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An extension of Petrović’s inequality for h−convex
(h−concave) functions in plane

Wasim Iqbal1, Khalid Mahmood Awan2, Atiq Ur Rehman3,∗ and Ghulam Farid3

1 COMSATS University Islamabad,Park Road, Tarlai Kalan, Islamabad, Pakistan.; waseem.iqbal.attock@gmail.com
2 Department of Mathematics, University of Sargodha, Sargodha, Pakistan.; khalid.mirza@uos.edu.pk
3 COMSATS University Islamabad, Attock Campus, Kamra Road, Attock, Pakistan.; atiq@mathcity.org (A.U.R);

ghlmfarid@cuiatk.edu.pk (G.F)
* Correspondence: atiq@mathcity.org

Received: 12 August 2019; Accepted: 10 November 2019; Published: 30 November 2019.

Abstract: In this paper, Petrović’s inequality is generalized for h−convex functions on coordinates with
the condition that h is supermultiplicative. In the case, when h is submultiplicative, Petrović’s inequality
is generalized for h−concave functions. Also particular cases for P−function, Godunova-Levin functions,
s−Godunova-Levin functions and s−convex functions has been discussed.
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1. Introduction

L et h : [c, d] → R be a non-negative function and (0, 1) ⊆ [c, d]. A function f : [a, b] → R is said to be an
h−convex, if f is non-negative for all x, y ∈ [a, b] and α ∈ (0, 1), one has

f (αx + (1− α)y) ≥ h(α) f (x) + h(1− α) f (y). (1)

If above inequality is reversed, then f is said to be h-concave.
The h−convex function was introduced by Varošanec in [1]. This function generalized convex function

and many other generalization of convex function like s−convex function, Godunova-Levin function,
s−Godunova-Levin function and P−function given in [1–3].

Remark 1. Particular value of h in inequality (1) gives us the following results:

1. h(α) = α gives the convex functions.
2. h(α) = 1 gives the P−functions.
3. h(α) = αs and α ∈ (0, 1) gives the s−convex functions of second sense.
4. h(α) = 1

α and α ∈ (0, 1) gives the Godunova-Levin functions.
5. h(α) = 1

αs and α ∈ (0, 1) gives the s−Godunova-Levin functions of second sense.

In case of h−concavity, following results are valid:
6. h(α) = 1 gives the reverse P−functions.
7. h(α) = 1

α gives the reverse Godunova-Levin functions.
8. h(α) = 1

αs gives the reverse s−Godunova-Levin functions of second sense.

In [4], Dragomir gave the definition of convex functions on coordinates. Following his idea, the h−convex
on coordinates was introduced by Alomari et al. in [5].

Definition 1. Let ∆ = [a1, b1]× [a2, b2] ⊆ R2 and f : ∆→ R be a mapping. Define partial mappings

fy : [a1, b1]→ R by fy(u) = f (u, y) (2)
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and
fx : [a2, b2]→ R by fx(v) = f (x, v). (3)

Also let interval [c, d] contains (0, 1) and h : [c, d]→ R be a positive function. A mapping f : ∆→ R is said
to be h−convex (h−concave) on ∆, if the partial mappings defined in (2) and (3) are h−convex (h−concave) on
[a, b] and [c, d] respectively for all y ∈ [c, d] and x ∈ [a, b].

Remark 2. From above definition, one can deduce the definitions of those particular cases on coordinates.

In [6] (also see [7, p. 154]), Petrović proved the following result, which is known as Petrović’s inequality
in the literature.

Theorem 2. Suppose that (x1, ..., xn) and (p1, ..., pn) be non-negative n-tuples such that ∑n
k=1 pkxk ≥ xi for i =

1, ..., n and ∑n
k=1 pkxk ∈ [0, a]. If f is a convex function on [0, a], then the inequality

n

∑
k=1

pk f (xk) ≤ f

(
n

∑
k=1

pkxk

)
+

(
n

∑
k=1

pk − 1

)
f (0) (4)

is valid.

A function h : [c, d]→ R is said to be a submultiplicative function if

h(xy) ≤ h(x)h(y), (5)

for all x, y ∈ [c, d]. If the above inequality is reversed, then h is said to be supermultiplicative function. If
equality holds in the above inequality, then h is said to be multiplicative function.

By considering h to be supermultiplicative along with other condition, in the following theorem
generalization of Petrović’s inequality was proved by Rehman et al. in [8].

Theorem 3. Let (x1, ..., xn) be non-negative n-tuples and (p1, ..., pn) be positive n-tuples such that

n

∑
k=1

pkxk ∈ [0, a] and
n

∑
k=1

pkxk ≥ xj for each j = 1, ..., n. (6)

Also let h : [0, ∞)→ R+ be a supermultiplicative function such that

h(α) + h(1− α) ≤ 1, for all α ∈ (0, 1). (7)

If f : [0, ∞)→ R be an h−convex function on [0, ∞), then

n

∑
j=1

pj f (xj) ≤

n
∑

j=1
pjh(xj − c)

h
(

n
∑

k=1
pkxk − c

) f

(
n

∑
k=1

pkxk

)
+

 n

∑
j=1

pj −

n
∑

j=1
pjh(xj − c)

h
(

n
∑

k=1
pkxk − c

)
 f (c). (8)

The following reverse version of above theorem was also proved in [8].

Theorem 4. Let (x1, ..., xn) be non-negative n-tuples and (p1, ..., pn) be positive n-tuples and the conditions given in
(6) are valid. Also let h : [0, a]→ R+ be a submultiplicative function such that

h(α) + h(1− α) ≥ 1, for all α ∈ (0, 1). (9)

If f : [0, a]→ R be an h−concave function on [0, a], then reverse of (8) is valid.

In recent years, h−Convex functions are considered in literature by many researchers and
mathematicians, for example, see [1,3,5,9] and references there in. Many authors worked on Petrović’s
inequality by giving results related to it, for example see [6,7,10] and it has been generalized for m−convex
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functions by Bakula et al. in [11]. In [12], Petrović’s inequality was generalized on coordinates by using the
definition of convex functions on coordinates.

In this paper, Petrović’s inequality is generalized for h−convex functions on coordinates, when h is
supermultiplicative function. When h is submultiplicative, Petrović’s inequality is generalized for h−concave
functions on coordinates.

2. Main results

The following theorem consist the result for generalized Petrović’s inequality for h−convex functions on
coordinates.

Theorem 5. Let (x1, ..., xn) and (y1, ..., yn) be non-negative n-tuples, (p1, ..., pn) and (q1, ..., qn) be positive n-tuples
such that

n

∑
k=1

pkxk ∈ [0, a],
n

∑
k=1

pkxk ≥ xj for each j = 1, ..., n, (10)

and

n

∑
j=1

qjyj ∈ [0, b],
n

∑
j=1

qjyj ≥ yi for each i = 1, ..., n. (11)

Also let h : [0, ∞) → R+ be a supermultiplicative function such that (7) is valid. If f : [0, a] × [0, b] → R be an
h−convex function on coordinates, then

n

∑
k=1

n

∑
j=1

pkqj f (xk, yj) ≤

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

)


n
∑

j=1
qjh(yj − c2)

h
(

n
∑

k=1
qkyk − c2

) f

(
n

∑
k=1

pkxk,
n

∑
j=1

qjyj

)

+

 n

∑
j=1

qj −

n
∑

j=1
qjh(yj − c2)

h
(

n
∑

k=1
qkyk − c2

)
 f

(
n

∑
k=1

pkxk, c2

)+

 n

∑
j=1

pj −

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

)



n
∑

j=1
qjh(yj − c2)

h
(

n
∑

k=1
qkyk − c2

) f

(
c1,

n

∑
j=1

qjyj

)
+

 n

∑
j=1

qj −

n
∑

j=1
qjh(yj − c2)

h
(

n
∑

k=1
qkyk − c2

)
 f (c1, c2)

 , (12)

where xi > c1, yj > c2.

Proof. Let fx : [0, a]→ R and fy : [0, b]→ R be mappings such that fx(v) = f (x, v) and fy(u) = f (u, y). Since
f is coordinated h−convex on [0, a]× [0, b], therefore fy is h−convex on [0, b], so by Theorem 3, one has

n

∑
j=1

pj fy(xj) ≤

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

) fy

(
n

∑
k=1

pkxk

)
+

 n

∑
j=1

pj −

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

)
 fy(c1).

This is equivalent to

n

∑
j=1

pj f (xj, y) ≤

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

) f

(
n

∑
k=1

pkxk, y

)
+

 n

∑
j=1

pj −

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

)
 f (c1, y),

by setting y = yj, we get
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n

∑
j=1

pj f (xj, yj) ≤

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

) f

(
n

∑
k=1

pkxk, yj

)
+

 n

∑
j=1

pj −

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

)
 f (c1, yj).

Multiplying above inequality by pj and taking sum for j = 1, ..., n, one has

n

∑
k=1

n

∑
j=1

pjqj f (xj, yj) ≤

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

) n

∑
k=1

qj f

(
n

∑
k=1

pkxk, yj

)
+

 n

∑
j=1

pj −

n
∑

j=1
pjh(xj − c1)

h
(

n
∑

k=1
pkxk − c1

)
 n

∑
k=1

qj f (c1, yj).

(13)
Now again by Theorem 4, one has

n
∑

j=1
qj f
(

n
∑

k=1
pkxk, yj

)
≤

n
∑

j=1
qjh(yj−c2)

h
(

n
∑

k=1
qkyk−c2

) f

(
n
∑

k=1
pkxk,

n
∑

j=1
qjyj

)
+

 n
∑

j=1
qj −

n
∑

j=1
qjh(yj−c2)

h
(

n
∑

k=1
qkyk−c2

)
 f

(
n
∑

k=1
pkxk, c2

)
and

n

∑
j=1

qj f
(
c1, yj

)
≤

n
∑

j=1
qjh(yj − c2)

h
(

n
∑

k=1
qkyk − c2

) f

(
c1,

n

∑
j=1

qjyj

)
+

 n

∑
j=1

qj −

n
∑

j=1
qjh(yj − c2)

h
(

n
∑

k=1
qkyk − c2

)
 f (c1, c2).

Putting these values in inequality (13), we get the required result.

In the following theorem, we give the Petrović’s inequality for h−convex functions on coordinates.

Theorem 6. Let the conditions given in Theorem 5 are valid. If f : [0, a]× [0, b] → R be an h−convex function on
coordinates, then

n

∑
k=1

n

∑
j=1

pjqj f (xj, yj)

≤

n
∑

j=1
pjh(xj)

h
(

n
∑

k=1
pkxk

)


n
∑

j=1
qjh(yj)

h
(

n
∑

k=1
qkyk

) f

(
n

∑
k=1

pkxk,
n

∑
j=1

qjyj

)
+

 n

∑
j=1

qj −

n
∑

j=1
qjh(yj)

h
(

n
∑

k=1
qkyk

)
 f

(
n

∑
k=1

pkxk, 0

)
+

(
n

∑
j=1

pj − 1

)
n
∑

j=1
qjh(yj)

h
(

n
∑

k=1
qkyk

) f

(
0,

n

∑
j=1

qjyj

)
+

 n

∑
j=1

qj −

n
∑

j=1
qjh(yj)

h
(

n
∑

k=1
qkyk

)
 f (0, 0)

 . (14)

Proof. If we take c1 = 0 = c2 in Theorem 5, we get the required result.

In the following corollary, we give the Petrović’s inequality for convex functions on coordinates which is
given in [12].

Theorem 7. Let the conditions given in Theorem 5 are valid. If f : [0, a] × [0, b] → R be a convex function on
coordinates, then

n

∑
k=1

n

∑
j=1

pjqj f (xj, yj) ≤ f

(
n

∑
k=1

pkxk,
n

∑
j=1

qjyj

)
+

(
n

∑
j=1

qj − 1

)
f

(
n

∑
k=1

pkxk, 0

)

+

(
n

∑
j=1

pj − 1

){
f

(
0,

n

∑
j=1

qjyj

)
+

(
n

∑
j=1

qj − 1

)
f (0, 0)

}
. (15)
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Proof. If we take h(x) = x for all x ∈ [0, ∞), then it satisfied the condition imposed on h given in Theorem 6.
Hence using this value of h in above theorem gives the required result.

One can see that the condition on function h given in (7) restrict us to give Petrović’s type inequalities
for particular cases of h−convex functions given in Remark 1. If we consider reverse inequality in (7), then it
covers some of particular cases but for h−concave function.

In the following theorem, reverse of (12) has been concluded. The notable thing is the requirements of
submultiplicity and reverse of (7) for function h along with h-concavity of the function f .

Theorem 8. Let (x1, ..., xn) and (y1, ..., yn) be non-negative n-tuples, (p1, ..., pn) and (q1, ..., qn) be positive n−tuples
such that (10) and (11) are valid. Also let h : [0, ∞) → R+ be a submultiplicative function such that (9) is valid. If
f : [0, a]× [0, b]→ R be an h−concave function on coordinates, then the reverse of inequality (12) holds.

Proof. By using Theorem (4) and following the steps of Theorem 5, one can deduce the required results.

In the following theorem, we give the Petrović’s inequality for h−concave functions on coordinates.

Theorem 9. Let the conditions given in Theorem 8 are valid.
Also let h : [0, ∞) → R+ be a submultiplicative function. If f : [0, a]× [0, b] → R be an h−concave function on

coordinates, then the reverse of inequality (14) is valid.

Proof. If we take c1 = 0 = c2 in Theorem 8, we get the required result.

In the following theorem, we give the Petrović’s inequality for concave functions on coordinates.

Theorem 10. Let the conditions given in Theorem 8 are valid. If f : [0, a] × [0, b] → R be a concave function on
coordinates, then then the reverse of inequality (15) is valid.

Proof. If we take h(x) = x and c1 = 0 = c2 in Theorem 8, we get the required result.

Theorem 11. Let (x1, ..., xn) and (y1, ..., yn) be non-negative n-tuples, (p1, ..., pn) and (q1, ..., qn) be positive n-tuples
such that (10) and (11) are valid. If f : [0, a]× [0, b]→ R is reverse P−function on coordinates, then

n

∑
k=1

n

∑
j=1

pkqj f (xk, yj) ≤
n

∑
i=1

n

∑
j=1

piqj

(
n

∑
k=1

pkxk,
n

∑
j=1

qjyj

)
. (16)

Remark 3. Consider h(x) = 1
x , then h(α) + h(1− α) = 1

α + 1
1−α > 1 for all α ∈ (0, 1). Using above value of h

in Theorem 8 gives Petrović type inequality for reverse Godunova-Levin functions on coordinates.

Remark 4. Let us consider H(h) = h(α) + h(1− α)− 1, α ∈ (0, 1), we take g1(α) := H(αs) = αs + (1− α)s −
1, where s ∈ (0, 1). In [8], it has been shown that g1 is positive by considering different values of α and s in
interval (0, 1), therefore h(α) = αs for α, s ∈ (0, 1) satisfied the conditions of Theorem 8, but it doesn’t satisfies
the conditions of Theorem 5. Hence the above value of h in Theorem 8 leads us to the Petrović type inequalities
for reverse of s−Godunova-Levin on coordinates.

Remark 5. Let us consider g2(α) := H
(

1
αs

)
= 1

αs + 1
(1−α)s − 1, where s ∈ (0, 1). This function is also discussed

in [8] and it has been shown that g2 is positive for different values of α and s in (0, 1). Thus it satisfied the
conditions of Theorem 8, but it doesn’t satisfy the conditions of Theorem 5. Hence the above value of h in
Theorem 8 leads us to the Petrović type inequalities for s−concave function on coordinates.
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