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Abstract: Let G be a simple graph with vertex set V(G) and edge set E(G). A mapping g : V(G)→ {1, 2, ...t}
is called t-coloring if for every edge e = (u, v), we have g(u) 6= g(v). The chromatic number of the
graph G is the minimum number of colors that are required to properly color the graph. The chromatic
polynomial of the graph G, denoted by P(G, t) is the number of all possible proper coloring of G. Dendrimers
are hyper-branched macromolecules, with a rigorously tailored architecture. They can be synthesized in
a controlled manner either by a divergent or a convergent procedure. Dendrimers have gained a wide
range of applications in supra-molecular chemistry, particularly in host guest reactions and self-assembly
processes. Their applications in chemistry, biology and nano-science are unlimited. In this paper, the
chromatic polynomials for certain families of dendrimer nanostars have been computed.
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1. Introduction

A simple graph G = (V, E) is a finite nonempty set V(G) of objects known as vertices together with a
set E(G) of unordered pairs of distinct vertices of G known as edges. The t-coloring of a graph G is

a function g : V(G) → {1, 2, ...t} which satisfies g(u) 6= g(v) for any edge e = (uv). In 1912, Birkhoff [1],
presented the concept of chromatic polynomial to solve the four color problem. More precisely, a graph G is said
to be t-colorable if such t-coloring exists and we say G is t- colorable. The chromatic number χ(G) is the minimal
t for which the graph is t-colorable, and we say that G is t-chromatic if χ(G) = t.

The chromatic polynomial is defined as the number of distinct t-colorings in a graph G and is denoted
by the P(G, t). If the two graphs G and H have the same chromatic polynomial then the graphs defined as
the chromatically equivalent graphs. In recent years, the fields of cheminformatics, physics, computer sciences
and other social sciences have attracted their attention for research prospects in graph theory. A lot of research
has been done by using concepts of graph theory in these fields. In molecular graphs, the vertices of the graph
represent the atoms of the molecule, and the edges represent the chemical bonds.

Dendrimers are hyper-branched macromolecules, with a rigorously tailored architecture. They can be
synthesized, in a controlled manner, either by a divergent or a convergent procedure. Dendrimers have
gained a wide range of applications in supramolecular chemistry, particularly in host guest reactions and
self-assembly processes. Their applications in chemistry, biology and nanoscience are unlimited. Currently,
Alikhani et al. in [2] investigated the mathematical properties of the nanostructures and some of their chromatic
polynomials. In this paper, we have investigated the chromatic polynomials of certain dendrimers nanostars.

2. Known Results

In this section, we present some known result about chromatic polynomials of dendrimer graphs.

Theorem 1. [3] Fundamental Reduction Theorem.

P(G, t) = P(G− e, t)− P(G/e, t).
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Suppose that G is a simple graph which has an edge e. Then G− e is a graph obtained from the graph G
by eliminating an edge e and G/e is a graph obtained from the graph G by contracting an edge e to one vertex.

Let Pm+1 be a path with vertices yo, y1, y2, ..., ym and G be any graph. The graph Gvo (m) = G(m) is a graph
obtained from G by identifying a vertex vo of G with an end vertex yo of Pm+1, see Figure 1. For example, if G
is a path P2, then G(m) = P2(m) is the path Pm+2. The chromatic polynomial of the graph G(m) [2] is:
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Figure 1. The Graphs G(m) and G1(m)G2

P(Gm, t) = (t− 1)mP(G, t), (1)

and the chromatic polynomial of the graph G1(m)G2 [2] is:

P(G1(m)G2, t) =
(t− 1)m+1P(G1, t)P(G2, t)

t
. (2)

Theorem 2. [4] If the graphs G and H have only one common vertex, such that V(G) ∪V(H) = ν, we have

P(G ∪ H, t) =
P(G, t)P(H, t)

t
.

Lemma 3. [5] Let G be a graph of order n and size m and P(G, t) be the chromatic polynomial of G, then

a) deg(P(G, t) = n,
b) the coefficient of tn is 1,
c) the coefficient of tn−1 is −m.

3. Main Results

3.1. Chromatic polynomial of Polyaryl Ether dendrimer

Polyaryl ether dendrimer is an important class of commercial polymers. The 32 carboxylate groups
on dendrimers surface makes it highly soluble in basic aqueous solution, its three dimensional structure is
constructed in possessing a central unit or core unit denoted by G1(0) (see Figure 2). Its branches, also known
as added branches which are denoted by the graph H (see Figure 3) and the end groups which overall has
grown to n number of stages. The graph can be divided into 4n hexagonal in each step. The graph of polyaryl
ether dendrimer is denoted by G1(n) and shown in the Figure 4.

Figure 2. The graph of polyaryl ether dendrimer nanostar G1(0)

The following two theorems presents the formula for chromatic polynomial of the G1(0) and G1(n).
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Figure 3. The graph of added branch of polyaryl ether dendrimer nanostar denoted by H.

Figure 4. The graph of polyaryl ether dendrimer G1(2)

Theorem 4. The chromatic polynomial of the polyaryl ether dendrimer G1(0) is

P(G1(0), t) = t(t− 1)23(t4 − 5t3 + 10t2 − 10t + 5)4.

Proof. By applying Theorem 2 and Equation (1), we get

P(G1(0), t) =
(t− 1)19(P(C6, t))4

t3 = t(t− 1)23(t4 − 5t3 + 10t2 − 10t + 5)4.

Theorem 5. For n ≥ 0, the chromatic polynomial of G1(n) is as:

P(G1(n), t) = t(t− 1)28.2n−5(t4 − 5t3 + 10t2 − 10t + 5)2n+2.

Proof. The proof is constructed by induction on n. Since result is true for n = 0 by Theorem 4. Let us suppose
that the result is true for any values less than n and we prove it for n. The chromatic polynomial of core of
polyaryl ether dendrimer graph is

P(G1(0), t) = t(t− 1)23(t4 − 5t3 + 10t2 − 10t + 5)4.

The chromatic polynomial of the graph H is computed by applying Theorem 2 and Equation (1).

P(H, t) = (t− 1)6P(C6, t) = P(H, t) = t(t− 1)7(t4 − 5t3 + 10t2 − 10t + 5),
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For n ≥ 1, the graph G1(n) is obtained from G1(n− 1) by adding 4(2)n−1 copies of the graph H such that
each copy of the graph H has vertex in common with the graph G1(n− 1). Therefore by Theorem 2 we get,

P(G1(m), t) =
P(G1(m− 1), t)× (P(H, t))4(2m−1)

t4(2m−1)
, 1 ≤ m ≤ n.

Now by using the backward substitution, we get

P(G1(n), t) =
P(G1(0), t)× (P(H, t))4(2n−1))

t4(2n−1)

=
t(t− 1)23(t4 − 5t3 + 10t2 − 10t + 5)4(t(t− 1)7(t4 − 5t3 + 10t2 − 10t + 5))4(2n−1)

t4(2n−1)
.

Hence we conclude that

P(G1(n), t) = t(t− 1)28(2n)−5(t4 − 5t3 + 10t2 − 10t + 5)2n+2
.

The following result presents the formula for order and size of the Polyaryl ether dendrimer nanostar
G1(n).

Corollary 6. Let G1(n) be the polyaryl ether dendrimer nanostar. Then

a) |V(G1(n)| = 44(2n)− 4,
b) |EG1(n)| = 48(2n)− 5.

Proof. a) Using Lemma 3(a), deg(P(G, t)) = |V(G)|which states that the degree of the chromatic polynomials
is equal to the number of vertices in that graph. Since, deg(P(G1(n), t)) = 44(2n)− 4 therefore by the Theorem
5, we get

|V(G1(n)| = 44(2n)− 4.

b) Using Lemma 3(c), the coefficient of −t|V(G)−1| is equal with the number of edges of G. So, Theorem 5
implies that

|E(G1(n)| = 48(2n)− 5.

3.2. Chromatic polynomial of Organosilicon dendrimer

The organosilicon dendrimers was first studied and prepared by Nakayama and Lin [? ]. Organosilicon
dendrimer graph denoted by G[n] which is different by its construction consisting of three major parts, the core
unit denoted by G[1] (Figure 5), added branches which is denoted by the graph H and the end groups which
overall has grown to n stages. Let H1 is the graph obtained by vertex gluing of C5 and K2. The graph H is
obtained by vertex gluing of 3 copies of H1 and path P2. The graph can be divided into 6(3n−1)− 2 pentagons
in each stage. The graph H and G[2] is shown in Figures 6 and 7.
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Figure 5. The graph of organosilicon dendrimer G[1]
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Figure 6. The graph of added branch of organosilicon dendrimer H
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Figure 7. The graph of organosilicon dendrimer G[2]

The following three theorems presents the formula for chromatic polynomial of the Organosilicon
dendrimer G[1], G[2] and G[n].

Theorem 7. The chromatic polynomial of Organosilicon dendrimer G[1] is

P(G[1], t) = t(t− 1)8(t3 − 4t2 + 6t− 4)4.

.

Proof. By applying Theorem 2, we get

P(H1, t) =
P(C5, t)P(K2, t)

t
= (t− 1)((t− 1)5 − (t− 1)) = t(t− 1)2(t3 − 4t2 + 6t− 4).

Since, the graph G[1] is composed of 4 copies of the graph H1 such that each copy of the H1 intersect at
the common vertex t, where t = Si from Figure 5. Therefore, from Theorem 2, we have

P(G[1], t) =
P(H1, t)P(H1, t)P(H1, t)P(H1, t)

t.t.t
=

t4(t− 1)8(t3 − 4t2 + 6t− 4)4

t3 ,

This implies that,
P(G[1], t) = t(t− 1)8(t3 − 4t2 + 6t− 4)4.

Theorem 8. For n ≥ 1, the chromatic polynomial of G[n] is

P(G[n], t) = t(t− 1)14(3n−1)−6(t3 − 4t2 + 6t− 4)6(3n−1)−2.
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Proof. The proof is constructed by induction on n. Since the result is true for n = 1 by Theorem 7. Let us
suppose that the result is true for any values less than n and we prove it for n. The chromatic polynomial of
organosilicon dendrimer for G[1] is,

P(G[1], t) = t(t− 1)8(t3 − 4t2 + 6t− 4)4.

The chromatic polynomial of Organosilicon dendrimer for the graph H can be computed by applying
Theorem 2 and Equation (1), as follows

P(H, t) =
(t− 1)4(P(C5, t))3

t2 = t(t− 1)7(t3 − 4t2 + 6t− 4)3.

For n ≥ 2, the graph G[n] is obtained from G[n− 1] by adding 4(3)n−2 copies of the graph H such that
each copy of the graph H has vertex in common with the graph G[n− 1]. Therefore by Theorem 2, we get

P(G[m], t) =
P(G[m− 1], t)× (P(H, t))4(3m−2)

t4(3m−2)
, 2 ≤ m ≤ n.

Now by using the backward substitution, we get

P(G[n], t) =
P(G[1], t)× (P(H, t))2(3n−1−1))

t2(3n−1−1)

= t(t− 1)8(t3 − 4t2 + 6t− 4)4((t− 1)7(t3 − 4t2 + 6t− 4))2(3n−1−1)

= t(t− 1)14(3n−1)−6(t3 − 4t2 + 6t− 4)6×3n−1−2.

The following result presents the formula for order and size of the Organosilicon dendrimer G[n].

Corollary 9. For the Organosilicon dendrimer G[n], we have

a) |V(G[n])| = 21 + 32[3n−1 − 1],
b) |E(G[n])| = 24 + 38[3n−1 − 1].

Proof. a) Using Lemma 3(a), deg(P(G, t)) = |V(G)| which states that the degree of the chromatic polynomial
is equal to the number of vertices in that graph. Since, deg(P(G, t)) = 21 + 32[3n−1 − 1], therefore Theorem 8
implies that

|V(G[n])| = 21 + 32[3n−1 − 1].

b) Using Lemma 3(c), the coefficient of −t|V(G)−1| is equal with the number of edges of G. So Theorem 8
implies that

|E(G[n]) = 24 + 38[3n−1 − 1].

3.3. Chromatic polynomial of Nanostar dendrimer

For n ≥ 1, the graph of Nanostar dendrimer NSC5C6 denoted by G2(n) which is different by its
construction consisting of major parts core unit, added branches and end groups, which overall has grown to n
stages. First stage consists of a hexagon with two pentagons and for n ≥ 2 the new branches 4(2n−2) emitting
from the very first stage are added and their step wise growth follows a structure of Nanostar dendrimer
NSC5C6. The graph of G2(2) and the graph of added branch denoted by H is shown in Figures 8 and 9
respectively. Now, we will determine the chromatic polynomial of family of dendrimer nanostar NSC5C6

denoted by G2(n).
The following two theorems presents the formula for chromatic polynomial of the G2(1) and G2(n).

Theorem 10. The chromatic polynomial of Nanostar dendrimer NSC5C6 denoted by G2(1) is:

P(G2(1), t) = t(t− 1)17(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5).
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Figure 8. The graph G2(2) of dendrimer nanostar NSC5C6

Figure 9. The graph H of added branch of dendrimer nanostar NSC5C6

Proof. By applying Theorem 2 and Equation (1), we get

P(G2(1), t) =
(t− 1)14P(C6, t)(P(C5, t))2

t2 = t(t− 1)17(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5).

Theorem 11. For n ≥ 0, the chromatic polynomial of G2(n) is:

P(G2(n), t) = t(t− 1)11(2n+1)−27(t3 − 4t2 + 6t− 4)2n+1−2(t4 − 5t3 + 10t2 − 10t + 5)2n+1−3.

Proof. The proof is constructed by induction on n. Since the result is true for n = 1 by Theorem 10. Let us
suppose that the result is true for any values less than n and we prove it for n. The chromatic polynomial of
G2(1) is

P(G2(1), t) = t(t− 1)17(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5).

The chromatic polynomial for the graph H can be calculated by applying Theorem 2 and Equation (1), we
get

P(H, t) =
(t− 1)9P(C5, t)P(C6, t)

t
= t(t− 1)11(t3 − 4t2 + 6t− 4)(t4 − 5t3 + 10t2 − 10t + 5).

For n ≥ 2, the graph G2(n) is obtained from G2(n− 1) by adding 4(2)n−2 copies of the added graph H
such that each copy of the graph H has vertex in common with the graph G2(n− 1). Therefore by Theorem 2,
we get

P(G2(m), t) =
P(G2(m− 1), t)× (P(H, t))4(2m−2)

t4(2m−2)
, 2 ≤ m ≤ n.

Now by using the backward substitution, we get

P(G2(n), t) =
P(G2(1), t)× (P(H, t))4(2n−1−1))

t4(2n−1−1)

= t(t− 1)17(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5)

×[(t− 1)11(t3 − 4t2 + 6t− 4)(t4 − 5t3 + 10t2 − 10t + 5)]4(2
n−1−1).

Hence we conclude that

P(G2(n), t) = t(t− 1)11(2n+1)−27(t3 − 4t2 + 6t− 4)2n+1−2(t4 − 5t3 + 10t2 − 10t + 5)2n+1−3.
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The following result presents the formula for order and size of the Nanostar dendrimer.

Corollary 12. Let G2(n) be the Nanostar dendrimer NSC5C6. Then we have

a) |V(G2(n))| = 9× 2n+2 − 44,
b) |E(G2(n))| = 9× 2n+2 − 45.

Proof. a) Using Lemma 3(a), deg(P(G, t)) = |V(G)| which states that the degree of the chromatic polynomial
is equal to the number of vertices in that graph. Since, deg(P(G2(n), t)) = 9× 2n+2 − 44, therefore Theorem 11
implies that,

|V(G2(n), t)| = 9× 2n+2 − 44.

b) Using Lemma 3 (c), the coefficient of −t|V(G)−1| is equal with the number of edges of G. So Theorem 11
implies that

|E(G2(n), t)| = 9× 2n+2 − 45.

3.4. Chromatic polynomial of Tetrathiafulvalence dendrimer

The graph of Tetrathiafulvalence dendrimer simply denoted by TD2[n] consisting of core unit, added
branches and end groups which has overall grown to n stages and each stage consists of 2n+3 − 6 pentagons
with 2n+3 − 4 hexagons. After the core unit stage, for n ≥ 1, 4(2n−1) branches are added to every stage of
the graph and hence, their stepwise growth follows a structure of the tetrathiafulvalence dendrimer, TD2[n].
The graph of TD2[0] is the core of graph, the graph of added branch H and the graph of TD2[1] is shown in
Figure 10, 11 and 12. Now, we will determined the chromatic polynomial of class of dendrimer known as
tetrathiafulvalence dendrimer TD2[n].

Figure 10. The core of tetrathiafulvalence dendrimer TD2[0].

Figure 11. The added graph H in each branch of TD2[n].

The following two theorems presents the formula for chromatic polynomial of TD2[0] and TD2[n].
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Figure 12. The graph of Tetrathiafulvalence dendrimer, TD2[1].

Theorem 13. The chromatic polynomial of tetrathiafulvalence dendrimer TD2[0] is:

P(TD2[0]), t) = t(t− 1)27(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5)4.

Proof. By applying Theorem 2 and Equation (1), we get

P(TD2[0], t) =
(t− 1)21(P(C6, t))4(P(C5, t))2

t5 .

This implies that

P(TD2[0], t)) = t(t− 1)27(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5)4.

Theorem 14. For n ≥ 0, the chromatic polynomial of TD2[n] is:

P(TD2[n], t) = t(t− 1)17(2n+2)−41(t3 − 4t2 + 6t− 4)2n+3−6(t4 − 5t3 + 10t2 − 10t + 5)2n+3−4.

Proof. The proof is constructed by induction on n. Since the result is true for n = 0 by Theorem 13. Let us
suppose that the result is true for any values less than n and we prove it for n. The chromatic polynomial of
the graph TD2[n] is

P(TD2[0], t) = t(t− 1)27(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5)4.

The chromatic polynomial for graph H can be calculated by applying Theorem 2 and Equation (1), as
follows:

P(H, t) =
(t− 1)13(P(C6, t))2(P(C5, t))2

t3 = t(t− 1)17(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5)2.

For n ≥ 1, the graph TD2[n] is obtained from TD2[n− 1] by adding 4(2)n−1 copies of the graph H such
that each copy of the graph H has vertex in common with the graph TD2[n− 1]. Therefore by Theorem 2, we
have

P(TD2[m], t) =
P(TD2[m− 1], t)× (P(H, t))4(2m−1)

t4(2m−1)
, 1 ≤ m ≤ n.



Open J. Math. Sci. 2019, 3, 404-416 413

Now by using the backward substitution, we get

P(TD2[n], t) =
P(TD2[0], t)× (P(H, t))4(2n−1)

t4(2n−1)

=
t(t− 1)27(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5)4

t4(2n−1)

× [t(t− 1)17(t3 − 4t2 + 6t− 4)2(t4 − 5t3 + 10t2 − 10t + 5)2]4(2
n−1)

t4(2n−1)
.

Hence we conclude that

P(TD2[n]), t) = t(t− 1)17(2n+2)−41(t3 − 4t2 + 6t− 4)2n+3−6(t4 − 5t3 + 10t2 − 10t + 5)2n+3−4.

The following result presents the formula for size and order of Tetrathiafulvalence dendrimer.

Corollary 15. For the Tetrathiafulvalence dendrimer TD2[n], we have

a) |V(TD2[n])| = 50 + 124(2n − 1),
b) |E(TD2[n])| = 5(28(2n)− 17).

Proof. a) Using Lemma 3(a), deg(P(G, t)) = |V(G)| which states that the degree of the chromatic polynomial
is equal to the number of vertices in that graph. Since, deg(P(TD2[n], t)) = 50+ 124(2n− 1), therefore Theorem
14 implies that

|V(TD2[n], t)| = 50 + 124(2n − 1).

b) Using Lemma 3(c), the coefficient of −t|V(G)−1| is equal with the number of edges of G. So Theorem 14
implies that

|E(TD2[n], t)| = 5(28(2n)− 17).

3.5. Chromatic polynomial of Polyther nanostar dendrimer

The graph of polyther dendrimer PD3[n] consisting of core unit, added branches and end groups which
has overall grown to the n stages and each stage consists of 3(2n+1 − 1) hexagons. The new branches 3(2n −
1) emitting from the very first stage are added and their step wise growth follows a structure of polyther
dendrimer nanostar PD3[n]. The core of polyther dendrimer PD3[0] and the graph of PD3[1] and the graph of
added branch H is shown in Figure 13, 14 and 15.

Figure 13. The core of polyther dendrimer PD3[0].

Now, we will determine the chromatic polynomial of family of Polyther nanostar dendrimer PD3[n].
The following three theorems presents the chromatic polynomial of the Polyther nanostar dendrimer

PD3[0] and PD3[n].
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Figure 14. The graph of H of polyther dendrimer PD3[n].

Figure 15. The graph of polyther dendrimer PD3[1].

Theorem 16. The chromatic polynomial of polyther dendrimer nanostar PD3[0] is

P(PD3[0], t) = t(t− 1)10(t4 − 5t3 + 10t2 − 10t + 5)3.

Proof. By applying Theorem 2 and Equation (1), we get

P(PD3[0], t) =
(t− 1)7(P(C6, t))3

t2 .

This implies that
P(PD3[0], t) = t(t− 1)10(t4 − 5t3 + 10t2 − 10t + 5)3.

Theorem 17. For n ≥ 0, the chromatic polynomial of PD3[n] is:

P(PD3[n], t) = t(t− 1)33(2n)−23(t4 − 5t3 + 10t2 − 10t + 5)3(2n+1)−3.

Proof. The proof is constructed by induction on n. Since the result is true for n = 0 by Theorem 16. Let us
suppose that the result is true for any values less than n and we prove it for n. The chromatic polynomial of
polyther dendrimer for PD3[1] is

P(PD3[0], t) = t(t− 1)10(t4 − 5t3 + 10t2 − 10t + 5)3.

The chromatic polynomial for the graph H can be calculated by applying Theorem 2 and Equation (1), we
get

P(H, t) =
(t− 1)9(P(C6, t))2

t
= t(t− 1)11(t4 − 5t3 + 10t2 − 10t + 5)2.

For n ≥ 1, the graph PD3[n] is obtained from PD3[n− 1] by adding 3(2)n−1 copies of the added graph H
such that each copy of the graph H has vertex in common with the graph PD3[n− 1]. Therefore by Theorem
2, we get

P(PD3[m], t) =
P(PD3[m− 1], t)× (P(H, t))3(2m−1)

t3(2m−1)
, 1 ≤ m ≤ n.
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Now by using the backward substitution, we get

P(PD3[n], t) = t(t− 1)10(t4 − 5t3 + 10t2 − 10t + 5)3)[
(t(t− 1)11(t4 − 5t3 + 10t2 − 10t + 5)2)3(2n−1)

t3(2n−1)
].

Hence we conclude that

P(PD3[n], t) = t(t− 1)33(2n)−23(t4 − 5t3 + 10t2 − 10t + 5)3(2n+1)−3.

The following result presents the formula for order and size of the polyther dendrimer PD3[n].

Corollary 18. For the Polyther dendrimer PD3[n], we have

a) |V(PD3[n])| = 57(2n)− 34,
b) |E(PD3[n])| = 63(2n)− 38.

Proof. a) Using Lemma 3(a), deg(P(G, t)) = |V(G)|, which states that the degree of the chromatic polynomial
is equal to the number of vertices in that graph. Since, deg(P(PD3[n], t)) = 57(2n)− 34, therefore Theorem 17
implies that

|V(PD3[n])| = 57(2n)− 34.

b) Using Lemma 3(c), the coefficient of −t|V(G)−1| is equal with the number of edges of G. So Theorem 17
implies that

|E(PD3[n]) = 63(2n)− 38.

4. Conclusion

Dendrimers have wide range of applications in supra-molecular chemistry, particularly in host guest
reactions and self-assembly processes. During the past several years, there are many research papers dealing
with the study of mathematical and topological properties of certain dendrimer nano-structures in [6–10].
Currently, Alikhani and Iranmanesh investigated the mathematical properties of the nanostructures and some
of their chromatic polynomials [2]. In this paper, we have extended this study and computed the chromatic
polynomials of certain dendrimers.

Acknowledgments: The authors thank the reviewers for their constructive comments in improving the quality of this
paper.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

[1] Birkhoff, G. D. (1912). A determinant formula for the number of ways of coloring a map. The Annals of Mathematics,
14(1/4), 42-46.

[2] Alikhani, S., & Iranmanesh, M. A. (2010). Chromatic polynomials of some dendrimers. Journal of Computational and
Theoretical Nanoscience, 7(11), 2314-2316.

[3] Fengming, D., & Khee-meng, K. (2005). Chromatic polynomials and chromaticity of graphs. World Scientific.
[4] Zykov, A. A. (1949). On some properties of linear complexes. Matematicheskii sbornik, 66(2), 163-188.
[5] Farrell, E. J. (1980). On chromatic coefficients. Discrete Mathematics, 29(3), 257-264.
[6] Gutman, I., & Polansky, O. E. (2012). Mathematical concepts in organic chemistry. Springer-Verlag, New York.
[7] Hasni, R., Arif, N. E., & Alikhani, S. (2014). Eccentric Connectivity Polynomials of Some Families of Dendrimers.

Journal of Computational and Theoretical Nanoscience, 11(2), 450-453.
[8] Hayat, S., & Imran, M. (2014). Computation of topological indices of certain networks. Applied Mathematics and

Computation, 240, 213-228.
[9] Imran, M., Hayat, S., & Shafiq, M. K. (2015). Valency based topological indices of organosilicon dendrimers and

cactus chains. Optoelectronics and Advanced Materials-Rapid Communications, 9(May-June 2015), 821-830.



Open J. Math. Sci. 2019, 3, 404-416 416

[10] Khalifeh, M. H., Yousefi-Azari, H., & Ashrafi, A. R. (2009). The Szeged and Wiener Numbers of Water-Soluble
Polyaryl Ether Dendrimer Nanostars. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(1), 63-66.

c© 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Known Results
	Main Results
	Chromatic polynomial of Polyaryl Ether dendrimer
	Chromatic polynomial of Organosilicon dendrimer
	Chromatic polynomial of Nanostar dendrimer
	Chromatic polynomial of Tetrathiafulvalence dendrimer
	Chromatic polynomial of Polyther nanostar dendrimer

	Conclusion

