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1. Introduction

M ulti-point boundary value problems for second order and higher order ordinary differential equations
and systems arise from many fields in physics, biology and chemistry. These problems play very

important role in both theory and applications [1–5].
Problems where the nonlinear terms have some singularities are referred to as singular problems in the

literature and this type of differential systems appear in the study of gas dynamics, fluid mechanics, in the
theory of boundary layer and so on. Because of its applications in physics, singular problems have extensively
study in recent years, for example see [6–9].

For example, Asif and Khan [6] studied the existence of positive solution to a nonlinear singular system
with four-point boundary conditions of the type

−x(t)′′ = f (t, x(t), y(t)), t ∈ (0, 1),

−y(t)′′ = g(t, x(t), y(t)), t ∈ (0, 1),

x(0) = 0, x(1) = αy(ξ), y(0) = 0, y(1) = βx(η).

In [7], Liu and Yan considered the following singular boundary value problem of Sturm Liouville
differential system:

(p(t)x(t)′)′ + λ f (t, x(t), y(t)) = 0, t ∈ (0, 1),

(p(t)y(t)′)′ + λg(t, x(t), y(t)) = 0, t ∈ (0, 1),

αx(0)− βp(0)x′(0) = γx(1)− δp(1)x′(1) = 0,

αy(0)− βp(0)y′(0) = γy(1)− δp(1)y′(1) = 0.

Although much interest has been observed in investigating the existence of positive solutions of dynamic
equations on measure chains [9–13], very few research articles has been seen on the existence of positive
solutions of dynamic systems on measure chains [14,15].

In [16], Prasad, Rao and Bharathi interested in the existence of positive solutions to the system of dynamic
equations:

(−1)nu4
2n
(t) + λp(t) f (v(σ(t))) = 0, t ∈ [a, b],

Open J. Math. Sci. 2020, 4, 86-97; doi:10.30538/oms2020.0098 https://pisrt.org/psr-press/journals/oms

https://pisrt.org/psr-press/journals/oms
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/oms


Open J. Math. Sci. 2020, 4, 86-97 87

(−1)nv4
2n
(t) + µq(t) f (u(σ(t))) = 0, t ∈ [a, b],

αi+1u4
2i
(a)− βi+1u4

2i+1
(a) = 0, γi+1u4

2i
(σ(b)) + δi+1u4

2i+1
(σ(b)) = 0,

αi+1v4
2i
(a)− βi+1v4

2i+1
(a) = 0, γi+1v4

2i
(σ(b)) + δi+1v4

2i+1
(σ(b)) = 0.

Problems of this type where the nonlinear term may change sign are referred to as semipositone problems
in the literature. Semipositone differential systems appear in the study of chemical reactors [17].

The above works motivates us to consider the nonlinear singular semipositone system of m-point
boundary value problem (SSS) in this paper.{

−[p(t)u4i (t)]∇ + q(t)ui(t) = fi(t, u1(t), u2(t)) + hi(t), t ∈ (a, b), i = 1, 2,

αui(a)− βu[4]
i (a) = ∑m−2

k=1 αkui(ξk), γui(b) + δu[4]
i (b) = ∑m−2

k=1 βkui(ξk), i = 1, 2,
(1)

where α, β, γ, δ, ξk, αk, βk (for k ∈ {1, 2, ..., m− 2}) are complex constants such that |α|+ |β| 6= 0, |γ|+ |δ| 6= 0
and ξk ∈ T\{a, b}, q : T → C is a continuous function, p : T → C is ∇− differentiable on Tk, p(t) 6= 0 for
all t ∈ T, p∇ : Tk → C is continuous, f1 and f2 : (a, b)× [0, ∞)× [0, ∞) → [0, ∞) are continuous and may be
singular at t = a, b and h1 and h2 : (a, b) → (−∞, ∞) are Lebesgue integrable and may have finitely many
singularities in [a, b].

By an interval (a, b), we mean the intersection of the real interval (a, b) with the given time scale T. Some
preliminary definitions and theorems on time scales can be found in the books [18,19].

Compared to previous work in this field, this study presented three new features. Firstly, the nonlinear
term is allowed to change sign and tends to negative infinity. Secondly, is allowed to have finitely many
singularities in [a, b]. Lastly, the boundary condition taken up generalizes the conditions of many problems in
the literature. By using the cone theory technique, we establish some sufficient conditions for the existence of
multiple positive solutions to the SSS (1). The rest of the paper is organized as follows: Section 2 gives some
inequalities for Green’s function and some results which are needed later. Criteria for the existence of positive
solutions of the SSS (1) is established in Section 3 and uses fixed point index theorem. In addition, an example
is given to illustrate the applications of main result.

2. The preliminary Lemmas

We shall work in the space E = C([a, b]; R)× C([a, b]; R). The space E is a Banach space if it is endowed
with the norm as follows:

‖(u1, u2)‖ = ‖u1‖+ ‖u2‖, ‖ui‖ = max
t∈[a,b]

|ui(t)|, i = 1, 2,

for any (u1, u2) ∈ E. For any u = (u1, u2), v = (v1, v2) ∈ E, we denote

u ≤ v⇔ ui(t) ≤ vi(t), t ∈ [a, b], i = 1, 2.

In the following, let us define a cone P of E by

P = {(u1, u2) ∈ E : ui(t) ≥ g(t)‖ui‖, t ∈ [a, b], i = 1, 2},

where g is defined by

g(t) := min
t∈[a,b]

{
φ1(t)
φ1(b)

,
φ2(t)
φ2(a)

}
, (2)

and φ1, φ2 are the solutions of the linear problems

[p(t)φ41 (t)]∇ − q(t)φ1(t) = 0, t ∈ (a, b),

φ1(a) = β, φ
[4]
1 (a) = α,

and
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[p(t)φ42 (t)]∇ − q(t)φ2(t) = 0, t ∈ (a, b),

φ2(b) = δ, φ
[4]
2 (b) = −γ,

respectively. Let G(t, s) be the Green’s function for the boundary value problem

− [p(t)u4(t)]∇ + q(t)u(t) = 0, t ∈ (a, b),

αu(a)− βu[4](a) = 0, γu(b) + δu[4](b) = 0,

is given by

G(t, s) :=
1
d

{
φ1(s)φ2(t), a ≤ s ≤ t ≤ b,

φ1(t)φ2(s), a ≤ t ≤ s ≤ b,
. (3)

where d = −Wt(φ1, φ2) = p(t)[φ41 (t)φ2(t)− φ1(t)φ
4
2 (t)].

Let us define

Ω :=

∣∣∣∣∣ −∑m−2
k=1 αkφ1(ξk) d−∑m−2

k=1 αkφ2(ξk)

d−∑m−2
k=1 βkφ1(ξk) −∑m−2

k=1 βkφ2(ξk)

∣∣∣∣∣
and assume that the following conditions are satisfied:

(H1) p(t) > 0, q(t) ≥ 0,
(H2) α, γ ≥ 0, β, δ > 0, αk, βk ≥ 0 for k ∈ {1, 2, ..., m− 2},
(H3) If q(t) ≡ 0, then α + γ > 0,
(H4) Ω < 0, d−∑m−2

k=1 αkφ2(ξk) > 0, d−∑m−2
k=1 βkφ1(ξk) > 0.

To prove the main results, we will employ following lemmas.

Lemma 1. [18] Under the conditions (H1) and (H2), the solutions φ1(t) and φ2(t) posses the following properties:

φ1(t), φ2(t) ≥ 0, φ
[4]
1 (t) ≥ 0, φ

[4]
2 (t) ≤ 0, t ∈ [a, b].

Lemma 2. [18] If the conditions (H1)− (H3) are hold, then G(t, s) > 0 for t, s ∈ [a, b].

Lemma 3. [20] Assume that (H1)− (H3) hold. Then

g(t)G(s, s) ≤ G(t, s) ≤ G(s, s), t, s ∈ [a, b],

where g is given in equation (2).

We consider the following boundary value problem

− [p(t)u4(t)]∇ + q(t)u(t) = y(t), t ∈ (a, b), (4)

αu(a)− βu[4](a) =
m−2

∑
k=1

αku(ξk), γu(b) + δu[4](b) =
m−2

∑
k=1

βku(ξk). (5)

Lemma 4. [12] Let the conditions (H1)− (H3) be hold. Assume that Ω : 6= 0. Then for y ∈ C([a, b]), the boundary
value problem given in equations (4)-(5) has a unique solution

u(t) =
∫ b

a
G(t, s)y(s)∇s + A(y)φ1(t) + B(y)φ2(t),

where G(t, s) is given in equation (3),

A(y) :=
1
Ω

∣∣∣∣∣ ∑m−2
k=1 αk

∫ b
a G(ξk, s)y(s)∇s d−∑m−2

k=1 αkφ2(ξk)

∑m−2
k=1 βk

∫ b
a G(ξk, s)y(s)∇s −∑m−2

k=1 βkφ2(ξk)

∣∣∣∣∣ ,
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B(y) :=
1
Ω

∣∣∣∣∣ −∑m−2
k=1 αkφ1(ξk) ∑m−2

k=1 αk
∫ b

a G(ξk, s)y(s)∇s
d−∑m−2

k=1 βkφ1(ξk) ∑m−2
k=1 βk

∫ b
a G(ξk, s)y(s)∇s

∣∣∣∣∣ .

Lemma 5. [5] Let (H1)− (H4) hold. If y ∈ C([a, b], [0, ∞)), then the solution u of the boundary value problem (4)-(5)
satisfies u(t) ≥ 0, for t ∈ [a, b].

Lemma 6. If
∫ b

a G(s, s)y(s)∇s < ∞, then the following inequalities are satisfied:

A(y) ≤ A
∫ b

a
G(s, s)y(s)∇s, B(y) ≤ B

∫ b

a
G(s, s)y(s)∇s,

where

A =
1
Ω

∣∣∣∣∣ ∑m−2
k=1 αk d−∑m−2

k=1 αkφ2(ξk)

∑m−2
k=1 βk −∑m−2

k=1 βkφ2(ξk)

∣∣∣∣∣ ,

B =
1
Ω

∣∣∣∣∣ −∑m−2
k=1 αkφ1(ξk) ∑m−2

k=1 αk
d−∑m−2

k=1 βkφ1(ξk) ∑m−2
k=1 βk

∣∣∣∣∣ .

3. Main result

In this section, we apply the following fixed point index theorem to prove the existence of at least one
positive solution for the SSS (1).

Theorem 1. Let E = (E, ‖.‖) be a Banach space, Ω be a bounded open subset of E with 0 ∈ Ω, P ⊂ E be a cone in E
and F : P ∩Ω→ P be a completely continuous operator.

(i) Suppose that Fu 6= λu, ∀u ∈ ∂Ω ∩ P, λ ≥ 1. Then i(F, Ω ∩ P, P) = 1.
(ii) Suppose that Fu � u, ∀u ∈ ∂Ω ∩ P. Then i(F, Ω ∩ P, P) = 0.

In the remaining part of the paper, we assume that the following conditions are satisfied:

(H5) f1, f2 : (a, b)× [0, ∞)× [0, ∞)→ [0, ∞) are continuous,
(H6) h1, h2 : (a, b) → (−∞, ∞) are Lebesgue integrable such that 0 <

∫ b
a G(s, s)[ fi(s, 1, 1) + hi+(s)]∇s < ∞

and
∫ b

a hi−(s)∇s > 0 i = 1, 2,
where hi+(t) = max{hi(t), 0} and hi−(t) = max{−hi(t), 0}.

Remark 1. By the assumption (H6), we have
∫ b

a G(t, s)hi−(s)∇s < ∞, i = 1, 2.

In fact, from the properties of φ1, φ2 and Green function, we get

∫ b

a
G(t, s)hi−(s)∇s ≤

∫ b

a
G(s, s)hi−(s)∇s ≤ φ1(b)φ2(a)

∫ b

a
hi−(s)∇s < ∞, i = 1, 2.

Let wi(t) =
∫ b

a G(t, s)hi−(s)∇s + A(hi−)φ1(t) + B(hi−)φ2(t), t ∈ [a, b], i = 1, 2. Using the expression for
Green’s function, the definition of the function g, the properties of φ1 and φ2, the assumption (H6) and Lemma
6, we obtain

wi(t) =
∫ b

a
G(t, s)hi−(s)∇s + A(hi−)φ1(t) + B(hi−)φ2(t)

=
1
d

∫ t

a
φ1(s)φ2(t)hi−(s)∇s +

1
d

∫ b

t
φ1(t)φ2(s)hi−(s)∇s + A(hi−)φ1(t) + B(hi−)φ2(t)

≤ 1
d

∫ t

a
φ1(t)φ2(t)hi−(s)∇s +

1
d

∫ b

t
φ1(t)φ2(t)hi−(s)∇s + Aφ1(t)

∫ b

a
G(s, s)hi−(s)∇s

+ Bφ2(t)
∫ b

a
G(s, s)hi−(s)∇s

=
1
d

∫ b

a
φ1(t)φ2(t)hi−(s)∇s + Aφ1(t)

∫ b

a
G(s, s)hi−(s)∇s + Bφ2(t)

∫ b

a
G(s, s)hi−(s)∇s



Open J. Math. Sci. 2020, 4, 86-97 90

≤ 1
d

φ1(b)φ2(a)g(t)
∫ b

a
hi−(s)∇s +

1
φ2(t)

Aφ1(b)φ2(a)g(t)
∫ b

a
G(s, s)hi−(s)∇s

+
1

φ1(t)
Bφ1(b)φ2(a)g(t)

∫ b

a
G(s, s)hi−(s)∇s

≤ 1
d

φ1(b)φ2(a)g(t)
∫ b

a
hi−(s)∇s +

1
φ2(b)

Aφ1(b)φ2(a)g(t)
∫ b

a
G(s, s)hi−(s)∇s

+
1

φ1(a)
Bφ1(b)φ2(a)g(t)

∫ b

a
G(s, s)hi−(s)∇s

=
[1

d

∫ b

a
hi−(s)∇s +

( A
φ2(b)

+
B

φ1(a)

) ∫ b

a
G(s, s)hi−(s)∇s

]
φ1(b)φ2(a)g(t) < +∞, i = 1, 2.

Therefore, we can write
wi(t) ≤ Cig(t), t ∈ [a, b], i = 1, 2, (6)

where

Ci =
[1

d

∫ b

a
hi−(s)∇s +

( A
φ2(b)

+
B

φ1(a)

) ∫ b

a
G(s, s)hi−(s)∇s

]
φ1(b)φ2(a)

and g is given in equation (2). Therefore, wi(t), i = 1, 2 are well defined in E. By direct computation, we have

αwi(a)− βw[4]
i (a) =

m−2

∑
k=1

αkwi(ξk), γwi(b) + δw[4]
i (b) =

m−2

∑
k=1

βkwi(ξk), i = 1, 2,

which implies that wi(t), i = 1, 2 are positive solutions of the following boundary value problems:

− [p(t)u41 (t)]∇ + q(t)u1(t) = h1−(t), t ∈ (a, b),

αu1(a)− βu[4]
1 (a) =

m−2

∑
k=1

αku1(ξk), γu1(b) + δu[4]
1 (b) =

m−2

∑
k=1

βku1(ξk),

and

− [p(t)u42 (t)]∇ + q(t)u2(t) = h2−(t), t ∈ (a, b),

αu2(a)− βu[4]
2 (a) =

m−2

∑
k=1

αku2(ξk), γu2(b) + δu[4]
2 (b) =

m−2

∑
k=1

βku2(ξk),

respectively.
For any u(t) ∈ C([a, b]), let us define a function [.]∗ by

[u(t)]∗ =

{
u(t), u(t) ≥ 0,
0 u(t) < 0.

Now, we consider the following dynamic system{
−[p(t)u4i (t)]∇ + q(t)ui(t) = fi(t, [(u1 − w1)(t)]∗, [(u2 − w2)(t)]∗) + hi+(t), t ∈ (a, b), i = 1, 2,

αui(a)− βu[4]
i (a) = ∑m−2

k=1 αkui(ξk), γui(b) + δu[4]
i (b) = ∑m−2

k=1 βkui(ξk), i = 1, 2,
(7)

and we define the operator F : E→ E by

F(u1, u2) = (F1(u1, u2), F2(u1, u2))

where

Fi(u1, u2)(t) =
∫ b

a
G(t, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s + A( fi + hi+)φ1(t)

+ B( fi + hi+)φ2(t), i = 1, 2.



Open J. Math. Sci. 2020, 4, 86-97 91

It is well known that the existence of the solution to the system (7) is equivalent to the existence of fixed
point of the operator F. Therefore, we shall seek a fixed point of F in our cone P.

Lemma 7. If (v1, v2) with (w1, w2) ≤ (v1, v2) is a positive solution of the system (7), then (v1 − w1, v2 − w2) is a
positive solution of the SSS (1).

Proof. Suppose that (v1, v2) with (w1, w2) ≤ (v1, v2) is a positive solution of system (7), then from (7) and the
definition of [.]∗, we have{

−[p(t)v4i (t)]∇ + q(t)vi(t) = fi(t, v1(t)− w1(t), v2(t)− w2(t)) + hi+(t), t ∈ (a, b), i = 1, 2,

αvi(a)− βv[4]
i (a) = ∑m−2

k=1 αkvi(ξk), γvi(b) + δv[4]
i (b) = ∑m−2

k=1 βkvi(ξk), i = 1, 2.
(8)

Let ui(t) = vi(t)− wi(t), i = 1, 2, then vi(t) = ui(t) + wi(t), v4i (t) = (ui + wi)
4(t) = u4i (t) + w4i (t) and

[p(t)v4i (t)]∇ = [p(t)(u4i (t) + w4i (t))]∇ = [p(t)u4i (t)]∇ + [p(t)w4i (t)]∇,

thus (8) becomes{
−[p(t)u4i (t)]∇ + q(t)ui(t) = fi(t, u1(t), u2(t)) + hi+(t)− hi−(t), t ∈ (a, b), i = 1, 2,

αui(a)− βu[4]
i (a) = ∑m−2

k=1 αkui(ξk), γui(b) + δu[4]
i (b) = ∑m−2

k=1 βkui(ξk), i = 1, 2,
(9)

Notice that hi(t) = hi+(t)− hi−(t), i = 1, 2 and (9). We know that (u1, u2) = (v1−w1, v2−w2) is a positive
solution of the SSS (1). This completes the proof.

Now, we want to give the main result of this paper. To prove the main theorem, we need the following
assumptions for the functions fi, i= 1, 2.

(H7) For t ∈ (a, b), fi(t, 1, 1) 6= 0 (i = 1, 2), there exists constants λ1 ≥ λ2 > 1 such that, for t ∈ (a, b),
u1, u2 ∈ [0, ∞),

(c1c2)
λ1 fi(t, u1, u2) ≤ fi(t, c1u1, c2u2) ≤ (c1c2)

λ2 fi(t, u1, u2), ∀c1, c2 ∈ [0, 1], i = 1, 2.

Remark 2. For c1, c2 ≥ 1, (t, u1, u2) ∈ (a, b)× [0, ∞)× [0, ∞), we have

(c1c2)
λ2 fi(t, u1, u2) ≤ fi(t, c1u1, c2u2) ≤ (c1c2)

λ1 fi(t, u1, u2), i = 1, 2.

In fact, from the assumption (H7), for c1, c2 ≥ 1, (t, u1, u2) ∈ (a, b)× [0, ∞)× [0, ∞), we get

fi(t, u1, u2) = fi(t,
1
c1

c1u1,
1
c2

c2u2) ≤ (
1

c1c2
)λ2 fi(t, c1u1, c2u2),

This implies
(c1c2)

λ2 fi(t, u1, u2) ≤ fi(t, c1u1, c2u2), i = 1, 2.

At the same time, we have

fi(t, c1u1, c2u2) ≤ (c1c2)
λ1 fi(t, u1, u2), i = 1, 2.

Therefore, when c1, c2 ≥ 1, we have

(c1c2)
λ2 fi(t, u1, u2) ≤ fi(t, c1u1, c2u2) ≤ (c1c2)

λ1 fi(t, u1, u2), i = 1, 2.

Lemma 8. If fi(t, u1, u2)(i = 1, 2) satisfies (H7), then for (t, u1, u2) ∈ (a, b) × [0, ∞) × [0, ∞), fi(t, u1, u2) is
increasing on u1, u2 and for [t1, t2] ⊂ (a, b),

lim
u1,u2→+∞

min
t∈[t1,t2]

fi(t, u1, u2)

|u1|+ |u2|
= +∞, i = 1, 2.
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Proof. Let t ∈ (a, b), u1, v1, u2 ∈ [0, ∞) such that u1 ≤ v1. We will show that fi(t, u1, u2) ≤ fi(t, v1, u2)(i = 1, 2).
Clearly, if v1 = 0, then fi(t, u1, u2) ≤ fi(t, v1, u2). If v1 6= 0, let a1 = u1/v1, then 0 ≤ a1 ≤ 1. Now, using the
assumption (H7), we obtain

fi(t, u1, u2) = fi(t, a1v1, u2) ≤ aλ2
1 fi(t, v1, u2) ≤ fi(t, v1, u2), i = 1, 2.

Thus, we get that fi(t, u1, u2) is increasing on u1. Similarly, we can prove that fi(t, u1, u2) is increasing on
u2. On the other hand, choose u1, u2 > 1. Considering the Remark 2, we get

fi(t, u1, u2) ≥ (u1u2)
λ2 fi(t, 1, 1), i = 1, 2,

and thus, for [t1, t2] ⊂ (a, b), ∀t ∈ [t1, t2], we have

min
t∈[t1,t2]

fi(t, u1, u2)

|u1|+ |u2|
≥ min

t∈[t1,t2]

(u1u2)
λ2

|u1|+ |u2|
fi(t, 1, 1) > 0,

Therefore, we obtain

lim
u1,u2→+∞

min
t∈[t1,t2]

fi(t, u1, u2)

|u1|+ |u2|
= +∞, i = 1, 2.

Lemma 9. Assume that (H1)− (H7) hold. Then F : P→ P is a completely continuous operator.

Proof. First, we shall show that the operator F : P → P is well defined. Therefore, for any fixed (u1, u2) ∈ P,
choose 0 < d1, d2 < 1 such that d1‖u1‖ < 1 and d2‖u2‖ < 1. Then for t ∈ [a, b], we get

di[ui(t)− wi(t)]∗ ≤ diui(t) ≤ di‖ui‖ < 1, i = 1, 2.

Thus, using Remark 2 and Lemma 8, we get

fi(t, [u1(t)− w1(t)]∗, [u2(t)− w2(t)]∗) ≤ (
1

d1d2
)λ1 fi(t, d1‖u1‖, d2‖u2‖)

≤ (d1d2)
λ2−λ1‖u1‖λ2‖u2‖λ2 fi(t, 1, 1), i = 1, 2,

from which the assumption (H6), the properties of φ1, φ2 and Lemma 6, for any t ∈ [a, b] gives us:

Fi(u1, u2)(t) =
∫ b

a
G(t, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s

+ A( fi + hi+)φ1(t) + B( fi + hi+)φ2(t)

≤
∫ b

a
G(s, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s

+ A( fi + hi+)φ1(t) + B( fi + hi+)φ2(t)

≤
∫ b

a
G(s, s)[(d1d2)

λ2−λ1‖u1‖λ2‖u2‖λ2 fi(s, 1, 1) + hi+(s)]∇s

+ A( fi + hi+)φ1(b) + B( fi + hi+)φ2(a)

≤ ((d1d2)
λ2−λ1‖u1‖λ2‖u2‖λ2 + 1)

∫ b

a
G(s, s)[ fi(s, 1, 1) + hi+(s)]∇s

+ A((d1d2)
λ2−λ1‖u1‖λ2‖u2‖λ2 + 1)φ1(b)

∫ b

a
G(s, s)[ fi(s, 1, 1) + hi+(s)]∇s

+ B((d1d2)
λ2−λ1‖u1‖λ2‖u2‖λ2 + 1)φ2(a)

∫ b

a
G(s, s)[ fi(s, 1, 1) + hi+(s)]∇s

= ((d1d2)
λ2−λ1‖u1‖λ2‖u2‖λ2 + 1)(1 + Aφ1(b) + Bφ2(a))

∫ b

a
G(s, s)[ fi(s, 1, 1) + hi+(s)]∇s

< ∞, i = 1, 2.



Open J. Math. Sci. 2020, 4, 86-97 93

Thus F : P → E is well defined. Now we shall prove that F(P) ⊆ P. For any (u1, u2) ∈ P, let
(v1(t), v2(t)) = F(u1, u2)(t). Then for t ∈ [a, b], we get

vi(t) =
∫ b

a
G(t, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s + A( fi + hi+)φ1(t) + B( fi + hi+)φ2(t)

≤
∫ b

a
G(s, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s + A( fi + hi+)φ1(b) + B( fi + hi+)φ2(a)

and so

‖vi‖ ≤
∫ b

a
G(s, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s + A( fi + hi+)φ1(b) + B( fi + hi+)φ2(a),

For t ∈ [a, b], the above relation and Lemma 3 gives:

vi(t) =
∫ b

a
G(t, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s + A( fi + hi+)φ1(t) + B( fi + hi+)φ2(t)

≥ g(t)
∫ b

a
G(s, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s

+ A( fi + hi+)
φ1(t)
φ1(b)

φ1(b) + B( fi + hi+)
φ2(t)
φ2(a)

φ2(a)

≥ g(t)
∫ b

a
G(s, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s

+ A( fi + hi+)g(t)φ1(b) + B( fi + hi+)g(t)φ2(a)

= g(t)
[ ∫ b

a
G(s, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s

+ A( fi + hi+)φ1(b) + B( fi + hi+)φ2(a)
]

≥ g(t)‖vi‖, i = 1, 2.

This yields that F(P) ⊆ P.
Let D ⊂ P be any bounded set. Then there exists a constant M > 0 such that ‖ui‖ ≤ M, i = 1, 2 for any

(u1, u2) ∈ D. Furthermore for any (u1, u2) ∈ D and t ∈ [a, b], we find

0 ≤ [ui(t)− wi(t)]∗ ≤ ui(t) ≤ ‖ui‖ ≤ M < M + 1, i = 1, 2.

Thus, by Remark 2 and Lemma 8, for any s ∈ [a, b], we have

fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s) ≤ fi(s, M + 1, M + 1) + hi+(s)

≤ (M + 1)2λ1 fi(s, 1, 1) + hi+(s) ≤ ((M + 1)2λ1 + 1)[ fi(s, 1, 1) + hi+(s)], i = 1, 2.

Consequently,

Fi(u1, u2)(t) =
∫ b

a
G(t, s)[ fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) + hi+(s)]∇s + A( fi + hi+)φ1(t) + B( fi + hi+)φ2(t)

≤
∫ b

a
G(s, s)((M + 1)2λ1 + 1)[ fi(s, 1, 1) + hi+(s)]∇s

+ Aφ1(b)
∫ b

a
G(s, s)((M + 1)2λ1 + 1)[ fi(s, 1, 1) + hi+(s)]∇s

+ Bφ2(a)
∫ b

a
G(s, s)((M + 1)2λ1 + 1)[ fi(s, 1, 1) + hi+(s)]∇s

= ((M + 1)2λ1 + 1)(1 + Aφ1(b) + Bφ2(a))
∫ b

a
G(s, s)[ fi(s, 1, 1) + hi+(s)]∇s

< ∞, i = 1, 2.

Therefore F(D) is uniformly bounded.
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Similarly, we can easily find F(D) is equicontinuous on [a, b]. Thus from the Ascoli-Arzela Theorem, we
know that F(D) is a relatively compact set.

Finally, from the continuity of fi, i = 1, 2, it is not difficult to check that F : P → P is continuous. Hence
F : P→ P is a completely continuous operator.

Theorem 2. Let (H1)− (H7) hold. For each r satisfying

r > max
{

2C1, 2C2, ((r + 1)2λ1 + 1)(1 + Aφ1(b) + Bφ2(a))
∫ b

a
G(s, s)[ fi(s, 1, 1) + hi+(s)]∇s

}
,

where Ci(i = 1, 2) are given in (6). The SSS (1) has at least one positive solution (ũ1, ũ2) such that ‖ũi‖ > r, i = 1, 2.

Proof. Assume that there exist λ0 ≥ 1 and (ũ1, ũ2) ∈ ∂Pr such that F(ũ1, ũ2) = λ0(ũ1, ũ2) where
Pr = {(u1, u2) ∈ P : ‖u1‖ < r, ‖u2‖ < r}. Then 1

λ0
(F1(ũ1, ũ2), F2(ũ1, ũ2)) = (ũ1, ũ2) and 0 < 1

λ0
≤ 1. Moreover

for t ∈ [a, b], we obtain

0 ≤ [ũi(t)− wi(t)]∗ ≤ ũi(t) ≤ ‖ũi‖ = r < r + 1, i = 1, 2,

from which, using Remark 2 and Lemma 8, for t ∈ [a, b], we get

fi(s, [u1(s)− w1(s)]∗, [u2(s)− w2(s)]∗) ≤ fi(s, r + 1, r + 1) ≤ (r + 1)2λ1 fi(s, 1, 1), i = 1, 2.

Now, using Lemma 1 and Lemma 6 and the properties of the operators A, B, for t ∈ [a, b], we get

ũi(t) =
1

λ0

{ ∫ b

a
G(t, s)[ fi(s, [ũ1(s)− w1(s)]∗, [ũ2(s)− w2(s)]∗) + hi+(s)]∇s

+ A( fi + hi+)φ1(t) + B( fi + hi+)φ2(t)
}

≤
∫ b

a
G(s, s)[ fi(s, [ũ1(s)− w1(s)]∗, [ũ2(s)− w2(s)]∗) + hi+(s)]∇s + A( fi + hi+)φ1(t) + B( fi + hi+)φ2(t)

≤
∫ b

a
G(s, s)((r + 1)2λ1 + 1)[ fi(s, 1, 1) + hi+(s)]∇s

+ Aφ1(b)
∫ b

a
G(s, s)((r + 1)2λ1 + 1)[ fi(s, 1, 1) + hi+(s)]∇s

+ Bφ2(a)
∫ b

a
G(s, s)((r + 1)2λ1 + 1)[ fi(s, 1, 1) + hi+(s)]∇s

= ((r + 1)2λ1 + 1)(1 + Aφ1(b) + Bφ2(a))
∫ b

a
G(s, s)[ fi(s, 1, 1) + hi+(s)]∇s.

Thus, we get

r ≤ ((r + 1)2λ1 + 1)(1 + Aφ1(b) + Bφ2(a))
∫ b

a
G(s, s)[ fi(s, 1, 1) + hi+(s)]∇s, i = 1, 2.

This is a contradiction. Then by Theorem 1, we have

i(F, Pr, P) = 1. (10)

On the other hand, let us choose the constant K such that

K >
(

inf
t∈[t1,t2]

g(t) max
t∈[a,b]

∫ t2

t1

G(t, s)∇s
)−1

.

In view of Lemma 8, there exists N > 0 such that

fi(t, u1, u2) ≥ K(u1 + u2), u1 ≥ N, u2 ≥ N and t ∈ [t1, t2], i = 1, 2.

Now, set
R = r + 2N( inf

t∈[t1,t2]
g(t))−1. (11)
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Next, we show that F(u1, u2) � (u1, u2) for any (u1, u2) ∈ ∂PR. In fact, otherwise, there exists (û1, û2) ∈
∂PR such that (û1, û2) ≥ F(û1, û2) = (F1(û1, û2), F2(û1, û2)). From (6) and the fact that (û1, û2) ∈ ∂PR, for
t ∈ [a, b], we get

wi(t) ≤ Cig(t) ≤ Ci
ûi(t)

R
i = 1, 2, (12)

and noting that R > r > max{2C1, 2C2}, from (11) and (12), for all t ∈ [t1, t2], we obtain

ûi(t)− wi(t) ≥
(

1− Ci
R

)
ûi(t) ≥

1
2

ûi(t) ≥
1
2

g(t)R ≥ R
2

inf
t∈[t1,t2]

g(t) > N > 0, i = 1, 2.

Considering this, for t ∈ [a, b], we get

ûi(t) ≥
∫ b

a
G(t, s)[ fi(s, [û1(s)− w1(s)]∗, [û2(s)− w2(s)]∗) + hi+(s)]∇s

+ A( fi + hi+)φ1(t) + B( fi + hi+)φ2(t)

≥
∫ t2

t1

G(t, s) fi(s, [û1(s)− w1(s)]∗, [û2(s)− w2(s)]∗)

=
∫ t2

t1

G(t, s) fi(s, û1(s)− w1(s), û2(s)− w2(s))∇s

≥
∫ t2

t1

G(t, s)K(û1(s)− w1(s) + û2(s)− w2(s))∇s

≥
∫ t2

t1

G(t, s)KR inf
t∈[t1,t2]

g(t)∇s

and so

R ≥ KR inf
t∈[t1,t2]

g(t) max
t∈[a,b]

∫ t2

t1

G(t, s)∇s.

That is

K ≤
(

inf
t∈[t1,t2]

g(t) max
t∈[a,b]

∫ t2

t1

G(t, s)∇s
)−1

.

This contradicts the K that we choose. So from Theorem 1, we get

i(F, PR, P) = 0. (13)

Therefore, by equations (10) and (13), we have i(F, PR\Pr, P) = −1.
Then we see that the operator F has a fixed point (ũ1, ũ2) in P such that

r < ‖ũi‖ < R, i = 1, 2.

Moreover, using this and inequality (6) for t ∈ [a, b], we get

ũi(t) ≥ g(t)‖ũi‖ > rg(t) > 2Cig(t) ≥ 2wi(t), i = 1, 2.

Hence, (ũ1, ũ2) with (w1, w2) ≤ (ũ1, ũ2) is a positive solution of the system (7). Therefore, by Lemma 7,
(ũ1 − w1, ũ2 − w2) is the positive solution of the SSS (1).

Example 1. Let T = {2k : k ∈ Z} ∪ {0}. Consider the following SSS,{
−u4∇i (t) = fi(t, u1(t), u2(t)) + hi(t), t ∈ (0, 1), i = 1, 2,

ui(0)− u4i (0) = ui(1) + u4i (1) = 0, i = 1, 2,

where

f1(t, u1, u2) = t2(1− t)u3/2
1 u2

2 +
√

u1, h1(t) = −t,

f2(t, u1, u2) =
1

103t(1− t)
u3/2

1 +
1

102

√
u1 + u2, h2(t) = −t2.
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Clearly f1 and f2 satisfy the condition (H7) . We can easily calculate the followings;

∫ 1

0
G(s, s)h1−(s)∇s =

∫ 1

0
G(s, s)s∇s =

1
3

∫ 1

0
(1 + s)(2− s)s∇s =

16
35

,∫ 1

0
G(s, s)h2−(s)∇s =

∫ 1

0
G(s, s)s2∇s =

1
3

∫ 1

0
(1 + s)(2− s)s2∇s =

3776
9765

,∫ 1

0
h1−(s)∇s =

∫ 1

0
s∇s =

2
3

,
∫ 1

0
h2−(s)∇s =

∫ 1

0
s2∇s =

4
7

,∫ 1

0
G(s, s)(1 + hi+(s))∇s =

1
3

∫ 1

0
(1 + s)(2− s)∇s =

44
63

f or i = 1, 2,

C1 =
1
3

∫ 1

0
h1−(s)∇sφ1(1)φ2(0) =

8
9

, C2 =
1
3

∫ 1

0
h2−(s)∇sφ1(1)φ2(0) =

16
21

,

And for (t, u1, u2) ∈ [0, 1]× [0, r]× [0, r]

K1 = max
{

t2(1− t)u3/2
1 u2

2 +
√

u1 + 1)
}
=

1
12

r7/2 +
√

r + 1,

K2 = max
{ 1

103t(1− t)
u3/2

1 +
1

102

√
u1 + u2 + 1

}
=

1
250

r3/2 +
1

102

√
2r + 1.

If we choose r =
17
9

, we have

r > max
{16

9
,

32
21

, K1
44
63

, K2
44
63

}
.

Then, by Theorem 2, the dynamic system has two positive solutions (ũ1, ũ2) and (û1, û2) such that

0 < ‖ûi‖ <
17
9

< ‖ũi‖, i = 1, 2.
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