, then for any
element c, (A ∪ {c}) \ B 6= ∅ and B \ (A ∪ {c}) 6= ∅.

Proof. Since A \ B 6= ∅, there exists an element a ∈ A and a /∈ B. In addition, q ≥ p + 1 implies that B
contains at least two distinct elements b1, b2 such that b1 /∈ A and b2 /∈ A. Therefore, |B \ (A ∪ {c})| ≥ 1 and
|(A ∪ {c}) \ B| ≥ 1.

If a graph contains a 1-vertex, then we have the following observation with regard to the SAVTC.

Lemma 4. Suppose that G is a graph with an 1-vertex u such that G − {u} has a k-SAVTC, k ≥ ∆(G) + 2. Let
{v} = NG(u), dG(v) = `(≥ 2), and N the set of (`− 1)−-neighbors of v. If |N| ≤ k− `, then every k-SAVTC f of
G− {u} can be extended to a k-SAVTC of G.

Proof. Based on f , edge uv has k − ` available colors under the coloring conditions (1), (2) and (3). Because
|N| ≤ k − `, there exists an available color α ∈ [1, k] for uv such that C f (v′) 6⊂ (C f (v) ∪ {α}) for any v′ ∈
N \ {u}. By Lemma 3, we have that (C f (v) ∪ {α}) 6⊂ C f (v′) for any v′ ∈ NG(v) \ N. Therefore, we obtain a
k-SAVTC of G after coloring u with a color in [1, k] \ (C f (v) ∪ {α}).

2. Subcubic graphs

A graph G is said to be cubic if δ(G) = ∆(G) = 3 and subcubic if ∆(G) ≤ 3. Since χat(G) ≤ 6 for every
cubic graph G [3–5], it has that χsat(G) ≤ 6 by Lemma 2. In this section, we aim to extend this result from
cubic graphs to subcubic graphs. We prove the following theorem.

Theorem 5. If G is a subcubic graph, then χsat(G) ≤ 6.

Proof. It is sufficient to deal with the case that G contains a 2−-vertex. Let G be a counterexample to Theorem
5 such that |E(G)| is minimum, and v a 2−-vertex. We will prove that G contains a 6-SAVTC, and get a
contradiction. If dG(v) = 1, then by Lemma 4 we can get a 6-SAVTC of G from any 6-SAVTC of G − {v}.
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Therefore, we assume dG(v) = 2, and suppose that G does not contain any 1-vertex. Let {u, w} be the open
neighborhood of v.
Case 1. At least one of these two vertices, say u, is a 2-vertex. Let u′ = NG(u) \ {v}, and by the minimality
f ′ a 6-SAVTC of G − {vu}. We now extend f ′ by the following rule: if (C f ′(u) ∪ C f ′(w)) 6= [1, 6], let α ∈
[1, 6] \ (C f ′(u) ∪ C f ′(w)), and assign color α to uv and recolor v with a color in [1, 6] \ ({α, f ′(vw), f ′(w)} ∪
C f ′(u)) (observe that |C f ′(u)| = 2). Denote by f the resulting coloring. Obviously, α /∈ C f (w), f (v) /∈ C f (u),
and by Lemma 3 C f (u) 6⊂ C f (u′). This shows that f is a 6-SAVTC of G; if (C f ′(u) ∪ C f ′(w)) = [1, 6], then
C f ′(u) ∩ C f ′(w) = ∅. We therefore obtain a 6-SAVTC of G by coloring uv with f ′(w) and recoloring v with
f ′(uu′).
Case 2. Both u and w are 3-vertices. When uw ∈ E(G), we will extend a 6-SAVTC f ′ of G − {uv} to a such
coloring of G. Let {u′} = NG(u) \ {v, w}. Observe that |C f ′(u) ∪ { f ′(vw)}| ≤ 4. We can choose a color
α ∈ [1, 6] \ (C f ′(u) ∪ { f ′(vw)}) such that C f ′(u′) 6⊂ (C f ′(u) ∪ {α}). By Lemma 3, (C f ′(u) ∪ {α}) 6⊂ C f ′(w).
If |C f ′(u) ∪ C f ′(w) ∪ {α}| 6= 6, then we can recolor v with a color in [1, 6] \ (C f ′(u) ∪ C f ′(w) ∪ {α}) to get a
6-SAVTC of G. If |C f ′(u) ∪ C f ′(w) ∪ {α}| = 6, then either α /∈ C f ′(w) and f ′(vw) /∈ C f ′(u), or α ∈ C f ′(w) and
f ′(vw) /∈ C f ′(u) (or α /∈ C f ′(w) and f ′(vw) ∈ C f ′(u)). In the former case, we can recolor v with a color in
[1, 6] \ {α, f ′(u), f ′(vw), f ′(w)} to get a 6-SAVTC of G, while in the latter eventuality we can recolor v with a
color in [1, 6] \ (C f ′(w) ∪ { f ′(u)}) (or [1, 6] \ (C f ′(u) ∪ {α, f ′(w)})) to gain a 6-SAVTC of G. In the remainder
of this proof, let uw /∈ E(G).

Consider G′ = (G − {v}) ∪ {uw}. We see that G′ is a subcubic graph and |E(G′)| < |E(G)|. By the
minimality, G′ has a 6-SAVTC f ′. Without loss of generality, we may suppose that C f ′(u) = {1, 2, 3, 4}, where
f ′(u) = 4, f ′(uw) = 1. Let NG(u) = {v, u1, u2} and NG(w) = {v, w1, w2}. Suppose that C f ′(w) = {c1, c2}. We
now extend f ′ to a 6-SAVTC of G by addressing the following two situations.

When 1 /∈ { f ′(ui), f ′(wi)|i = 1, 2}, we recolor u and w with 1, color uv with 4 and vw with f ′(w). Denote
by f the resulting coloring. Clearly, C f (u) = C f ′(u) and C f (w) = C f ′(w). If f ′(w) ∈ {5, 6}, then f ′(w) /∈ C f (u).
Therefore, after coloring v with a color in {c1, c2} \ {4}, we get a 6-SAVTC of G. If f ′(w) /∈ {5, 6}, it has that
f ′(w) ∈ {2, 3}. Then, when 4 ∈ {c1, c2}, we can color v with 5 or 6 to get a 6-SAVTC of G; when 4 /∈ {c1, c2},
it follows that {5, 6} ∩ {c1, c2} 6= ∅. Therefore, we obtain a 6-SAVTC of G by coloring v with a color in
{5, 6} ∩ {c1, c2}.

When 1 ∈ { f ′(ui), f ′(wi)|i = 1, 2}, we, by symmetry, assume that f ′(u1) = 1. In this case, we first color
vw with 1, and vu with a color c ∈ {5, 6} such that C f ′(u2) 6⊂ {2, 3, 4, c}. Then, color v with a color in {c1, c2} \
{4, c} if {4, c} 6= {c1, c2} (observe that f ′(w) /∈ {c1, c2}); otherwise, color v with a color in {2, 3} \ { f ′(w)}.
Denote by f the resulting coloring. It has that C f (w) = C f ′(w), C f (u) = {2, 3, 4, c}, 1 ∈ C f (v), 1 ∈ C f (u1), 1 /∈
C f (u), and f (v) /∈ C f (w) or c /∈ C f (w). Therefore, f is a 6-SAVTC of G.

3. Graphs with smarandachely adjacent vertex total chromatic number 5

In this section, we aim to construct a 5-SAVTC for the given classes of subcubic graphs. For this, we will
get a 5-SAVTC of a hypothetical smallest counterexample G to the theorem we need prove by extending a
5-SAVTC f ′ of a smaller graph derived from G, and obtain a contradiction. In the process of extending f ′, we
by default color elements shared by G and G′ with the restriction of f ′ to them if there is no specified note.

3.1. Outerplanar graphs with maximum degree 3

A planar graph G is called outerplanar if there is an embedding of G into the Euclidean plane such that all
vertices lie on the boundary of its unbounded face. An outerplanar graph equipped with such an embedding
is called an outerplane graph. To show that outerplane graphs with maximum degree 3 have a 5-SAVTC, we
need the following lemma.

Lemma 6. Suppose that f is a partial coloring of the graph G shown in Figure 1 (a), where V(G) = {v, x, y, x1, y1}
and f (x1) = c1, f (y1) = c2, f (x1x) = c3, f (y1y) = c4. If |{ci|i = 1, 2, 3, 4}| ≥ 3, c1 6= c2, c1 6= c3, c2 6= c4 and
c3 6= c4, then we can construct a 5-SAVTC of G on the restriction of f .

Proof. In Figures 1 (b) and (c), we give the corresponding 5-SAVTCs of G for the cases |{ci|i = 1, 2, 3, 4}| = 3
and |{ci|i = 1, 2, 3, 4}| = 4, respectively. Observe that under each 5-SAVTC of G, c1 and c2 is not in the color-set
of x and y, respectively, and c1, c2 belong to the color-set of v.
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Figure 1. A graph and its certain colorings

Theorem 7. Let G be an outerplane graph with maximum degree 3. Then, χsat(G) = 5.

Proof. It is enough to show that G has a 5-SAVTC. Let G be a counterexample to Theorem 7 with minimum
number of edges. We distinguish two cases.
Case 1. G contains a cut-vertex v. Then, there are two smaller outerplane graphs G1 and G2 such that ∆(Gi) ≤
3, i = 1, 2, G1 ∪ G2 = G and G1 ∩ G2 = {v}. By the minimality, Gi has a 5-SAVTC, denoted by fi, i = 1, 2.
Without loss of generality, suppose that dG1(v) ≤ 2, dG2(v) = 1 and NG2(v) = {u}.
Case 1.1. |V(G2)| = 2, i.e. G2 = vu. If dG1(v) = 1, then by Lemma 4 any 5-SAVTC of G1 can be extended to
a 5-SAVTC of G. We therefore assume that dG1(v) = 2 and NG1(v) = {v1, v2}. If {v1, v2} contains an 1-vertex
or 3-vertex, say v1, we extend f1 to a 5-SAVTC f by coloring vu with a color α ∈ [1, 5] \ C f1(v) such that
C f1(v2) 6⊂ C f1(v) ∪ {α} (since |[1, 5] \ C f1(v)| = 2, such a color α does exist), and color u (or recolor v1 when
dG1(v1) = 1) with β, where {β} = [1, 5] \ (C f1(v) ∪ {α}). Since β /∈ C f (v) and by Lemma 3 C f (v) 6= C f (v1)

when dG1(v1) = 3, f is a 5-SAVTC of G.
Now, suppose that dG1(v1) = dG1(v2) = 2 and NG1(vi) = {v, v′i}, i = 1, 2. We omit the trivial case

v1v2 ∈ E(G1) and by Lemma 4 assume dG′(v′i) ≥ 2 for i = 1, 2. By the minimality, let f ′ be a 5-SAVTC of
G− {v}. Based on f ′, if C f ′(v1) ∩ C f ′(v2) contains an element γ, then we color v, vu, vv1, vv2 with [1, 5] \ {γ}
properly and color u with γ; if C f ′(v1) ∩ C f ′(v2) = ∅, we recolor v1 with a color γ ∈ ({ f ′(v2), f ′(v2v′2)} \
{ f ′(v′1)}) and color vv1 with f ′(v1), vv2 with f (v1v′1), v with the color in [1, 5] \ (C f ′(v1) ∪ C f ′(v2)), vu with
{ f ′(v2), f ′(v2v′2)} \ {γ} and u with γ. Denote by f the resulting coloring. Since γ /∈ C f (v) and by Lemma 3
C f (vi) 6⊂ C f (v′i) for i = 1, 2, f is a 5-SAVTC of G.
Case 1.2. |V(G2)| ≥ 3. Let G′1 = G1 ∪ vu, G′2 = G2. By the minimality, G′1 and G′2 have a 5-SAVTC f ′1
and f ′2, respectively. By the color permutation, we assume f ′1(v) = f ′2(v) = 1, f ′1(vu) = f ′2(vu) = 2 and
f ′1(u) = f ′2(u) = 3. Clearly, 3 /∈ C f ′1

(v) and 1 /∈ C f ′2
(u). Let f = f ′1 ∪ f ′2. We see that C f (v) = C f ′1

(v),
C f (u) = C f ′2

(u) and 3 ∈ C f (u), 1 ∈ C f (v). Therefore, f is a 5-SAVTC of G.
Case 2. G is 2-connected. We claim that G does contain two adjacent 2-vertices. If not, suppose that u, v
are such 2-vertices, where NG(u) = {v, u1} and NG(v) = {u, v1}. Since G is 2-connected, dG(u1) ≥ 2 and
dG(v1) ≥ 2. We first consider the case of u1v1 ∈ E(G). In this case, dG′(u1) = dG′(u2) = 3. Given a 5-SAVTC
f ′ of G − {u}, for which we suppose that C f ′(v1) = {5}. Obviously, 5 ∈ C f ′(u1) and f ′(v) = 5. Based
on f ′, color uu1 with a color α ∈ [1, 5] \ C f ′(u1) such that C f ′(u2) 6⊂ (C f ′(u1) ∪ {α}) (since |C f ′(u1)| = 3),
where {u2} = NG(u1) \ {v1, u}. Let {β} = [1, 5] \ (C f ′(u1) ∪ {α}), and color u with β and uv with a color in
[1, 5] \ {α, β, f ′(vv1), 5}. Observe that 5 /∈ {α, β}; we obtain a 5-SAVTC of G. Now, we assume that u1v1 /∈ E(G).
Let G′ = (G− {u, v}) ∪ {u1v1}, and, by the minimality, f ′ be one of its 5-SAVTCs. Since u1v1 ∈ E(G′), there
exist α1 ∈ C f ′(u1) and α2 ∈ C f ′(v1) such that α1 6= α2. Then, f ′ can be extended to a 5-SAVTC of G by
assigning color f ′(u1v1) to uu1 and vv1, color α1 to u, color α2 to v, and a color in [1, 5] \ { f ′(u1v1), α1, α2}. This
contradicts the assumption of G.

From the foregoing discussion, we deduce that G contains a triangle uvwu such that dG(u) = 2 and
dG(v) = dG(w) = 3. Let NG(v) = {u, w, v′} and NG(w) = {u, v, w′}. Clearly, dG(v′) ≥ 2 and dG(w′) ≥ 2.
Let G′ = (G − {v, w}) ∪ {uv′, uw′}. By the minimality, G′ has a 5-SAVTC, say f ′. Suppose that f ′(uv′) =

c1, f ′(uw′) = c2, f ′(v′) = c3 and f ′(w′) = c4, where ci ∈ [1, 5] for i ∈ [1, 4]. We now define a partial coloring
g of G such that g(x) = f ′(x) for any x ∈ T(G) \ {u, v, w, uv, uw, vw, vv′ww′}, g(vv′) = f ′(uv′) = c1 and
g(ww′) = f ′(uw′) = c2. We see that Cg(y) = C f ′(y) for any y ∈ V(G) \ {u, v, w}, and only elements in
{u, v, w, uv, uw, vw} are uncolored. Observe that c1 6= c2, c1 6= c3 and c2 6= c4. It suffices to deal with the
situation of c3 = c4 (if c3 6= c4, then by Lemma 6 g can be extended to a 5-SAVTC of G). Since dG(v′) ≥ 2,
there exists a color α ∈ C f ′(v′) such that α /∈ {c1, c3}. We color uv with c3, w with c1, vw with a color β ∈
[1, 5] \ {c1, c2, c3, α}, v with a color γ ∈ [1, 5] \ {c1, c3, α, β}, uw with a color α′ ∈ [1, 5] \ {c1, c3, c2, β}, and color
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u with α (when α′ 6= α) or with β (when α′ = α). It is clear from the resulting coloring, say f , that c3 /∈ C f (w),
α /∈ C f (v) and {α, c3} ⊂ C f (u). Therefore, f is a 5-SAVTC of G. This completes the proof.

3.2. Claw-free subcubic graphs

A graph is called claw-free if it contains no induced subgraph isomorphic to the complete bipartite graph
K1,3. We will show that every claw-free subcubic graph has a 5-SAVTC. To see this, we first investigate an
interesting class of claw-free subcubic graphs as follows.

We use D to denote the family of graphs, in which every one is obtained from a cubic graph such that
every vertex is incident with exactly one triangle by subdividing all edges not incident with triangles, where
to subdivide an edge e is to delete e and add a new vertex v, and join v to the ends of e. By this definition, we
see that for every graph G ∈ D, δ(G) = 2, 2-vertices are independent and not incident with any triangle, and
the subgraph induced by 3-vertices are the union of vertex-disjoint triangles. We prove that every such graph
has a 5-SAVTC.

Theorem 8. For any G ∈ D, χsat(G) = 5.

Proof. χsat(G) ≥ 5 is obvious. We will give a construction of a 5-SAVTC of G by applying the famous Hall’s
theorem on bipartite graphs. Let V2 and V3 be the set of 2-vertices and 3-vertices of G, respectively. Then, V2 is
an independent set, and the subgraph induced by V3 is the union of vertex-disjoint triangles, say T1, T2, . . . , Tm.
Now, we construct a bipartite graph G′ with bipartition (X, Y), where X = V2, Y = {T1, T2, . . . , Tm}, and
xT ∈ E(G′) for x ∈ X, T ∈ Y, if and only if x is adjacent to a vertices incident with T in G. By the definition,
we see that dG′(x) = 2 for every x ∈ X and dG′(T) = 3 for every T ∈ Y. Therefore, by the Hall’s theorem, G′

has a matching M1 which covers every vertex in Y. Consider G′ −M1; we have that dG′−M1
(x) ≤ 2 for every

x ∈ X and dG′−M1
(T) = 2 for every T ∈ Y. Again by the Hall’s theorem, G′ −M1 has a matching M2 which

covers every vertex in Y.
We assert that G′ −M1 contains such a M2 that covers every 2-vertex in X. If not, select M2 to be the one

that covers the most number of 2-vertices in X. Let x be a 2-vertex in X not covered by M2. Then, there is an
M2-alternating path P starting with x and end with a 1-vertex in X, and M2 M E(P) (the symmetric difference
of M2 and E(P)) is also a matching of G′ − M1 which covers every vertex in Y and covers more number of
2-vertices than M2, a contradiction.

Let M1 and M2 be the two matchings selected as above. Then, in G′ − (M1 ∪M2), x ∈ X is a 1−-vertex
and T ∈ Y is a 1-vertex. Now, we present an algorithm to construct a 5-SAVTC f of G as follows:

1: For each Ti, i ∈ [1, m], we use [1,3] to color its vertices and edges, for which the coloring conditions (1),
(2) and (3) are satisfied. That is, let V(Ti) = {ui, vi, wi}, we color ui, vi, wi with 1,2,3 respectively, and
color uivi, viwi, wiui with 3,1,2 respectively.

2: Color each edge in M1 with 4 and in M2 with 5.
3: Observe that each v ∈ V2 is an 1−-vertex in G− (M1 ∪M2). For each edge xy ∈ E(G) \ (M1 ∪M2) such

that x ∈ V2 and y ∈ V3, let xy′ be another edge incident with x in G and assume xy′ is colored by α.
Clearly, α ∈ [4, 5] since xy′ ∈ M1 ∪ M2. Suppose that y and y′ are colored with β and β′ respectively,
β, β′ ∈ [1, 3]. If β 6= β′, we recolor y with α, and color xy with [4, 5] \ {α} and color x with β; if β = β′,
then we recolor the vertices and edges of the triangle T ∈ Y incident with y such that β is not assigned to
y (observe that each triangle Ti has only one vertex incident with uncolored edges in this step. Therefore,
each such triangle T is recolored at most once. This implies that the recoloring approach does not destroy
the coloring before this action). Thus, we can likewise recolor y with α, and color xy with [4, 5] \ {α} and
x with the color appearing at y.

4: After the above three steps, only some 2-vertices are not colored (if possible). Let x be a such uncolored
2-vertex. Suppose that NG(x) = {x1, x2}, and let α1 and α2 be the colors appearing at x1 and x2. We then
use the color [1, 3] \ {α1, α2} to color x.

According to the above coloring, we see that for each triangle Ti, i ∈ [1, m], {C f (ui), C f (vi), C f (wi)} =
{4, 5, β} where β ∈ [1, 3]; for each 2-vertex x, C f (x) = {4, 5, β} and {C f (x1), C f (x2)} ⊂ {{4, β}, {5, β}, {4, 5}}
where {x1, x2} = NG(x). Therefore, f is a 5-SAVTC of G.

Theorem 9. Let G be a claw-free subcubic graph. Then, χsat(G) = 5.



Open J. Math. Sci. 2019, 3, 390-397 395

Proof. Suppose to the contrary that G is a counterexample to Theorem 9 such that E(G) is the minimum. It
is sufficient to prove that G has a 5-SAVTC. With a similar proof as that in Theorem 7, we have the following
claims.
Claim A. G is 2-connected, and G contains no adjacent 2-vertices and triangles incident with a 2-vertex.

To round off the proof, we have to deal with some reducible configurations.
Claim B. G does not contains configurationsH1,H2,H3, as shown in Figure 2 (a), (d) and (g).
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Figure 2. unavoidable configurations

Proof of the claim B. We will show that each of these configurations is reducible, i.e. G has a 5-SAVTC if G
contains one of them. Observe that K4 has a 5-SAVTC. Therefore, we assume that G 6= K4 in what follows.
Case 1. For H1, since G 6= K4 and G is claw-free, we, by Claim A, may assume that x 6= u4, y 6= u1, x 6= y and
xy 6= E(G) (if x = y or xy ∈ E(G), then G is isomorphic to the graph shown in Figure 2 (b) or (c), which has a
5-SAVTC)). Let G′ = (G− {ui|i ∈ [1, 4]}) ∪ {xy}. Then, G′ is claw-free and subcubic.

By the minimality, G′ admits a 5-SAVTC, say g. Without loss of generality, assume g(x) = 1, g(y) = 2 and
g(xy) = 3. We can extend g to a 5-SAVTC of G by coloring elements in T(G) \ T(G′) as follows: assign color
3 to xu1, u2u3 and yu4, color 4 to u1 and u2u4, color 5 to u4 and u1u3, color 2 to u3 and u1u2, and color 1 to u2

and u3u4.
Case 2. As for H2, if u1u6 ∈ E(G), x = y or xy ∈ E(G), then by Claim A G is isomorphic to the graph
shown in Figure 2 (e), ( f ) or (g), which has a 5-SAVTC. Let G′ = (G − {ui|i ∈ [1, 6]}) ∪ {xy}. Then, G′ is
claw-free and subcubic. By the minimality G′ has a 5-SAVTC g. We, without loss of generality, assume that
g(x) = 1, g(y) = 2 and g(xy) = 3. Now, based on the restriction of g to T(G)∩ T(G′), we construct f by letting
f (xu1) = f (yu6) = f (u2u3) = f (u4u5) = 3, f (u1) = f (u4) = f (u3u5) = 2, f (u3) = f (u6) = f (u2u4) = 1,
f (u1u2) = f (u5u6) = 4 and f (u2) = f (u5) = f (u1u3) = f (u4u6) = 5. Then, C f (x) = Cg(x), C f (y) = Cg(y),
C f (u1) = C f (u5) = {1}, C f (u2) = C f (u6) = {2}, C f (u3) = C f (u4) = {4}. Hence f is a 5-SAVTC of G.
Case 3. Consider H3. By Claim A, Case 1 and Case 2, we suppose that x1 6= x2, y1 6= y2, xi /∈ {u4, u5}, yi
/∈ {u2, u3}, x1x2 /∈ E(G) and y1y2 /∈ E(G). Let G′ = (G − {ui|i ∈ [1, 6]}) ∪ {x1x2, y1y2}. Obviously, G′ is
claw-free subcubic graphs with |E(G′)| < |E(G)|. By the choice of G, G′ has a 5-SAVTC g. Without loss of
generality, we assume that g(x1) = 1, g(x2) = 2, g(x1x2) = 3, g(y1) = c1, g(y2) = c2, and g(y1y2) = c3, where
ci ∈ [1, 5] for i = 1, 2, 3 and ci 6= cj for 1 ≤ i < j ≤ 3. We now construct a 5-SAVTC f of G based on the
restriction of g to T(G)∩ T(G′). We first assign color c3 to y1u4 and y2u5, and color 3 to x1u2 and x2u3. Clearly,
C f (t) = Cg(t) for any t ∈ {x1, x2, y1, y2}.
Case 3.1. {c1, c2} ∩ {1, 2} 6= ∅. Then by symmetry we assume that c1 = 1. Let [1, 5] = {c1, c2, c3, c4, c5}, and set
f (u4) = f (u5u6) = c5, f (u5) = f (u6u1) = c1, f (u4u5) = c4, f (u4u6) = c2, f (u6) = c3, f (u2) = f (u3u1) = 5,
f (u2u3) = 4, f (u2u1) = 2, f (u3) = 1, and finally color u1 with a color in {3, 4} \ {c3} when c4 ∈ {2, 5} or
with the color c4 when c4 ∈ {3, 4}. According to the definition of f , we have that C f (u2) = {1}, C f (u3) =

{2}, C f (u4) = {c1}, C f (u5) = {c2}, C f (u6) = {c4}, {1, 2, c4} ⊂ C f (u1). Thus we obtain a 5-SAVTC of G.
Case 3.2. {c1, c2} ∩ {1, 2} = ∅. When c3 /∈ {1, 2}, or c3 ∈ {1, 2} and ({1, 2} \ {c3}) ∈ C f (yi) for some
i ∈ {1, 2}, we by symmetry assume that c3 = 1 when c3 ∈ {1, 2}, and suppose that 2 ∈ C f (y1) (observe that
if c3 /∈ {1, 2}, then since dG(yi) ≥ 2 for i = 1, 2, there exists a color, say 2 here, in {1, 2} ∩ C f (yi) for some
i ∈ {1, 2}). Let {α} = {1, 5} \ {c1, c2, c3, 2}, and set f (u4) = f (u5u6) = α, f (u5) = f (u6u1) = 2, f (u4u5) = c1,
f (u4u6) = c2, f (u6) = c1, f (u3) = f (u1u2) = 5, f (u2u3) = 4, f (u3u1) = 1, f (u2) = 2 and color u1 with
c3 (when c3 /∈ {1, 5}) or a color in {3, 4} \ {c1} (when c3 ∈ {1, 5}). Under such coloring f , it follows that
C f (u2) = {1}, C f (u3) = {2}, C f (u4) = {2}, C f (u5) = {c2}, C f (u6) = {c3} and {1, 2, c3} ⊂ C f (u1), and hence
f is a 5-SAVTC of G.

When c3 ∈ {1, 2} and ({1, 2} \ {c3}) /∈ C f (yi) for i = 1, 2, it has that dG(y1) = dG(y2) = 2 (otherwise
Cg(y1) ⊆ Cg(y2) or Cg(y2) ⊆ Cg(y1)).

Suppose that c3 = 1 and let NG(y1) = {u4, y′}. Then, dG(y′) = 3 and y′ is incident with a triangle.
If g(y′) 6= 1, we recolor y1 with 1 and color u4y1 with c1. Let {α} = {1, 5} \ {c1, c2, 1, 2}, and set f (u4) =
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f (u5u6) = 2, f (u5) = c1, f (u4u5) = f (u6) = α, f (u4u6) = c2, f (u2) = f (u3u1) = 5, f (u2u3) = 4, f (u2u1) = 2,
f (u3) = f (u1u6) = 1, and finally color u1 with c1 (when c1 6= 5) or a color in {3, 4} \ {α} (when c1 = 5). Since
C f (u2) = {1}, C f (u3) = {2}, C f (u4) = {1}, C f (u5) = {c2}, C f (u6) = {c1} and {1, 2, c1} ⊂ C f (u1), f is a
5-SAVTC of G.

If g(y′) = 1, then c1 /∈ C f (y′). We recolor y1 with the color β ∈ ([1, 5] \ {1, c2, c1, g(y1y′)}), and color u4y1

with c1. Clearly, 2 ∈ {β, g(y1y′)}. Let {α′} = {β, g(y1y′)} \ {2}, and set f (u4) = 1, f (u5u6) = c1, f (u5) = 2,
f (u4u5) = f (u6) = α′, f (u4u6) = c2, f (u3) = f (u2u1) = 5, f (u2u3) = 4, f (u3u1) = 1, f (u2) = f (u1u6) = 2,
and color u1 with a color in {3, 4} \ {α′}. It is easy to see that C f (u2) = {1}, C f (u3) = {2}, C f (u4) = {2},
C f (u5) = {c2}, C f (u6) = {1} and {1, 2} ⊂ C f (u1). Therefore, f is a 5-SAVTC of G.

By Claims A and B, we see that G is a 2-connected claw-free subcubic graph which does not contain
adjacent 2-vertices, triangles incident with 2-vertices, two triangles sharing a common edge or connecting by
an edge (i.e. an edge whose ends incident with two distinct triangles). This indicates that G ∈ D, and by
Theorem 8 G has a 5-SAVTC. This completes the proof of the theorem.

4. Remarks

For two graphs G and H, let σ : V(G) → V(H) be a surjection. If for every v ∈ V(G), the restriction of σ

to the open neighbourhood of v in G is a bijection onto the open neighbourhood of σ(v) in H, i.e. σ(NG(v)) =
NH(σ(v)), then we call σ a covering map from G to H. If there exists a covering map from G to H, then G is
called a covering graph of H. As for covering graphs, we have the following conclusion on SAVTC.

Theorem 10. Let H be a graph containing a k-SAVTC g. Then, every covering graph G of H has a k-SAVTC.

Proof. Let σ be a covering map from G to H. We now use σ to lift a proper total k-coloring, denoted by f , of
G, i.e. let f (v) = g(σ(v)) for every v ∈ V(G) and f (uw) = g(σ(u)σ(w)) for every uw ∈ E(G). According to
the definition of covering map, if uw ∈ E(G) then σ(u)σ(w) ∈ E(H). We have f (u)(= g(σ(u))) 6= f (w)(=

g(σ(w))) for every uw ∈ E(G), f (vu)(= g(σ(v)σ(u))) 6= f (vw)(= g(σ(v)σ(w))) for any vu, vw ∈ E(G), and
f (v)(= g(σ(v))) 6= f (vu)(= g(σ(v)σ(u))) for any v ∈ V(G) and vu ∈ E(G). This shows that f is a proper
total k-coloring of G. Moreover, it is easy to see that C f (v) = Cg(σ(v)) for every v ∈ V(G). Therefore, f is a
k-SAVTC of G.
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Figure 3. Two graphs with 5-SAVTC

In this paper, we discuss an interesting graph parameter χsat, called the smarandachely adjacent vertex
total chromatic number. We derive upper bound for subcubic graphs G, i.e. χsat(G) ≤ 6. We show, in
particular, that if G is an outerplane graph with maximum degree 3 or a claw-free subcubic graph, then
χsat(G) = 5. There are also other classes of subcubic graphs with a 5-SAVTC, e.g., the subcubic bipartite
graphs. Indeed, for any bipartite G with bipartition (X, Y), we can easily give a (∆(G) + 2)-SAVTC by
assigning color 1 to vertices in X, color 2 to vertices in Y, and coloring E(G) by [3, ∆(G) + 2] (since the edge
chromatic number of bipartite graphs is the maximum degree). Additionally, by Theorem 10, we can also
address a series of subcubic graphs with a 5-SAVTC, which are non-outplanar and contain a claw, for example,
the covering graphs of cube hexahedron or Petersen graph; see Figure 3.

In consideration of our conclusions, we propose the following problem:

Problem 11. Let G be a subcubic graph. Is it true that χsat(G) ≤ 5?
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