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Abstract: We present a method to find the sum of a convergent series based on the computation of Hadamard
finite part limits of partial sums. We give several illustrations, the main being the formulas for convergent

series of the type ∑∞
n=2

(−1)nζ(n,a)bn+k

n+k , where ζ (s, a) is Hurwitz zeta function, |b| ≤ |a| , b 6= −a, and k ∈ N.
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1. Introduction

T he aim of this article is to present a method for the summation of convergent series by using the finite
part of divergent series in the intermediate steps. Using divergent series to find the result of convergent

processes is a very old practice as can be seen very clearly by reading chapter 1 of Hardy’s book [1] or by
consulting classic texts on series such as Bromwich’s [2]; a great variety of summability methods have been
employed throughout the years [1]. This article differs from older methods, however, in that we employ
Hadamard finite part limits in our process. Finite part limits are explained in Sections 3 and 4, and the many
examples given should convince the reader that the extraction of the finite part of a series that diverges to
infinity is a regularization procedure, not a summability method. Hadamard finite parts of limits and integrals
have been employed mainly in the areas of partial differential equations, since they were first defined by
Hadamard [3] to find fundamental solutions of hyperbolic partial differential equations, and in the theory of
distributions and generalized functions [4,5], where they play a rather important part, mostly because of their
relationship with pseudofunctions.

In Section 5, we find the sum of the convergent series

∞

∑
n=0

{
ln
(

n + a + 1
n + a

)
− 1

n + a

}
, (1)

by finding the finite part of the sums of the two divergent series

∞

∑
n=0

ln
(

n + a + 1
n + a

)
and

∞

∑
n=0

1
n + a

, (2)

and substracting those results. Next, in Section 6, we consider a more complicated example, namely the
convergent series

∞

∑
n=0

{
(n + a) ln

(
n + a + 1

n + a

)
− 1 +

1
2 (n + a)

}
, (3)

where we employ standard ideas such as Abel’s summation formula and Stirling’s asymptotic approximation
to find the finite part of the divergent series encountered.

Sections 7 and 8 contain a more systematic treatment of a class of convergent series that generalize (1) and
(3). The main tool of our analysis is the formula

F.p.
∞

∑
n=0

(n + a)k ln (n + a) = −ζ ′ (−k, a)− Hkζ (−k, a + 1) , (4)

for the finite part of the divergent series ∑∞
n=0 (n + a)k ln (n + a) , where Hk = ∑k

j=1 (1/j) are the harmonic
numbers.
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We are then able to find the sum of certain convergent series involving values of the Hurwitz zeta function,
namely, those of the form

νk (a, b) =
∞

∑
n=2

(−1)n ζ (n, a) bn+k

n + k
, (5)

for |b| ≤ |a| , b 6= −a, k ∈ N. Series of this family have received a lot of attention since the times of Euler, who
gave the interesting sums

ν0 (1, 1) =
∞

∑
n=2

(−1)n ζ (n)
n

= γ , (6)

and

ν0 (2,−1) =
∞

∑
n=2

ζ (n, 2)
n

=
∞

∑
n=2

ζ (n)− 1
n

= 1− γ , (7)

where γ is Euler’s constant. Srivastava [6] considers many of these series in an article that contains a very
detailed historical account of the contributions of several authors. Recently, Blagouchine [7] and Coppo [8]
have given general formulas for the series

νk (1, 1) =
∞

∑
n=2

(−1)n ζ (n)
n + k

, (8)

for all k, that generalize not only (6) but also the nice Surnayanarayana’s formula [9]

ν1 (1, 1) =
∞

∑
n=2

(−1)k ζ (n)
n + 1

=
γ

2
+ 1− ln

√
2π . (9)

Interestingly, Surnayanarayana also considers divergent but Cesàro summable sums in [9], as the formula

∞

∑
n=2

(−1)k ζ (n) = 1 , (10)

that can also be found by employing exterior Euler summability [10] and is also ammenable of our analysis.
Notice that the series (5) diverges to infinity if b = −a. Nevertheless, after reading this article the reader will
be able to see that

F.p.
∞

∑
n=2

ζ (n) = −1 . (11)

2. Preliminaries

In this section, we fix the notation employed and recall several useful well known facts; see [11] and [12]
for details.

We shall always consider the principal branches of powers and logarithms, zα and ln z, defined for z ∈
C \ (−∞, 0]. If a ∈ C \ (−∞, 0], the Hurwicz zeta function ζ (s, a) is the analytic continuation to s ∈ C \ {1} of
the function

ζ (s, a) =
∞

∑
n=0

1
(n + a)s , <e s > 1 . (12)

The zeta function ζ (s, a) has a simple pole at s = 1, with residue 1. If a = 1 it reduces to the Riemman zeta
function, ζ (s, 1) = ζ (s) . We shall also employ the digamma function ψ (a) = Γ′ (a) /Γ (a) , the logarithmic
derivative of the gamma function, whose Mittag-Leffer expansion is the following

ψ (a) = −γ +
∞

∑
n=0

(
1

n + 1
− 1

n + a

)
, a 6= 0,−1,−2, . . . , (13)

where γ is Euler’s constant. The digamma function is actually the finite part – explained in the next section –
of the negative of the Hurwitz zeta function, −ζ (s, a) , at s = 1, that is

ψ (a) = − lim
s→1

(
ζ (s, a)− 1

s− 1

)
, (14)

for a ∈ C \ (−∞, 0]. Notice also that
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ψ (k) = −γ +
k−1

∑
n=1

1
n

, k ∈ {1, 2, 3, . . .} . (15)

It is easy to see that for n ≥ 1,

ψ(n) (a) = (−1)n+1 n!ζ (n + 1, a) , (16)

and this yields the Taylor expansion

ψ (a + ω) = ψ (a) +
∞

∑
n=1

(−1)n+1 ζ (n + 1, a)ωn, (17)

which is an absolutely convergent series for |ω| < |a| . The series is divergent for |ω| = |a| but it is Cesàro
summable1 in the this circle except for ω 6= −a.

Sometimes, we shall need to use Abel’s summation formula [13, Chp. 1],

N

∑
n=1

anbn = ANbN −
N−1

∑
n=1

AN (bn+1 − bn) , (18)

where An = ∑n
j=1 aj. We shall also employ Stirling’s asymptotic formula [12],

ln Γ (z) =
(

z− 1
2

)
ln z− z + ln

√
2π + O

(
1
z

)
, (19)

as z→ ∞ in the region −π < arg z < π.

3. The finite part of limits

Let us now recall the notion of the finite part of a limit [13, Section 2.4]. Let X be a topological space, and
let x0 ∈ X. Suppose F, the basic functions, is a family of strictly positive functions defined for x ∈ V \ {x0} ,
where V is a neighborhood of x0, such that all of them tend to infinity at x0 and such that, given two different
elements f1, f2 ∈ F, then limx→x0 f1 (x) / f2 (x) is either 0 or ∞.

Definition 1. Let G (x) be a function defined for x ∈ V \ {x0} with limx→x0 G (x) = ∞. The finite part of the
limit of G (x) as x → x0 with respect to F exists and equals A if we can write2 G (x) = G1 (x) + G2 (x) , where
G1, the infinite part, is a linear combination of the basic functions and where G2, the finite part, has the property
that the limit A = limx→x0 G2 (x) exists. We then employ the notation

F.p.F lim
x→x0

G (ε) = A . (20)

We shall be interested in the Hadamard finite parts at infinity in this article. It is the case when F is the
family of powers and logarithms.

Definition 2. The Hadamard finite part limit corresponds to the case when x0 = 0 and F is the family of
functions x−α |ln x|β , where α > 0 and β ≥ 0 or where α = 0 and β > 0 or when x0 = ∞ and F is the family
of functions xα |ln x|β , where α > 0 and β ≥ 0 or where α = 0 and β > 0. We then use the simpler notations
F.p. limx→0+ G (x) or F.p. limx→∞ G (x) .

Applying the notion of finite part of limits we can define the finite part of integrals at singularities [13,
Section 2.4], but in this article, we will be interested in the finite part of series,

F.p.
∞

∑
n=n0

an = F.p. lim
N→∞

N

∑
n=n0

an . (21)

1 Details on summability can be found in [1,13]
2 Such a decomposition, if it exists, is unique since any finite number of elements of F has to be linearly independent.



Open J. Math. Sci. 2020, 4, 98-109 101

Observe that the finite part of a series gives a finite sum to a series that diverges to infinity; it does not
work for oscillatory series. This makes the finite part process very different from summability methods like
Abel summability of Cesàro summability. The finite part process is more of a regularization procedure than a
summability method [13, Section 2.4].

Needless to say, many of the usual operations that are valid for convergent series may not work for the
finite parts. For example, F.p. ∑∞

n=n0+1 an−1 does not have to be equal to F.p. ∑∞
n=n0

an.
The notion of finite part integrals and its name were introduced by Hadamard [3], who used them in

his study of fundamental solutions of partial differential equations. The finite part method has been a very
important part of the theory of distributions since its beginnings [5] since it is closely related to the notion of
pseudofunction.

4. Some finite part limits

In this section, for future reference, we will give the formulas for several useful finite part limits. Our
definition says that F.p. limN→∞ Nβ = 0 for all β ∈ R. While it is true that

F.p. lim
N→∞

(N + a)β = 0 , β ∈ R \ {1, 2, 3, . . .} , (22)

for all a ∈ C, we have
F.p. lim

N→∞
(N + a)k = ak, k = 1, 2, 3, . . . . (23)

In a similar fashion, while F.p. limN→∞ Nβ ln N = 0 for all β ∈ R, by definition, when we replace N by
N + a we have the ensuing formulas.

Lemma 1. If a ∈ C and β ∈ R \ {1, 2, 3, . . .} then

F.p. lim
N→∞

(N + a)β ln (N + a) = 0 . (24)

If k = 1, 2, 3, . . . then
F.p. lim

N→∞
(N + a)k ln (N + a) = Hkak, (25)

where Hk is the harmonic sum

Hk = 1 +
1
2
+ · · ·+ 1

k
. (26)

Proof. If k ∈ {1, 2, 3, . . .} then

F.p. lim
N→∞

(N + a)k ln (N + a) = F.p. lim
N→∞

(N + a)k ln N + F.p. lim
N→∞

(N + a)k ln
(

1 +
a
N

)
= F.p. lim

N→∞
(N + a)k ln

(
1 +

a
N

)
,

while for N large

(N + a)k ln
(

1 +
a
N

)
=

(
k

∑
j=0

(
k
j

)
Nk−jaj

)
∞

∑
n=1

(−1)n+1 an

nNn ,

so that

F.p. lim
N→∞

(N + a)k ln
(

1 +
a
N

)
=

{
k
(

k
1

)
− 1

2

(
k
2

)
+ · · ·+ (−1)k

k

(
k
k

)}
ak. (27)

Observe now that

k
(

k
1

)
− 1

2

(
k
2

)
+ · · ·+ (−1)k

k

(
k
k

)
=
∫ 1

0

1− (1− x)k

x
dx =

∫ 1

0

1− tk

1− t
dt =

∫ 1

0

(
1 + t + · · ·+ tk−1

)
dt = Hk,

which yields (25).

Next, we would like to consider the finite part limit of several finite sums. We have that ∑∞
n=1 n−β = ζ (β) ,

a convergent series if <e β > 1. We now consider the finite part limit F.p. limN→∞ ∑N
n=1 n−β for <e β ≤ 1; do

we obtain ζ (β)? The answer is yes almost all the time, but not always.
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Lemma 2. If <e β ∈ R \ {1, 0,−1,−3,−5, . . .} then

F.p. lim
N→∞

N

∑
n=1

n−β = ζ (β) . (28)

If β = −k = 0, 1, 3, 5, . . . then

F.p. lim
N→∞

N

∑
n=1

n−β = F.p. lim
N→∞

N

∑
n=1

nk = 0 , (29)

while if β = 1,

F.p. lim
N→∞

N

∑
n=1

1
n
= γ . (30)

The finite part limit F.p. limN→∞ ∑N
n=1 n−β does not exist if <e β ∈ {1, 0,−1,−3,−5, . . .} , =m β 6= 0.

Proof. Formula (29) is trivial, while (30) follows from the well known asymptotic relation

N

∑
n=1

1
n
= ln N + γ + O

(
1
N

)
. (31)

In the other cases, we just employ the asymptotic expansion

ζ (s) ∼
N

∑
n=1

1
ns −

N1−s

1− s
+ ζ (0) N−s −

∞

∑
q=0

ζ (−2q− 1) s (s + 1) · · · (s + 2q)
(2q + 1)!

N−s−2q−1,

that comes from the Euler-Maclaurin formula.

It is interesting that the formula (28) holds for some negative integers, namely, for −2, −4, −6, . . . .
Observe also that a simple modification of the idea of finite part would make (28) hold when <e β ∈
{1, 0,−1,−3,−5, . . .} , =m β 6= 0, but we shall not need to consider this case in this article.

Similar formulas are obtained if we replace n by n + a in the previous lemma.

Lemma 3. Let a ∈ C \ (−∞, 0]. If <e β ∈ R \ {1, 0,−1,−3,−5, . . .} then

F.p. lim
N→∞

N

∑
n=0

(n + a)−β = ζ (β, a) . (32)

If β = −k = 0, 1, 3, 5, . . . then

F.p. lim
N→∞

N

∑
n=0

(n + a)−β = F.p. lim
N→∞

N

∑
n=0

(n + a)k = ak, (33)

while if β = 1,

F.p. lim
N→∞

N

∑
n=0

1
n + a

= −ψ (a) . (34)

The finite part limit F.p. limN→∞ ∑N
n=0 (n + a)−β does not exist in case <e β ∈ {1, 0, −1, −3, −5, . . .}, =m β 6=

0.

Proof. The proof is basically the same as that of the previous lemma if we use the asymptotic expansion (56)
instead of (32) and the formula [14]

N

∑
n=0

1
n + a

= ln (N + a)− ψ (a) + O
(

1
N

)
, (35)

that corresponds to (31).
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It is important to point out that while ζ (β) is obtained by putting a = 1 in ζ (β, a) , the formulas in the
Lemmas 2 and 3, are not exactly the same: the fact that we obtain ak in (33) and not 0 as in (29) is explained
because one sum is from n = 0 to N while the other from n = 1 to N.

5. A simple example

Let us consider the convergent series

σ0 (a) =
∞

∑
n=0

{
ln
(

n + a + 1
n + a

)
− 1

n + a

}
, (36)

where a is a constant, a 6= 0,−1,−2, . . . . We can easily evaluate it by using finite parts,

σ0 (a) = F.p. lim
N→∞

N

∑
n=0

ln
(

n + a + 1
n + a

)
− F.p. lim

N→∞

N

∑
n=0

1
n + a

, (37)

since we have a telescoping sum,

N

∑
n=0

ln
(

n + a + 1
n + a

)
= ln (N + a + 1)− ln a , (38)

which, when we notice that F.p. limN→∞ ln (N + a + 1) = 0, gives the finite part limit

F.p. lim
N→∞

N

∑
n=0

ln
(

n + a + 1
n + a

)
= − ln a , (39)

while from (34) F.p. limN→∞ ∑N
n=0 (n + a)−1 = −ψ (a) . Hence

σ0 (a) = ψ (a)− ln a . (40)

There is also a simple alternative evaluation of σ0 (a) , without the use of finite parts, since (13) gives

∫ 1

0
ψ (a + ω) dω = −γ +

∞

∑
n=0

(
1

n + 1
−
∫ 1

0

1
n + a + ω

dω

)
= −γ +

∞

∑
n=0

(
1

n + 1
− ln

(
n + a + 1

n + a

))
= ψ (a) +

∞

∑
n=0

(
1

n + a
− ln

(
n + a + 1

n + a

))
,

or

σ0 (a) = ψ (a)−
∫ 1

0
ψ (a + ω) dω , (41)

and ∫ 1

0
ψ (ω + a) dω = ln Γ (ω + a)|10 = ln a . (42)

We also observe that from (17),

ν0 (a) =
∞

∑
n=2

(−1)n ζ (n, a)
n

=
∫ 1

0
(ψ (a + ω)− ψ (a)) dω = −σ0 (a) . (43)

If a = 1, we obtain the well known formula that goes back to Euler,

ν0 (1) =
∞

∑
n=2

(−1)n ζ (n)
n

= γ . (44)

6. Another example

Our next task is to find the sum of the convergent series

σ1 (a) =
∞

∑
n=0

{
(n + a) ln

(
n + a + 1

n + a

)
− 1 +

1
2 (n + a)

}
. (45)
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First, we approximate the sum

SN =
N

∑
n=0

n ln
(

n + a + 1
n + a

)
=

N

∑
n=0

n (ln (n + a + 1)− ln (n + a)) (46)

by employing Abel’s summation formula (18),

SN = −
N

∑
j=1

ln (j + a) + N ln (N + a + 1) = ln
(

Γ (a + 1)
Γ (N + a + 1)

)
+ N ln (N + a + 1) ,

and then Stirling’s formula (19), to obtain

SN = ln Γ (a + 1)−
(

a +
1
2

)
ln (N + a + 1) + N + a + 1− ln

√
2π + O

(
1
N

)
, (47)

and consequently

F.p. lim
N→∞

N

∑
n=0

n ln
(

n + a + 1
n + a

)
= ln Γ (a + 1) + a + 1− ln

√
2π . (48)

If we now recall (39), we obtain

F.p.
∞

∑
n=0

(n + a) ln
(

n + a + 1
n + a

)
= ln Γ (a + 1) + a + 1− ln

√
2π − a ln a , (49)

and σ1 (a) = ln Γ (a + 1) + a− ln
√

2π − a ln a− ψ (a)
2

. (50)

Formulas (49) and (50) allow us to obtain an expression for the sum

ν1 (a) =
∞

∑
n=2

(−1)n ζ (n, a)
n + 1

. (51)

Indeed, (17) yields

ν1 (a) =
∫ 1

0
ω (ψ (a + ω)− ψ (a)) dω = −ψ (a)

2
+
∫ 1

0
ωψ (a + ω) dω , (52)

and

∫ 1

0
ωψ (a + ω) dω =

∫ 1

0
ω

{
−γ +

∞

∑
n=0

(
1

n + 1
− 1

n + a + ω

)}
dω

= −F.p. lim
N→∞

∫ 1

0

N

∑
n=0

ω

n + a + ω
dω

= F.p. lim
N→∞

∫ 1

0

N

∑
n=0

{
n + a

n + a + ω
− 1
}

dω

= −1 + F.p. lim
N→∞

N

∑
n=0

(n + a) ln
(

n + a + 1
n + a

)
= ln Γ (a + 1) + a− ln

√
2π − a ln a ,

so that ν1 (a) = σ1 (a) , that is,

ν1 (a) = −ψ (a)
2

+ ln Γ (a + 1) + a− ln
√

2π − a ln a . (53)

Notice that if a = 1 we obtain Surnayanarana’s formula [9]

∞

∑
n=2

(−1)n ζ (n)
n + 1

=
γ

2
+ 1− ln

√
2π , (54)
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while a = 2 yields the result [6]

∞

∑
n=2

(−1)n (ζ (n)− 1)
n + 1

=
γ

2
+

3
2
− ln
√

8π . (55)

7. The functions ϕk (a)

The Euler-Maclaurin formula yields the asymptotic development

ζ (s, a) ∼
N

∑
n=0

1
(n + a)s −

(N + a)1−s

1− s
+ ζ (0) (N + a)−s

−
∞

∑
q=0

ζ (−2q− 1) s (s + 1) · · · (s + 2q)
(2q + 1)!

(N + a)−s−2q−1 , (56)

as N → ∞. Differentiation of (56) gives the expansion

N

∑
n=0

ln (n + a)
(n + a)s ∼ −ζ ′ (s, a)− (N + a)1−s

(1− s)2 +
(N + a)1−s ln (N + a)

1− s
− ζ (0) (N + a)−s ln (N + a)

−
∞

∑
q=0

ζ (−2q− 1) s (s + 1) · · · (s + 2q)
(2q + 1)!

(N + a)−s−2q−1
(

1
s
+ · · ·+ 1

s + 2q
− ln (N + a)

)
. (57)

Let us define

ϕk (a) = F.p. lim
N→∞

N

∑
n=0

(n + a)k ln (n + a) , k ∈ N . (58)

We may evaluate ϕ0 (a) in two ways, one using Stirlings formula (19),

ϕ0 (a) = F.p. lim
N→∞

[ln Γ (N + a + 1)− ln Γ (a)]

= F.p. lim
N→∞

[
(N + a +

1
2
) ln (N + a + 1)− (N + a + 1) + ln

√
2π − ln Γ (a)

]
= ln

√
2π − ln Γ (a) ,

the other using (57) that gives ϕ0 (a) = −ζ ′ (0, a) , so that

ϕ0 (a) = −ζ ′ (0, a) = ln

(√
2π

Γ (a)

)
. (59)

Next we consider ϕ1 (a) . We have from (57) that ϕ1 (a) is given as the finite part of the limit of

− ζ ′ (−1, a) +
(N + a)2

4
− (N + a)2 ln (N + a)

2
+

(N + a) ln (N + a)
2

+
1

12
− ln (N + a)

12
, (60)

as N → ∞. Hence using the Lemma 1 we obtain

ϕ1 (a) = −ζ ′ (−1, a) +
a2

2
+

a
2
+

1
12

. (61)

More generally, we have the following formula.

Proposition 1. If k ≥ 1 then
ϕk (a) = −ζ ′ (−k, a)− Hkζ (−k, a + 1) , (62)

where Hk are the harmonic numbers (26).

Proof. It is clear from (57) that
ϕk (a) = −ζ ′ (−k, a) + Pk+1 (a) , (63)
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where Pk+1 is a certain polynomial of degree k + 1. Let us now consider the difference

ϕk (a + 1)− ϕk (a) =
(
ζ ′ (−k, a)− ζ ′ (−k, a + 1)

)
+ (Pk+1 (a + 1)− Pk+1 (a))

= −ak ln a + (Pk+1 (a + 1)− Pk+1 (a)) .

We also have

ϕk (a + 1)− ϕk (a) = F.p. lim
N→∞

(
N

∑
n=0

(n + a + 1)k ln (n + a + 1)−
N

∑
n=0

(n + a)k ln (n + a))

= F.p. lim
N→∞

(N + a + 1)k ln (N + a + 1)− ak ln a

= Hk (a + 1)k − ak ln a ,

because of (25). Consequently, Pk+1 is the a polynomial solution of the equation

Pk+1 (a + 1)− Pk+1 (a) = Hk (a + 1)k . (64)

Actually it is the only polynomial solution that satisfies the initial condition

Pk+1 (0) = −Hkζ (−k) , (65)

since Pk+1 (0) is the constant term in the polynomial Pk+1 (a) , and (57) tell us that that constant term is precisely
−Hkζ (−k) (that vanishes if k is even).

Furthermore, the Bernoulli polynomials Bk (a) satisfy Bk (x + 1) − Bk (x) = kxk−1, Bk (0) = Bk (1) =

−kζ (1− k) [11]. Hence HkBk+1 (a + 1) / (k + 1) is another polynomial solution of the initial value problem for
the difference equation. Therefore

Pk+1 (a) =
Hk

k + 1
Bk+1 (a + 1) . (66)

Formula (62) is obtained since

ζ (−k, a) = −Bk+1 (−k, a)
k + 1

, (67)

as is well known [11].

When a = 1 it is convenient to consider a variation of the function ϕk (1) .

Proposition 2. If k ∈ N then

F.p. lim
N→∞

N

∑
n=1

nk ln n = −ζ ′ (−k)− Hkζ (−k) . (68)

Proof. Indeed, using the Lemma 1, we obtain

F.p. lim
N→∞

N

∑
n=1

nk ln n = ϕk (1)− F.p. lim
N→∞

(N + 1)k ln (N + 1)

= −ζ ′ (−k)− Hkζ (−k, 2)− Hk = −ζ ′ (−k)− Hkζ (−k) as required.

8. The series ∑∞
n=2 (−1)n ζ (n, a) bn+k/(n + k)

We now employ finite part limits to find a formula for the sum of some general convergent series.

Proposition 3. Let a ∈ C \ (−∞, 0] and let |b| ≤ |a| , b 6= −a. Then for k ∈ N

∞

∑
n=2

(−1)n ζ (n, a) bn+k

n + k
=
−ψ (a) bk+1

k + 1
−

k−1

∑
j=0

(−1)j ajbk−j

k− j
+

k−1

∑
j=0

(
k
j

)
(−1)j bk−j (ζ ′ (−j, a + b)

+Hjζ (−j, a + b + 1)
)
+ (−1)k (ζ ′ (−k, a + b) + Hkζ (−k, a + b + 1)− ζ ′ (−k, a)− Hkζ (−k, a + 1)

)
. (69)
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Proof. Indeed, from (17), we obtain

∞

∑
n=2

(−1)n ζ (n, a) bn+k

n + k
=

∫ b

0
(−ψ (a) + ψ (a + ω))ωkdω

=
−ψ (a) bk+1

k + 1
+
∫ b

0

(
−γωk +

∞

∑
n=0

(
ωk

n + 1
− ωk

n + a + ω

))
dω

=
−ψ (a) bk+1

k + 1
− F.p. lim

N→∞

N

∑
n=0

∫ b

0

ωk

n + a + ω
dω .

Observe now that

ωk

n + a + ω
= ωk−1 − (n + a)ωk−2 + · · ·+ (−1)k−1 (n + a)k−1 + (−1)k (n + a)k

n + a + ω
, (70)

which yields

∫ b

0

ωk

n + a + ω
dω =

bk

k
− (n + a) bk−1

k− 1
+ · · ·+ (−1)k−1 (n + a)k−1 b

+ (−1)k (n + a)k (ln (n + a + b)− ln (n + a)) . (71)

Therefore

F.p. lim
N→∞

N

∑
n=0

∫ b

0

ωk

n + a + ω
dω =

k−1

∑
j=0

(−1)j ajbk−j

k− j
+ (−1)k

F.p. lim
N→∞

N

∑
n=0

(n + a)k (ln (n + a + b)− ln (n + a)) . (72)

If we notice now that

F.p. lim
N→∞

N

∑
n=0

(n + a)k ln (n + a + b) =
k

∑
j=0

(
k
j

)
(−b)k−j ϕj (a + b)

=
k

∑
j=0

(
k
j

)
(−b)k−j (−ζ ′ (−j, a + b)− Hjζ (−j, a + b + 1)

)
(73)

and substitute, we obtain (69).

The cases, when b = ±1 are worth recording. Let us observe that

ζ ′ (−k, a + 1) + Hkζ (−k, a + 2)− ζ ′ (−k, a)− Hkζ (−k, a + 1) = ϕk (a + 1)− ϕk (a) = Hk (a + 1)k − ak ln a (74)

to obtain

∞

∑
n=2

(−1)n ζ (n, a)
n + k

=
−ψ (a)
k + 1

−
k−1

∑
j=0

(−1)j aj

k− j
+

k−1

∑
j=0

(
k
j

)
(−1)j (ζ ′ (−j, a + 1) + Hjζ (−j, a + 2)

)
+ (−1)k

(
ak ln a− Hk (a + 1)k

)
(75)

and

∞

∑
n=2

ζ (n, a)
n + k

=
(−1)k ψ (a)

k + 1
−

k−1

∑
j=0

aj

k− j
+

k−1

∑
j=0

(
k
j

) (
ζ ′ (−j, a− 1) + Hjζ (−j, a)

)
+ Hkak − (a− 1)k ln (a− 1) . (76)

If we put a = 1 in (75), we obtain

νk = ∑∞
n=2

(−1)nζ(n)
n+k = γ

k+1 −∑k−1
j=0

(−1)j

k−j + ∑k−1
j=0 (k

j) (−1)j (ζ ′ (−j) + Hjζ (−j, 3)
)
+ (−1)k+1 Hk2k (77)
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from where one may recover the formula for νk given by Coppo [8], who rewrote the formula given earlier by
Blagouchine [7]. On the other hand, setting a = 2 in (76) gives

∞

∑
n=2

ζ (n)− 1
n + k

=
−γ + 1
k + 1

−
k−1

∑
j=0

(−1)j 2j

k− j
+

k−1

∑
j=0

(
k
j

)
(−1)j (ζ ′ (−j) + Hj(ζ (−j)− 1)

)
+ Hk2k. (78)

The case k = 0,
∞

∑
n=2

ζ (n)− 1
n

= −γ + 1 , (79)

goes back to Euler, while the case k = 1 can be found in Srivastava [6]

∞

∑
n=2

ζ (n)− 1
n + 1

= −γ

2
− ln
√

2π +
3
2

. (80)

We would also like to point out that by adding and substracting (75) and (76), we can derive formulas for
series involving only even or only odd arguments of the Hurwitz zeta function. For example

∞

∑
q=2

ζ (2q, a)
q

= ln a− ln (a− 1) , (81)

∞

∑
q=2

ζ (2q + 1, a)
2q + 1

= ψ (a)− ln a− ln (a− 1) , (82)

∞

∑
q=2

ζ (2q, a)
2q + 1

= ln Γ (a + 1)− ln
√

2π + a− 1
2
+

a
2

ln a− (a− 1)
2

ln (a− 1) , (83)

and
∞

∑
q=2

ζ (2q + 1, a)
q + 1

= ψ (a)− 1− a ln a + (a− 1) ln (a− 1) . (84)
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