Article

Characterization of a vector measure: application in the $GL(2;\mathbb{R})$ group

Abalo Douhadji1,* and Yaovi Awussi2

1 Department of Mathematics, University of Lomé, P.O.Box 1515, Lomé, Togo.
2 Department of Mathematics, Mathematics and Applications Laboratory, University of Lomé, P.O.Box 1515, Lomé, Togo.; jawussi@yahoo.fr

* Correspondence: douhadjiabalo@gmail.com

Received: 2 January 2020; Accepted: 17 February 2020; Published: 8 March 2020.

Abstract: In this paper we characterize a bounded vector measure on Lie compact group $G = GL(2;\mathbb{R})$. It is a question of considering a bounded vector measure m defined from $K(G;E)$ the space of E valued functions with compact support on G and giving its integral form.

Keywords: Vector measure, Haar measure, Lie compact group, absolute continuity.

1. Introduction

In this paper, we treat with a special case by giving a form to a bounded vector measure on $G = GL(2;\mathbb{R})$.

We consider a vector measure which is absolutely continue with respect to Haar measure and then give the integral form [5] to this vector measure. The first essential part of our work is to establish the form of Haar measure on $G = GL(2;\mathbb{R})$. We prove that

$$\mu(f) = \int_{\mathbb{R}^4} \frac{f(x_{11}x_{12};x_{21};x_{22})}{(x_{11}x_{22} - x_{12}x_{21})^2} dx_{11}dx_{12}dx_{21}dx_{22};$$

$\forall f \in K(G;E)$ and $x = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in GL(2;\mathbb{R})$; is a Haar measure on $G = GL(2;\mathbb{R})$. Once this demonstration achieved we go straight to generalize the form of a vector measure on $K(GL(2;\mathbb{R});\mathbb{R}^4)$.

This paper is organized as follows: in Section 2, we give some definitions related to vector measure and matrices and prove the fundamental theorem which will help us in proving our main result and in Section 3 we present our main result.

2. Preliminaries

In this section, we give basic definitions and concepts concerning with vector measure and Lie groups.

Definition 1. [2] Let G be a locally compact group and $K(G;E)$ be the space of E valued functions with compact support on G. A vector measure on G with respect to Banach spaces E and F is a linear map:

$$m : K(G;E) \rightarrow F, \quad f \mapsto m(f)$$

such as $\forall K$ compact in G $\exists k > 0, ||m(f)||_F \leq k ||f||_\infty$. Where $||.||_F$ is the norm on Banach spaces F and $||f||_\infty = \sup\{||f(t)||_E, t \in G\}$ is the norm on $K(G;E)$.

The value $m(f)$ of m in $f \in K(G;E)$ is called integral of f with respect to m and can be written as [5,6]:

$$\int_{G} f(t)dm(t) = m(f).$$
We consider \(GL(2; \mathbb{R}) \) is the set of matrices of order two with real coefficients whose determinant is not equal to zero, i.e.,

\[
GL(2; \mathbb{R}) = \left\{ g = \begin{pmatrix} g_{11} & g_{12} \\
g_{21} & g_{22} \end{pmatrix} ; g_{ij} \in \mathbb{R}; 1 \leq i, j \leq 2 \mid \det g \neq 0 \right\}.
\]

\(G = GL(2; \mathbb{R}) \) is a Lie group. Also \(G \) is a manifold such that, at any point \(g \in G \), there exists an open \(V_g \) of \(G \), an open \(U_g \) of \(\mathbb{R}^4 \) and \(\varphi_g \) a diffeomorphism of \(V_g \) in \(U_g \). So each \(x = \begin{pmatrix} x_{11} & x_{12} \\
x_{21} & x_{22} \end{pmatrix} \in GL(2; \mathbb{R}) \) is assimilated to \((x_{11}; x_{12}; x_{21}; x_{22})\) of \(\mathbb{R}^4 \).

In order to prove our main result, first we prove following fundamental theorem which allow us to get our final result. The following theorem gives us Haar’s measure on \(GL(2; \mathbb{R}) \).

Theorem 1. Let \(K(G; E) \) be the space of \(E \) valued functions with compact support on \(G \), where \(G = GL(2; \mathbb{R}) \) and \(E = \mathbb{R}^4 \). Then \(\mu : K(G; E) \to \mathbb{R}^+ \) defined as

\[
\mu(f) = \int_{\mathbb{R}^4} \frac{f(x_{11}; x_{12}; x_{21}; x_{22})}{(x_{11}x_{22} - x_{12}x_{21})^2} dx_{11}dx_{12}dx_{21}dx_{22};
\]

\(\forall f \in K(G; E) \) and \(x = \begin{pmatrix} x_{11} & x_{12} \\
x_{21} & x_{22} \end{pmatrix} \in GL(2; \mathbb{R}) \) is a Haar measure on \(G = GL(2; \mathbb{R}) \).

Proof. If \(\mu \) is a Haar measure on \(G = GL(2; \mathbb{R}) \) then \(d\mu(x) = \frac{1}{(\det x)^2} dx \), \(\forall x \in G \). As

\[
d\mu(x) = \frac{1}{(x_{11}x_{22} - x_{12}x_{21})^2} dx_{11}dx_{12}dx_{21}dx_{22}.
\]

Since \(\mu(f) = \int_G f(x)d\mu(x), \forall f \in K(G; E) \), we get:

\[
\mu(f) = \int_{\mathbb{R}^4} \frac{f(x_{11}; x_{12}; x_{21}; x_{22})}{(x_{11}x_{22} - x_{12}x_{21})^2} dx_{11}dx_{12}dx_{21}dx_{22};
\]

Conversely if \(\mu \) is a Haar measure on \(G = GL(2; \mathbb{R}) \) then we have [6]:

\[
\mu(f) = \int_G f(x)|J(L_x)|^{-1} dx \quad \forall f \in K(G; E)
\]

The translation on the left \(L_x : y \mapsto xy \quad x; y \in G = GL(2; \mathbb{R}) \)

\[
L_x(y) = \begin{pmatrix} x_{11} & x_{12} \\
x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} y_{11} & y_{12} \\
y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{12}y_{22} \\
x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{pmatrix}
\]

\[
L_x(y) = (x_{11}y_{11} + x_{12}y_{21}; x_{11}y_{12} + x_{12}y_{22}; x_{21}y_{11} + x_{22}y_{21}; x_{21}y_{12} + x_{22}y_{22})
\]

\[
J(L_x) = \frac{dL}{dy} = \begin{pmatrix} x_{11} & 0 & x_{12} & 0 \\
0 & x_{11} & 0 & x_{12} \\
x_{21} & 0 & x_{22} & 0 \\
0 & x_{21} & 0 & x_{22} \end{pmatrix}
\]

The Jacobian gives:

\[
|J(L_x)| = \left| \begin{array}{cccc} x_{11} & 0 & x_{12} & 0 \\
0 & x_{22} & 0 & x_{12} \\
x_{21} & 0 & x_{22} & 0 \\
0 & x_{21} & 0 & x_{22} \end{array} \right| + x_{12}
\]
form. Using Theorem 2, we get

$$m(x) = |J(L_\mu)| = \left| \frac{dL}{dy} \right| = (x_{11}x_{22})^2 - x_{11}x_{12}x_{21}x_{22} - x_{11}x_{12}x_{21}x_{22} + \left(x_{12}x_{21} \right)^2$$

$$= (x_{11}x_{22})^2 - 2x_{11}x_{12}x_{21}x_{22} + \left(x_{12}x_{21} \right)^2$$

$$= (x_{11}x_{22} - x_{21}x_{12})^2$$

$$= (\det x)^2$$

According to the relationship (3) we have:

$$\mu(f) = \int_G f(x)|J(L_\mu)|^{-1} dx \quad \forall f \in K(G; E) \quad x \in G$$

$$= \int_G f(x) \left((\det x)^2 \right)^{-1} dx$$

$$= \int_G f(x) (\det x)^2 dx$$

$$= \int_{\mathbb{R}^4} f(x_{11}; x_{12}; x_{21}; x_{22}) \frac{x_{11}x_{22} - x_{21}x_{12}}{(x_{11}x_{22})^2} dx_{11} dx_{12} dx_{21} dx_{22};$$

The last form of μ is a 4 linear, alternating, positive, finite, left-invariant form so it is a Haar measure on $GL(2; \mathbb{R})$.

The following theorem is of a capital importance.

Theorem 2. Let m be a bounded vector measure on compact Lie group G and E and F two Banach spaces. If m is a continuous alternating linear form in $L^p(G; E)$ then m is absolutely continuous.

The following theorems are important, because once we establish the form of the Haar measure on G, it will be easy to establish a vector measure on $K(G; E)$.

Theorem 3. [3] Let G be a compact group, m be a bounded vector measure on G and p and q are two conjugates numbers with $p \geq 1$. Then the following two assertions are equivalent:

1. $\forall h \in L^p(G; E), m \ast h \in C(G; E)$,
2. $\exists f \in L^q(G; E)$ such as $m = f \mu$.

Theorem 4. [3] Let μ be a Haar measure on compact Lie group G, $p \in [1, \infty]$ and q conjugate of p. If ϕ is a linear continuous form on $L^p(G; E)$ then there exists a map $f \in L^q(G, E)$ such as for any $g \in L^p$, we have $\phi(g) = \int_G g f d\mu$.

We use the duality theorem for $p = 1$ and $q = \infty$.

3. **Main result**

In this section, we give our main result.

Theorem 5. Let $K(G; E)$ be the space of E valued functions with compact support on G, where $G = GL(2; \mathbb{R})$ and $E = \mathbb{R}^4$. If m is a vector measure on $K(G; E)$, then

$$m(f) = \int_{\mathbb{R}^4} g(x_{11}; x_{12}; x_{21}; x_{22}) f(x_{11}; x_{12}; x_{21}; x_{22}) \frac{x_{11}x_{22} - x_{21}x_{12}}{(x_{11}x_{22})^2} dx_{11} dx_{12} dx_{21} dx_{22};$$

(4)

$$\forall \ f \in K(GL(2; \mathbb{R}); \mathbb{R}^4), \ g \in L^\infty(GL(2; \mathbb{R}); \mathbb{R}^4), \ x \in GL(2; \mathbb{R})$$

Proof. Since m being a vector measure on $K(GL(2; \mathbb{R}); \mathbb{R}^4)$, so m is continuous, alternating and bounded linear form. Using Theorem 2, we get $m \ll \mu$.
The Theorems 3 and 4 allow us to write \(dm = g d\mu; \quad g \in L^\infty(GL(2; \mathbb{R})) \), which implies

\[
dm(x) = \frac{g(x)}{(\det x)^2} dx;
\]

\[
m(f) = \int_G \frac{g(x)f(x)}{(\det x)^2} dx \quad f \in K(GL(2; \mathbb{R}); \mathbb{R}^4)
\]

\[
= \int_{\mathbb{R}^4} \frac{g(x_{11}; x_{12}; x_{21}; x_{22})f(x_{11}; x_{12}; x_{21}; x_{22})}{(x_{11}x_{22} - x_{12}x_{21})^2} dx_{11}dx_{12}dx_{21}dx_{22}.
\]

Acknowledgments: The authors would like to express their thanks to the referees for their useful remarks and encouragements.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

@by