

Article

Pseudo-valuations and pseudo-metric on JU-algebras

Usman Ali¹, Moin A. Ansari² and Masood Ur Rehman^{3,*}

- Center for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan.; uali@bzu.edu.pk
- Department of Mathematics, college of Science, Post Box 2097, Jazan University, Jazan, KSA.; maanari@jazanu.edu.sa
- ³ Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Pakistan.
- * Correspondence: masoodqau27@gmail.com

Received: 1 January 2019; Accepted: 19 November 2019; Published: 16 December 2019.

Abstract: In this paper we have introduced the concept of pseudo-valuations on JU-algebras and have investigated the relationship between pseudo-valuations and ideals of JU-algebras. Conditions for a real-valued function to be a pseudo-valuation on JU-algebras are given and results based on them have been shown. We have also defined and studied pseudo-metric on JU-algebras and have proved that ϑ being a valuation on a JU-algebras A, the operation \diamond in A is uniformly continuous.

Keywords: JU-algebra, JU-ideal, valuation, pseudo-valuations, pseudo metric.

MSC: 06F35, 03G25, 03C05.

1. Introduction

P seudo-valuations in residuated lattices was introduced by Busneag [1] where many theorems based on pseudo-valuations in lattice terms and their extension theorem for residuated lattices to pseudo-valuation from valuations are shown using the model of Hilbert algebras [2]. But in fact Pseudo-valuations on a Hilbert algebras was initially introduced by Busneag [3] where it is proved that every pseudo-valuation induces a pseudometric on a Hilbert algebra. Further Busneag [2] proved many results on extensions of pseudo-valuation.

Logical algebras have become the keen interest for researchers in recent years and intensively studied under the influence of different mathematical concepts. Doh and Kang [4] introduced the concept of pseudo-valuation on BCK/BCI algebras and studied several results based on them. Ghorbani [5] defined congruence relations and gave quotient structure of BCI-algebras based on pseudo-valuation. Zhan and Jun [6] studied pseudo valuation on R_0 -algebras. Based on the concept of pseudo-valuation in R_0 -algebras, Yang and Xin [7] characterized pseudo pre-valuations on EQ-algebras. Mehrshad and Kouhestani studied Pseudo-Valuations on BCK-Algebras [8]. Pseudo-valuations on a BCC-algebra was introduced by Jun *et al.* [9], where they have shown that binary operation in BCC-algebras is uniformly continuous. Recently Moin *et al.* [16] introduced JU-algebras and their *p*-closure ideals.

UP-algebras were introduced by Iampan [10] as a new branch of logical algebras. Naveed *et al.* [11] introduced the concept of cubic KU-ideals of KU-algebras. Moin and Ali [12] have given the concept of roughness in KU-Algebras recently whereas rough set theory in UP-algebras have been introduced and studied by Moin *et al.* [13]. Next, graph associated to UP-algebras was introduced by Moin *et al.* [14]. Daniel studied pseudo-valuations on UP-algebras in [15].

In this paper, we focus on pseudo-valuation which is applied to JU-algebras and discuss related results. We define pseudo-valuations on JU-algebras using the model of Busneag and introduce a pseudo-metric on JU-algebras. We also prove that the binary operation defined on JU-algebras is uniformly continuous under the induce pseudo-metric.

2. Preliminaries and basic properties of JU-algebras

In this section, we shall introduce JU-algebras, JU-subalgebras, JU-ideals and other important terminologies with examples and some related results.

Definition 1. An algebra $(A, \diamond, 1)$ of type (2,0) with a single binary operation \diamond is said to be JU-algebras satisfying the following identities: for any $u, v, w \in X$,

- $(JU_1)(u \diamond v) \diamond [(v \diamond w) \diamond (u \diamond w)] = 1,$
- (JU_2) 1 $\diamond u = u$,
- (JU_3) $u \diamond v = v \diamond u = 1$ implies u = v.

We call the constant 1 of X the fixed element of X. For the sake of convenience, we write X instead of $(X,\diamond,1)$ to represent a JU-algebra. We define a relation $'' \leq ''$ in X by $v \leq u$ if and only if $u \diamond v = 1$. If we add the condition $u \diamond 1 = 1$ for all $u \in X$ in the definition of JU-algebras, then we get that X is a KU-algebra. Therefore, JU-algebra is a generalization of KU-algebras.

Lemma 2. If X is a JU-algebra, then (X, \leq) is a partial ordered set i.e.,

- $(J_4) u \leq u$,
- (J_5) $u \leq v, v \leq u$, implies u = v,
- (J_6) $u \leq w, w \leq v$, implies $u \leq v$.

Proof. Putting v=w=1 in (JU_1) we get $u\diamond u=1$, i.e. $u\leq u$ which proves (J_4) . (J_5) directly follows from (JU_3) . For (J_6) take $u\leq w$ and $w\leq v$ implies that $w\diamond u=1$ and $v\diamond w=1$. By (JU_1) , we have $v\diamond u=1$ implies that $u\leq v$. \square

Further we have the following Lemma for a JU-algebra *X*.

Lemma 3. If A is a JU-algebra, then following inequalities holds for any $u, v, w \in A$:

- (J_7) $u \leq v$ implies $v \diamond w \leq u \diamond w$,
- (J_8) $u \leq v$ implies $w \diamond u \leq w \diamond v$,
- $(J_9) (w \diamond u) \diamond (v \diamond u) \leq v \diamond w,$
- (J_{10}) $(v \diamond u) \diamond u \leq v$.

Proof. (J_7) , (J_8) and (J_9) follows from (JU_1) by adequate replacement of elements. (J_{10}) follows from (JU_1) and Definition 1. \square

Next, we have the following Lemmas.

Lemma 4. Any JU-algebra X satisfies following conditions for any $u, v, w \in A$,

- $(J_{11}) u \diamond u = 1,$
- $(J_{12}) w \diamond (v \diamond u) = v \diamond (w \diamond u),$
- (J_{13}) If $(u \diamond v) \diamond v = 1$, then A is a KU-algebra,
- (J_{14}) $(v \diamond u) \diamond 1 = (v \diamond 1) \diamond (u \diamond 1)$.

Proof. Putting v = w = 1 in JU_1 , we get; $u \diamond u = 1$ which proves (J_{11}) . For (J_{12}) , we have $(w \diamond u) \diamond u \leq w$. By putting v = 1 in (JU_1) and using (J_7) , we get

$$w \diamond (v \diamond u) \le ((w \diamond u) \diamond u) \diamond (v \diamond u). \tag{1}$$

Replace w by $w \diamond u$ in (JU_1) , we get $[v \diamond (w \diamond u)] \diamond [((w \diamond u) \diamond u) \diamond (v \diamond u)] = 1$, which implies

$$((w \diamond u) \diamond u) \diamond (v \diamond u) \le v \diamond (w \diamond u). \tag{2}$$

From (1), (2) and Lemma $2(J_6)$ we get,

$$w \diamond (v \diamond u) \le v \diamond (w \diamond u). \tag{3}$$

Further by replacing v with w and w with v in (3), we get

$$v \diamond (w \diamond u) \le w \diamond (v \diamond u). \tag{4}$$

Now (3), (4) and (J_5) yields, $w \diamond (v \diamond u) = v \diamond (w \diamond u)$.

In order to prove (J_{13}) , we just needs to show that $u \diamond 1 = 1$, $\forall u \in A$. Replacing $v \to 1$, $u \to 1$, $w \to u$ in (JU_1) , we obtained, $(1 \diamond u) \diamond [(u \diamond 1) \diamond (1 \diamond 1)] = 1 \Rightarrow u \diamond [(u \diamond 1) \diamond 1] = 1 \Rightarrow u \diamond 1 = 1$ (by using v = 1 in the given condition of (J_{13})).

Using (J_{12}) for any $u, v \in A$ in the followings we see that, $(v \diamond 1) \diamond (u \diamond 1) = (v \diamond 1) \diamond u \diamond [(v \diamond u) \diamond (v \diamond u)] = (v \diamond 1) \diamond [(v \diamond u) \diamond (u \diamond (v \diamond u))] = (v \diamond u) \diamond [(v \diamond 1) \diamond (v \diamond (u \diamond u))] = (v \diamond u) \diamond [(v \diamond 1) \diamond (v \diamond u))] = (v \diamond u) \diamond (v \diamond u) \diamond (v \diamond u)$, which shows that (J_{14}) holds. \Box

Definition 5. A non-empty subset *I* of a JU-algebra *A* is called a JU-ideal of *A* if it satisfies the following conditions:

- (1) $1 \in I$,
- (2) $u \diamond (v \diamond w) \in I, v \in I$ implies $u \diamond w \in I$, for all $u, v, w \in I$.

3. Pseudo-valuations and pseudo-metric

Definition 6. A real-valued function ϑ on a JU-algebra A is called a pseudo-valuation on A if it satisfies the following two conditions:

- $(1) \vartheta(1) = 0,$
- (2) $\vartheta(u \diamond w) \leq \vartheta(u \diamond (v \diamond w)) + \vartheta(v)$ for all $u, v, w \in A$.

A pseudo-valuation ϑ on a JU-algebra A satisfying the following condition:

 $\vartheta(u) = 0 \Rightarrow u = 1$ for all $u \in A$ is called a valuation on A.

Example 1. Let $A = \{1, 2, 3, 4\}$ be a set with operation \diamond . A Cayley table for A is defined as

\ \ \	1	2	3	4
1	1	2	3	4
2	1	1	1	4
3	1	2	1	4
4	1	2	1	1

Here *A* is a JU-algebra. We find that a real valued function defined on *A* by $\vartheta(1) = 0$, $\vartheta(2) = \vartheta(3) = 1$, and $\vartheta(4) = 3$, is a pseudo-valuation on *A*.

Proposition 7. Let ϑ be a pseudo-valuation on a [U-algebras A. Then we have

(1) $u \le v \Rightarrow \vartheta(v) \le \vartheta(u)$.

(2) $\vartheta((u \diamond (v \diamond w)) \diamond w) \leq \vartheta(u) + \vartheta(v)$ for all $u, v, w \in A$.

Proof. (1) Let $u, v \in A$ be such that $u \le v$. Replacing u = 1, v = u, w = v in Definition 6 and Definition 1, we get $\vartheta(v) = \vartheta(1 \diamond v) \le \vartheta(1 \diamond (u \diamond v)) + \vartheta(u) = \vartheta(1 \diamond 1) + \vartheta(u) = \vartheta(1) + \vartheta(u) = \vartheta(u)$.

(2) If we replace u by $u \diamond (v \diamond w)$ in Definition 6(2), then we get

$$\vartheta((u \diamond (v \diamond w)) \diamond w) \leq \vartheta((u \diamond (v \diamond w)) \diamond (v \diamond w)) + \vartheta(v),$$

again applying Definition 6 (2) by choosing $u = u \diamond (v \diamond w)$ and $w = v \diamond w$, we get

$$\begin{split} \vartheta((u \diamond (v \diamond w)) \diamond w) &\leq \vartheta[(u \diamond (v \diamond w)) \diamond (u \diamond (v \diamond w))] + \vartheta(u) + \vartheta(v) = \vartheta(1) + \vartheta(u) + \vartheta(v) \\ &\Rightarrow \vartheta((u \diamond (v \diamond w)) \diamond w) \leq \vartheta(u) + \vartheta(v). \end{split}$$

Corollary 8. A pseudo-valuation ϑ on a JU-algebra A satisfies the inequality $\vartheta(u) \geq 0$ for all $u \in A$.

Proposition 9. If ϑ is a pseudo-valuation on a JU-algebra A, then we have $\vartheta((u \diamond v) \diamond v) \leq \vartheta(u)$ for all $u, v \in A$.

Proof. It is easy to see that the required inequality holds by considering v=1 and w=v in Proposition 7 (2) and using Definition 1. \Box

Following results are devoted to find conditions for a real valued function on a JU-algebra A to be a pseudo-valuation.

Theorem 10. Let ϑ be a real valued function on a JU-algebra A satisfying the following conditions:

- (a) If $\vartheta(a) \leq \vartheta(u)$ for all $u \in A$, then $\vartheta(a) = 0$,
- (b) $\vartheta(u \diamond v) \leq \vartheta(v)$ for all $u, v \in A$,
- (c) $\vartheta((u \diamond (v \diamond w)) \diamond w) \leq \vartheta(u) + \vartheta(v)$,
- (d) $\vartheta(v \diamond (u \diamond w)) \leq \vartheta(u \diamond (v \diamond w))$.

Then ϑ *is a pseudo-valuation on* A.

Proof. From Lemma 4 and given condition (b), we have $\vartheta(1) = \vartheta(u \diamond u) \leq \vartheta(u)$ for all $u \in A$ and hence $\vartheta(1) = 0$, using given condition (a). Now, from Definition 1, Lemma 4 and given condition (c), we get $\vartheta(v) = \vartheta(1 \diamond v) = \vartheta(((u \diamond v) \diamond (u \diamond v)) \diamond v) \leq \vartheta(u \diamond v) + \vartheta(u)$ for all $u, v \in A$. It follows from given condition (d) that $\vartheta(u \diamond w) \leq \vartheta(v \diamond (u \diamond w)) + \vartheta(v) \leq \vartheta(u \diamond (v \diamond w)) + \vartheta(v)$ for all $u, v, w \in A$. Therefore ϑ is a pseudo-valuation on A. \square

Corollary 11. Let ϑ be a real-valued function on a JU-algebra A satisfying the following conditions:

- (a) $\vartheta(1) = 0$,
- (b) $\vartheta(u \diamond v) \leq \vartheta(v)$, for all $u, v \in A$,
- (c) $\vartheta((u \diamond (v \diamond w) \diamond w)) \leq \vartheta(u) + \vartheta(v)$ for all $u, v, w \in A$,
- (d) $\vartheta(v \diamond (u \diamond w)) \leq \vartheta(u \diamond (v \diamond w))$.

Then ϑ is a pseudo-valuation on A.

Theorem 12. If ϑ is a pseudo-valuation on a JU-algebra A, then $\vartheta(v) \leq \vartheta(u \diamond v) + \vartheta(u)$, for all $u, v \in A$.

Proof. Let $m = (u \diamond v) \diamond v$ for any $u, v \in A$, and $n = u \diamond v$. Then $v = 1 \diamond v = (((u \diamond v) \diamond v) \diamond ((u \diamond v) \diamond v)) \diamond v = (m \diamond (n \diamond v)) \diamond v$. It follows from Proposition 7(2) and Proposition 9 that $\vartheta(v) = \vartheta((m \diamond (n \diamond v)) \diamond v) \leq \vartheta(m) + \vartheta(n) = \vartheta((u \diamond v) \diamond v) + \vartheta(u \diamond v) \leq \vartheta(u) + \vartheta(u \diamond v)$. This completes the proof. \square

Theorem 13. Let ϑ be a real-valued function on a JU-algebra A satisfying the following conditions.

- $(1) \vartheta(1) = 0,$
- $(2) \vartheta(v) \leq \vartheta(u \diamond v) + \vartheta(u),$
- (3) $\vartheta(v \diamond (u \diamond w)) \leq \vartheta(u \diamond (v \diamond w))$ for all $u, v, w \in A$.

Then ϑ *is a pseudo-valuation on* A.

Proof. For any $u, v, a, b \in A$, and using 4 with given condition (2) and (3) we get, $\vartheta(u \diamond v) \leq \vartheta(v \diamond (u \diamond v)) + \vartheta(v) \leq \vartheta(u \diamond (v \diamond v)) + \vartheta(v) = \vartheta(v) + \vartheta(v) = \vartheta(v) + \vartheta(v) = \vartheta(v)$. Also,

$$\begin{array}{ll} \vartheta[(b\diamond(a\diamond u))\diamond u] & \leq & \vartheta[a\diamond((b\diamond(a\diamond u))\diamond u)] + \vartheta(a) \\ & \leq & \vartheta[(b\diamond(a\diamond u))\diamond(a\diamond u)] + \vartheta(a) \\ & \leq & \vartheta[b\diamond[(b\diamond(a\diamond u))\diamond(a\diamond u)]] + \vartheta(a) + \vartheta(b) \\ & \leq & \vartheta[(b\diamond(a\diamond u))\diamond(b\diamond(a\diamond u))] + \vartheta(a) + \vartheta(b) \\ & = & \vartheta(1) + \vartheta(a) + \vartheta(b) \\ & = & \vartheta(a) + \vartheta(b). \end{array}$$

By Corollary 11, we get that ϑ is a pseudo-valuation on A. \square

Proposition 14. *If* ϑ *is a pseudo-valuation on a JU-algebra A, then*

$$a \le b \diamond u \Rightarrow \vartheta(u) \le \vartheta(a) + \vartheta(b) \text{ for all } a, b, u \in A.$$
 (5)

Proof. Suppose that $a, b, u \in A$ such that $a \leq b \diamond u$. Then by Proposition 7 (2) and Theorem 12, we have $\vartheta(u) \leq \vartheta((a \diamond (b \diamond u)) \diamond u) + \vartheta(a \diamond (b \diamond u)) = \vartheta((a \diamond (b \diamond u)) \diamond u) + \vartheta(1) = \vartheta((a \diamond (b \diamond u)) \diamond u) \leq \vartheta(a) + \vartheta(b)$. \square

Proposition 15. Suppose that A is JU-algebra. Then every pseudo-valuation ϑ on A satisfies the following inequality: $\vartheta(u \diamond w) \leq \vartheta(u \diamond v) + \vartheta(v \diamond w)$, for all $u, v, w \in A$.

Proof. It follows from JU_1 and Proposition 14. \square

Theorem 16. If ϑ is a pseudo-valuation on a JU-algebra A, then the set $I := \{u \in A | \vartheta(u) = 0\}$ is an ideal of A.

Proof. We have $\vartheta(1)=0$ and hence $1\in I$. Next, $u,v,w\in A$ be such that $v\in I$ and $u\diamond (v\diamond w)\in I$. Then $\vartheta(v)=0$ and $\vartheta(u\diamond (v\diamond w))=0$. By Definition 6(2), we get $\vartheta(u\diamond w)\leq \vartheta(u\diamond (v\diamond w))+\vartheta(v)=0$ so that $\vartheta(u\diamond w)=0$. Hence $u\diamond w\in I$, therefore I is an ideal of A. \square

Example 2. [16] Let $A = \{1, 2, 3, 4, 5\}$ in which \diamond is defined by the following table

	♦	1	2	3	4	5	
'	1	1	2	3	4	5	
'	2	1	1	3	4	5	
	3	1	2	1	4	4	
	4	1	1	3	1	3	
	5	1	1	1	1	1	

It is easy to see that A is a JU-algebra. Now, define a real-valued function ϑ on A by $\vartheta(1) = \vartheta(2) = \vartheta(3) = 0$, $\vartheta(4) = 3$, and $\vartheta(5) = 1$. Then $I := \{u \in A \mid \vartheta(u) = 0\} = \{1,2,3\}$ is the ideal of A. But ϑ is not a pseudo-valuation as $\vartheta(3 \diamond 5) \nleq \vartheta(3 \diamond (5 \diamond 5)) + \vartheta(5)$.

For a real-valued function ϑ on a JU-algebra A, define a mapping $d_{\vartheta}: X \times X \to \mathbb{R}$ by $d_{\vartheta}(u,v) = \vartheta(u \diamond v) + \vartheta(v \diamond u)$ for all $(u,v) \in A \times A$. We have following result.

Theorem 17. Let A is a JU-algebra. If a real-valued function ϑ on A is a pseudo-valuation on A, then d_{ϑ} is a pseudo-metric on A, and so (X, d_{ϑ}) is a pseudo-metric space. (The d_{ϑ} is called pseudo-metric induced by pseudo-valuation ϑ .)

Proof. Clearly, $d_{\vartheta}(u,v) \geq 1$, $m_{\vartheta}(u,u) = 1$ and $m_{\vartheta}(u,v) = m_{\vartheta}(v,u)$ for all $u,v \in A$. For any $u,v,w \in A$ from Proposition 15, we get $d_{\vartheta}(u,v) + d_{\vartheta}(v,w) = [\vartheta(u \diamond v) + \vartheta(v \diamond u)] + [\vartheta(v \diamond w) + \vartheta(w \diamond v)] = [\vartheta(u \diamond v) + \vartheta(v \diamond w)] + [\vartheta(v \diamond w) + \vartheta(v \diamond w)] \geq \vartheta(u \diamond w) + \vartheta(w \diamond w) = d_{\vartheta}(u,w)$. Hence (X,d_{ϑ}) is a pseudo-metric space. \square

Proposition 18. Let A is a JU-algebra. Then every pseudo-metric d_{ϑ} induced by pseudo-valuation ϑ satisfies the following inequalities:

- $(1)\,d_\vartheta(u,v)\geq d_\vartheta(x\diamond u,x\diamond v),$
- (2) $d_{\theta}(u \diamond v, x \diamond y) \leq d_{\theta}(u \diamond v, x \diamond v) + d_{\theta}(x \diamond v, x \diamond y)$ for all $u, v, x, y \in A$.

Proof. (1) Let $u, v, a \in A$. By $JU_1 u \diamond v \leq (x \diamond v) \diamond (x \diamond u)$ and $v \diamond u \leq (x \diamond u) \diamond (x \diamond v)$. It follows from Proposition 7(1) that $\vartheta(u \diamond v) \geq \vartheta((x \diamond v) \diamond (x \diamond u))$ and $\vartheta(v \diamond u) \geq \vartheta((x \diamond u) \diamond (x \diamond v))$. So $d_{\vartheta}(u, v) = \vartheta(u \diamond v) + \vartheta(v \diamond u) \geq \vartheta((x \diamond u) \diamond (x \diamond u)) + \vartheta((x \diamond u) \diamond (x \diamond v)) = d_{\vartheta}(x \diamond u, x \diamond v)$.

(2) Followed by definition of pseudo-metric. \Box

Theorem 19. Let ϑ be a real-valued function on a JU-algebra A, if d_{ϑ} is a pseudo-metric on A, then $(X \times X, d_{\vartheta}^{\diamond})$ is a pseudo-metric space, where

$$d^{\diamond}_{\vartheta}((u,v),(a,b)) = \max\{d_{\vartheta}(u,a),d_{\vartheta}(v,b)\} \text{ for all } (u,v),(a,b) \in A \times A.$$

Proof. Suppose d_{ϑ} is a pseudo-metric on A. For any (u,v), $(a,b) \in A \times A$, we have $d_{\vartheta}^{\diamond}((u,v),(u,v)) = \max\{d_{\vartheta}(u,u),d_{\vartheta}(v,v)\} = 0$ and

$$d^{\diamond}_{\vartheta}((u,v),(a,b)) = \max\{d_{\vartheta}(u,a),d_{\vartheta}(v,b)\} = \max\{d_{\vartheta}(a,u),d_{\vartheta}(b,v)\} = d^{\diamond}((a,b),(u,v)).$$

Now let (u, v), (a, b), $(u, v) \in A \times A$. Then we have

```
d_{\vartheta}^{\diamond}((u,v),(u,v)) + d_{\vartheta}^{\diamond}((u,v),(a,b)) = \max\{d_{\vartheta}(u,u),d_{\vartheta}(v,v)\} + \max\{d_{\vartheta}(u,a),d_{\vartheta}(v,b)\}
\geq \max\{d_{\vartheta}(u,u) + d_{\vartheta}(u,a),d_{\vartheta}(v,v) + d_{\vartheta}(v,b)\}
\geq \max\{d_{\vartheta}(u,a),d_{\vartheta}(v,b)\} = d_{\vartheta}^{\diamond}((u,v),(a,b)).
```

Hence $(X \times X, d_{\vartheta}^{\diamond})$ is a pseudo-metric space. \square

Corollary 20. If $\vartheta: X \to \mathbb{R}$ is a pseudo-valuation on a JU-algebra A, then $(X \times X, d^{\diamond}_{\vartheta})$ is a pseudo-metric space.

Theorem 21. Let A is a JU-algebra. If $\vartheta: X \to \mathbb{R}$ is a valuation on A, then (X, d_{ϑ}) is a metric space.

Proof. Suppose ϑ is a valuation on A, then (X, d_{ϑ}) is a pseudo-metric space by Theorem 19. Further consider $u, v \in A$ be such that $d_{\vartheta}(u, v) = 0$, then $0 = d_{\vartheta}(u, v) = \vartheta(u \diamond v) + \vartheta(v \diamond u)$, and hence $\vartheta(u \diamond v) = 0$ and $\vartheta(v \diamond u) = 0$ since $\vartheta(u) \geq 0$ for all $u \in A$ and, since ϑ is a valuation on A, it follows that $u \diamond v = 1$ and $v \diamond u = 1$ so from (condition in the given theorem) that u = v. Hence (X, d_{ϑ}) is a metric space. \square

Theorem 22. Let A is a JU-algebra. If $\vartheta: X \to \mathbb{R}$ is a valuation on A, then $(X \times X, d_{\vartheta}^{\diamond})$ is a metric space.

Proof. From Corollary 20, we know that $(X \times X, d_{\vartheta}^{\diamond})$ is a pseudo-metric space. Suppose $(u, v), (a, b) \in A \times A$ be such that $d_{\vartheta}^{\diamond}((u, v), (a, b)) = 0$, then $0 = d_{\vartheta}^{\diamond}((u, v), (a, b)) = \max\{d_{\vartheta}(u, a), d_{\vartheta}(v, b)\}$, and so $d_{\vartheta}(u, a) = 0 = d_{\vartheta}(v, b)$. Since $d_{\vartheta}(u, v) \geq 0$ for all $(u, v) \in A \times A$. Hence $0 = d_{\vartheta}(u, a) = \vartheta(u \diamond a) + \vartheta(a \diamond u)$ and $0 = d_{\vartheta}(v, b) = \vartheta(v \diamond b) + \vartheta(b \diamond v)$. It follows that $\vartheta(u \diamond a) = 0 = \vartheta(a \diamond u)$ and $\vartheta(v \diamond b) = 0 = \vartheta(b \diamond v)$ so that $u \diamond a = 1 = a \diamond u$ and $v \diamond b = 0 = b \diamond v$. Now we have a = u and b = v, and so (u, v) = (a, b), therefore $(X \times X, d_{\vartheta}^{\diamond})$ is a metric space. \square

Theorem 23. Let A is a JU-algebra. If ϑ is a valuation on A, then the operation \diamond in A is uniformly continuous.

Proof. Consider for any $\epsilon > 0$, if $d^{\diamond}_{\vartheta}((u,v),(a,b)) < \frac{\epsilon}{2}$ then $d_{\vartheta}(u,a) < \frac{\epsilon}{2}$ and $d_{\vartheta}(v,b) < \frac{\epsilon}{2}$. This implies that $d_{\vartheta}(u \diamond v, a \diamond b) \leq d_{\vartheta}(u \diamond v, a \diamond v) + d_{\vartheta}(a \diamond v, a \diamond b) \leq d_{\vartheta}(u,a) + d_{\vartheta}(v,b) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ (from Proposition 18). Therefore the operation $\diamond : X \times X \to A$ is uniformly continuous. \square

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

- [1] Buşneag, C. (2007). Valuations on residuated lattices. *Annals of the University of Craiova-Mathematics and Computer Science Series*, 34, 21-28.
- [2] Buşneag, D. (2003). On extensions of pseudo-valuations on Hilbert algebras. Discrete Mathematics, 263(1-3), 11-24.
- [3] Buşneag D. (1996). Hilbert algebras with valuations. Mathematica Japonica, 44(2), 285-289.
- [4] Doh, M. I., & Kang, M. S. (2010). BCK/BCI-algebras with pseudo-valuations. *Honam Mathematical Journal*, 32(2), 217-226.
- [5] Ghorbani, S. (2010). Quotient BCI-algebras induced by pseudo-valuations. *Iranian Journal of Mathematical Sciences and Informatics*, 5(2), 13-24.
- [6] Zhan, J., & Jun, Y. B. (2013). (Implicative) Pseudo-Valuations On R₀-Algebras. *University Politehnica Of Bucharest Scientific Bulletin-Series A-Applied Mathematics And Physics*, 75(4), 101-112.
- [7] Yang, Y., & Xin, X. (2017). EQ-algebras with pseudo pre-valuations. Italian Journal of Pure and Applied Maths, 36, 29-48.
- [8] Mehrshad, S., & Kouhestani, N. (2018). On Pseudo-Valuations on BCK-Algebras. Filomat, 32(12), 4319-4332.
- [9] Jun, Y. B., Ahn, S. S., & Roh, E. H. (2012). BCC-algebras with pseudo-valuations. Filomat, 26(2), 243-252.
- [10] Iampan, A. (2017). A new branch of the logical algebra: UP-algebras. Journal of Algebra and Related Topics, 5(1), 35-54.
- [11] Yaqoob, N., Mostafa, S. M., & Ansari, M. A. (2013). On cubic KU-ideals of KU-algebras. ISRN Algebra, 2013.
- [12] Ansari, M. A., & Koam, A. N. (2018). Rough approximations in KU-algebras. *Italian Journal of Pure and Applied Mathematics*, 40, 679-691.
- [13] Ansari, M. A., Koam, A. N., & Haider, A. (2019). Rough set theory applied to UP-algebras. *Italian Journal of Pure and Applied Mathematics*, 42. 388-402.

- [14] Ansari, M., Haidar, A., & Koam, A. (2018). On a Graph Associated to UP-Algebras. *Mathematical and Computational Applications*, 23(4), 61.
- [15] Romanoa, D. A. (2019). Pseudo-Valuations on UP-Algebras. *Universal Journal of Mathematics and Applications*, 2(3), 138-140.
- [16] Ansari, M. A., Haider, A., & Koam, A. N. (2020). On JU-algebras and p-Closure Ideals. *Computer Science*, 15(1), 135-154.
- [17] Kawila, K., Udomsetchai, C., & Iampan, A. (2018). Bipolar fuzzy UP-algebras. *Mathematical and Computational Applications*, 23(4), 69.

© 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).