Article

Characterization of a vector measure: application in the $G L(2 ; \mathbb{R})$ group

Abalo Douhadji ${ }^{1, *}$ and Yaovi Awussi ${ }^{2}$
1 Department of Mathematics, University of Lomé, PObox 1515, Lomé, Togo.
2 Department of Mathematics, Mathematics and Applications Laboratory, University of Lomé, PObox 1515, Lomé, Togo.;jawussi@yahoo.fr
* Correspondence: douhadjiabalo@gmail.com

Received: 2 January 2020; Accepted: 17 February 2020; Published: 8 March 2020.
Abstract: In this paper we characterize a bounded vector measure on Lie compact group $G=G L(2 ; \mathbb{R})$. It is a question of considering a bounded vector measure m defined from $K(G ; E)$ the space of E valued functions with compact support on G and giving its integral form.

Keywords: Vector measure, Haar measure, Lie compact group, absolute continuity.

1. Introduction

In 1989, Assiamoua [1] worked on the properties of vector measure, introduced by Diestel in [2]. In 2013, Awussi [3] proved that any bounded vector measure is absolutely continue with respect to Haar measure. In 2013, Mensah [4] worked on Fourier-Stieljes transform of vector measures on compact groups.

In this paper, we treat with a special case by giving a form to a bounded vector measure on $G=G L(2 ; \mathbb{R})$. We consider a vector measure which is absolutely continue with respect to Haar measure and then give the integral form [5] to this vector measure. The first essential part of our work is to establish the form of Haar measure on $G=G L(2 ; \mathbb{R})$. We prove that

$$
\mu(f)=\int_{\mathbb{R}^{4}} \frac{f\left(x_{11} ; x_{12} ; x_{21} ; x_{22}\right)}{\left(x_{11} x_{22}-x_{12} x_{21}\right)^{2}} d x_{11} d x_{12} d x_{21} d x_{22}
$$

$\forall f \in K(G ; E)$ and $x=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right) \in G L(2 ; \mathbb{R})$; is a Haar measure on $G=G L(2 ; \mathbb{R})$. Once this demonstration achieved we go straight to generalize the form of a vector measure on $K\left(G L(2 ; \mathbb{R}) ; \mathbb{R}^{4}\right)$.

This paper is organized as follows: in Section 2, we give some definitions related to vector measure and matrices and prove the fundamental theorem which will help us in proving our main result and in Section 3 we present our main result.

2. Preliminaries

In this section, we give basic definitions and concepts concerning with vector measure and Lie groups.
Definition 1. [2] Let G be a locally compact group and $K(G ; E)$ be the space of E valued functions with compact support on G. A vector measure on G with respect to Banach spaces E and F is a linear map:

$$
\begin{aligned}
m: \quad K(G ; E) & \rightarrow F \\
f & \mapsto m(f)
\end{aligned}
$$

such as $\forall K$ compact in $G \exists a_{K}>0,\|m(f)\|_{F} \leq a_{K}\|f\|_{\infty}$. Where $\|\cdot\|_{F}$ is the norm on Banach spaces F and $\|f\|_{\infty}=\sup \left\{\|f(t)\|_{E}, t \in G\right\}$ is the norm on $K(G ; E)$.

The value $m(f)$ of m in $f \in K(G ; E)$ is called integral of f with respect to m and can be written as [5,6]:

$$
\int_{G} f(t) d m(t)=m(f)
$$

We consider $G L(2 ; \mathbb{R})$ is the set of matrices of order two with real coefficients whose determinant is not equal to zero, i.e.,

$$
G L(2 ; \mathbb{R})=\left\{g=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right) ; g_{i j} \in \mathbb{R} ; 1 \leqslant i, j \leqslant 2 \mid \operatorname{det} g \neq 0\right\}
$$

$G=G L(2 ; \mathbb{R})$ is a Lie group. Also G is a manifold such that, at any point $g \in G$, there exists an open V_{g} of G, an open U_{g} of \mathbb{R}^{4} and φ_{g} a diffeomorphism of V_{g} in U_{g}. So each $x=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right) \in G L(2 ; \mathbb{R})$ is assimilated to $\left(x_{11} ; x_{12} ; x_{21} ; x_{22}\right)$ of \mathbb{R}^{4}.

In order to prove our main result, first we prove following fundamental theorem which allow us to get our final result. The following theorem gives us Haar's measure on $G L(2 ; \mathbb{R})$.

Theorem 1. Let $K(G ; E)$ be the space of E valued functions with compact support on G, where $G=G L(2 ; \mathbb{R})$ and $E=\mathbb{R}^{4}$. Then $\mu: K(G ; E) \rightarrow \mathbb{R}^{+}$defined as

$$
\begin{equation*}
\mu(f)=\int_{\mathbb{R}^{4}} \frac{f\left(x_{11} ; x_{12} ; x_{21} ; x_{22}\right)}{\left(x_{11} x_{22}-x_{12} x_{21}\right)^{2}} d x_{11} d x_{12} d x_{21} d x_{22} \tag{1}
\end{equation*}
$$

$\forall f \in K(G ; E)$ and $x=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right) \in G L(2 ; \mathbb{R})$ is a Haar measure on $G=G L(2 ; \mathbb{R})$.
Proof. If μ is a Haar measure on $G=G L(2 ; \mathbb{R})$ then $d \mu(x)=\frac{1}{(\operatorname{det} x)^{2}} d x, \quad \forall x \in G$. As

$$
d \mu(x)=\frac{1}{\left(x_{11} x_{22}-x_{12} x_{21}\right)^{2}} d x_{11} d x_{12} d x_{21} d x_{22}
$$

Since $\mu(f)=\int_{G} f(x) d \mu(x), \forall f \in K(G ; E)$, we get:

$$
\begin{equation*}
\mu(f)=\int_{\mathbb{R}^{4}} \frac{f\left(x_{11} ; x_{12} ; x_{21} ; x_{22}\right)}{\left(x_{11} x_{22}-x_{12} x_{21}\right)^{2}} d x_{11} d x_{12} d x_{21} d x_{22} \tag{2}
\end{equation*}
$$

Conversely if μ is a Haar measure on $G=G L(2 ; \mathbb{R})$ then we have [6]:

$$
\begin{equation*}
\mu(f)=\int_{G} f(x)\left|J\left(L_{x}\right)\right|^{-1} d x \quad \forall f \in K(G ; E) \tag{3}
\end{equation*}
$$

The translation on the left $L_{x}: y \mapsto x y \quad x ; y \in G=G L(2 ; \mathbb{R})$

$$
\begin{gathered}
L_{x}(y)=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{cc}
x_{11} y_{11}+x_{12} y_{21} & x_{11} y_{12}+x_{12} y_{22} \\
x_{21} y_{11}+x_{22} y_{21} & x_{21} y_{12}+x_{22} y_{22}
\end{array}\right) \\
L_{x}(y)=\left(x_{11} y_{11}+x_{12} y_{21} ; x_{11} y_{12}+x_{12} y_{22} ; x_{21} y_{11}+x_{22} y_{21} ; x_{21} y_{12}+x_{22} y_{22}\right) \\
J\left(L_{x}\right)=\frac{d L}{d y}=\left(\begin{array}{cccc}
x_{11} & 0 & x_{12} & 0 \\
0 & x_{11} & 0 & x_{12} \\
x_{21} & 0 & x_{22} & 0 \\
0 & x_{21} & 0 & x_{22}
\end{array}\right)
\end{gathered}
$$

The Jacobian gives:

$$
\left|J\left(L_{x}\right)\right|=\left|\frac{d L}{d y}\right|=x_{11}\left|\begin{array}{ccc}
x_{11} & 0 & x_{12} \\
0 & x_{22} & 0 \\
x_{21} & 0 & x_{22}
\end{array}\right|+x_{12}\left|\begin{array}{ccc}
0 & x_{11} & x_{12} \\
x_{21} & 0 & 0 \\
0 & x_{21} & x_{22}
\end{array}\right|
$$

$$
\begin{aligned}
\left|J\left(L_{x}\right)\right|=\left|\frac{d L}{d y}\right| & =\left(x_{11} x_{22}\right)^{2}-x_{11} x_{12} x_{21} x_{22}-x_{11} x_{12} x_{21} x_{22}+\left(x_{12} x_{21}\right)^{2} \\
& =\left(x_{11} x_{22}\right)^{2}-2 x_{11} x_{12} x_{21} x_{22}+\left(x_{12} x_{21}\right)^{2} \\
& =\left(x_{11} x_{22}-x_{21} x_{12}\right)^{2} \\
& =(\operatorname{det} x)^{2}
\end{aligned}
$$

According to the relationship (3) we have:

$$
\begin{aligned}
\mu(f) & =\int_{G} f(x)\left|J\left(L_{x}\right)\right|^{-1} d x \quad \forall f \in K(G ; E) \quad x \in G \\
& =\int_{G} f(x)\left((\operatorname{det} x)^{2}\right)^{-1} d x \\
& =\int_{G} \frac{f(x)}{(\operatorname{det} x)^{2}} d x \\
& =\int_{\mathbb{R}^{4}} \frac{f\left(x_{11} ; x_{12} ; x_{21} ; x_{22}\right)}{\left(x_{11} x_{22}-x_{12} x_{21}\right)^{2}} d x_{11} d x_{12} d x_{21} d x_{22}
\end{aligned}
$$

The last form of μ is a 4 linear, alternating, positive, finite, left-invariant form so it is a Haar measure on $G L(2 ; \mathbb{R})$.

The following theorem is of a capital importance.
Theorem 2. Let m be a bounded vector measure on compact Lie group G and E and F two Banach spaces. If m is a continuous alternating linear form in $L^{p}(G ; E)$ then m is absolutely continuous.

The following theorems are important, because once we establish the form of the Haar measure on G, it will be easy to establish a vector measure on $K(G ; E)$.

Theorem 3. [3] Let G be a compact group, m be a bounded vector measure on G and p and q are two conjugates numbers with $p \geq 1$. Then the following two assertions are equivalent:

1. $\forall h \in L^{p}(G ; E), m * h \in C(G ; E)$,
2. $\exists f \in L^{q}(G ; E)$ such as $m=f \mu$.

Theorem 4. [3] Let μ be a Haar measure on compact Lie group $G, p \in[1, \infty[$ and q conjugate of p. If ϕ is a linear continuous form on $L^{p}(G ; E)$ then there exists a map $f \in L^{q}(G, E)$ such as for any $g \in L^{p}$, we have $\phi(g)=\int_{G} g f d \mu$.

We use the duality theorem for $p=1$ and $q=\infty$.

3. Main result

In this section, we give our main result.
Theorem 5. Let $K(G ; E)$ be the space of E valued functions with compact support on G, where $G=G L(2 ; \mathbb{R})$ and $E=\mathbb{R}^{4}$. If m is a vector measure on $K(G ; E)$, then

$$
\begin{align*}
& m(f)=\int_{\mathbb{R}^{4}} \frac{g\left(x_{11} ; x_{12} ; x_{21} ; x_{22}\right) f\left(x_{11} ; x_{12} ; x_{21} ; x_{22}\right)}{\left(x_{11} x_{22}-x_{12} x_{21}\right)^{2}} d x_{11} d x_{12} d x_{21} d x_{22} \tag{4}\\
& \forall \quad f \in K\left(G L(2 ; \mathbb{R}) ; \mathbb{R}^{4}\right), \quad g \in L^{\infty}\left(G L(2 ; \mathbb{R}) ; \mathbb{R}^{4}\right), \quad x \in G L(2 ; \mathbb{R})
\end{align*}
$$

Proof. Since m being a vector measure on $K\left(G L(2 ; \mathbb{R}) ; \mathbb{R}^{4}\right)$, so m is continuous, alternating and bounded linear form. Using Theorem 2, we get $m \ll \mu$.

The Theorems 3 and 4 allow us to write $d m=g d \mu ; \quad g \in L^{\infty}(G L(2 ; \mathbb{R}))$, which implies

$$
\begin{aligned}
d m(x) & =\frac{g(x)}{(\operatorname{det} x)^{2}} d x \\
m(f) & =\int_{G} \frac{g(x) f(x)}{(\operatorname{det} x)^{2}} d x \quad f \in K\left(G L(2 ; \mathbb{R}) ; \mathbb{R}^{4}\right) \\
& =\int_{\mathbb{R}^{4}} \frac{g\left(x_{11} ; x_{12} ; x_{21} ; x_{22}\right) f\left(x_{11} ; x_{12} ; x_{21} ; x_{22}\right)}{\left(x_{11} x_{22}-x_{12} x_{21}\right)^{2}} d x_{11} d x_{12} d x_{21} d x_{22}
\end{aligned}
$$

Acknowledgments: The authors would like to express their thanks to the referees for their useful remarks and encouragements.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Assiamoua, V. S. K., \& Olubummo, A. (1989). Fourier-stieltjes transforms of vector-valued. Acta Scientiarum Mathematicarum, 53, 301-307.
[2] Diestel, J., \& Uhl, J. J. (1977). Vector measures. American Mathematical Society.
[3] Awussi, Y. M. (2013). On the absolute continuity of vector measure Theoretical Mathematics \& Applications, 3(4),41-45.
[4] Mensah, Y. (2013). Facts about the Fourier-Stieljes transform of vector measures on compact groups. International Journal of Analysis and Applications, 2(1),19-25.
[5] Dinculeanu, N. (1974). Integration on locally compact spaces. Springer Science \& Business Media.
[6] Folland, G. B. (2016). A course in abstract harmonic analysis (Vol. 29). CRC press.
(C) 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

