

A few comments and some new results on JU-algebras

Daniel A. Romano

Article

International Mathematical Virtual Institute 6, Kordunaška Street, 78000 Banja Luka, Bosnia and Herzegovina.; bato49@hotmail.com

Received: 24 December 2019; Accepted: 22 March 2020; Published: 5 April 2020.

Abstract: In this article, we revisit the axioms of JU-algebras previously recognizable as 'pseudo KU-algebras', which we may call as 'weak KU-algebras' and discussed the definitions of some of their substructures. We also associate this class of algebras with the classes of BE-algebras and UP-algebras. In addition, we introduce and analyze some new classes of ideals in this class of algebras.

Keywords: JU-algebras, ideal and filter in JU-algebras, closed ideal, ag-ideal, t-ideal, (*)-ideal and associative ideal.

MSC: 03G25.

1. Introduction

I n 1966, Imai and Iseki [1] introduced a notion of BCK-algebras. The concept of BE-algebra as a generalization of BCK-algebra was introduced in 2006 by Kim and Kum in [2]. The concept of KU-algebras was introduced and analyzed in 2009 in [3,4]. KU-algebras are closely related to BE-algebras. Specifically, in the article [5], the authors have shown that KU-algebra is equivalent to a commutative self-distributive BE-algebra. (A BE-algebra A is a self-distributive if $x \cdot (y \cdot z) = (z \cdot y) \cdot (x \cdot z)$ for all $x, y, z \in A$). Additionally, they have shown that every KU-algebra is a BE-algebra [5]. The concept of UP-algebras as a generalization of KU-algebras was introduced by Iampan in [6]. The concept of JU-algebras, as a generalization of KU-algebras, was introduced and analyzed in [7,8].

However, this concept was introduced in [9] by Leerawat and Prabpayak under the name 'pseudo KU-algebra. In doing so, they used the PKU designation for this class of algebra. Since then, this type of generalization of KU-algebra has been in the focus of interest of the academic community (for example see [10,11]).

We are more inclined to refer this concept as 'weak KU-algebra' in the same way as weak BCC-algebra [12]. However, due to the tight connection of this paper to the article [8], we will use the name 'JU-algebra' in what follows.

In this article, we revisit the axioms of JU-algebras and definitions of their substructures. We also link this class of algebras with the classes BE-algebras and UP-algebras. In addition, we introduce and analyze some new classes of ideals in this class of algebra such as closed ideal, ag-ideal, t-ideal, (*)-ideal and associative ideal.

2. Preliminaries

In this section, we take the definitions of JU-algebras, JU-subalgebras, JU-ideals and other important terminologies and some related results from literature [7,8].

2.1. Definition and some comments

Definition 1. [8] An algebra $(A, \cdot, 1)$ of type (2, 0) with a binary operation " \cdot " and a fixed element 1 is said to be *JU-algebras* satisfying the following axioms:

(JU-1) $(\forall x, y, z \in A)((y \cdot z) \cdot ((z \cdot x) \cdot (y \cdot x)) = 1),$ **(JU-2)** $(\forall x \in A)(1 \cdot x = x)$ and **(JU-3)** $(\forall x, y \in A)((x \cdot y \land y \cdot x = 1) \implies x = y).$

We denote this axiom system by [JU].

Lemma 1. [8] In the axioms system [JU], the following formulae are valid:

Comment 1. In [3], a KU-algebra is defined as a system $(A, \cdot, 0)$ by the following axioms:

(KU-1) $(\forall x, y, z \in A)((x \cdot y) \cdot ((y \cdot z) \cdot (x \cdot z)) = 0),$ (KU-2) $(\forall x \in A)(0 \cdot x = x),$ (KU-3) $(\forall x \in A)(x \cdot 0 = 0)$ and (KU-4) $(\forall x, y \in A)((x \cdot y = 0 \land y \cdot x = 0) \Longrightarrow x = y).$

We denote this axiom system by [KU]. With [wKU] we denote axiomatic system [KU] without axiom (KU-3). So, $[JU] \equiv [wKU] \equiv [PKU]$.

Recall that in the axiom system [KU], the formula (J_{12}) is a valid formula also [13].

If in the definition of KU-algebras we write 1 instead of 0, then we see that any KU-algebra *A* is a JU-algebra. Therefore, the concept of JU-algebras is a generalization of the concept of KU-algebras [8].

If we followed the formation of the concept of 'weak BCC-algebras' from the 'concept of BCC-algebras', then the name '*weak KU-algebra*' could also be used for a JU-algebra by analogy with the previous one.

If *A* is a JU-algebra, let us define $\varphi : A \longrightarrow A$ as follows;

$$(\forall x \in A)(\varphi(x) = x \cdot 1)$$

taking the idea from [14]. According to (JU-2), the equality $\varphi(1) = 1$ is valid for mapping φ .

Comment 2. The concept of UP-algebras was introduced in 2017 in article [6] as a $(A, \cdot, 0)$ system that satisfies the following axioms:

(UP-1) $(\forall x, y, z)((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0),$ **(UP-2)** $(\forall x \in A)(0 \cdot x = x),$ **(UP-3)** $(\forall x \in A)(x \cdot 0 = 0)$ and **(UP-4)** $(\forall x, y \in A)((x \cdot y = 0 \land y \cdot x = 0) \implies x = y).$

We denote this axiom system by [UP]. With [wUP] we denote axiomatic system [UP] without axiom (UP-3).

We can transform the formula (JU-1) into the formula (UP-1) using valid equation (J₁₂) [8] and replacing the element 1 by the element 0. However, since formula (J₁₂) does not have to be a valid formula in [UP], we conclude that there is no direct connection between [JU] and [UP]. On the other hand, the system [UP] + (J₁₂) is equivalent to the system [KU] according to theorems in [6], so we conclude that the system [JU] is contained in the system [wUP] + (J₁₂). Therefore, any UP-algebra that additionally satisfies equality (J₁₂) is also a JU-algebra at the same time.

Comment 3. The concept of BE-algebras is defined in [2] as a system $(A, \cdot, 1)$ satisfying the following axioms:

(BE-1) $(\forall x \in A)(x \cdot x = 1)$, (BE-2) $(\forall x \in A)(x \cdot 1 = 1)$, (BE-3) $(\forall x \in A)(1 \cdot x = x)$ and (BE-4) $(\forall x, y, z \in A)(x \cdot (y \cdot z) = y \cdot (x \cdot z))$.

We denote this axiom system by [BE]. The axiomatic system generated by axioms (B-1), (BE-3) and (BE-4) is denoted by [wBE].

It is shown in [5] that every KU-algebra is a BE-algebra. Since any KU-algebra is a JU-algebra, by Comment 1, we get that every BE-algebra is a JU-algebra.

2.2. An order relation

Definition 2. [8] Let *A* be a JU-algebra. We define a relation " \leq " in *A* as follows:

$$\forall x, y \in A) (y \leq x \iff x \cdot y = 1.$$

According to claims (J_4) , (J_5) , (J_6) , and claims (J_7) , (J_8) , the relation " \leq " is a partial order in *A* left compatible and right reverse compatible with the internal operation in *A* [8].

Proposition 1. Let A be a JU-algebra. Then

(1) $(\forall x, y \in A)(x \cdot \varphi(y) = y \cdot \varphi(x));$ (2) $(\forall x, y \in A)(\varphi(x) \cdot \varphi(y) \leq y \cdot x);$ (3) $(\forall x, y \in A)(x \cdot (y \cdot x) \leq \varphi(y));$ (4) $(\forall x, y \in A)(\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y));$ (5) $(\forall x, y \in A)(x \leq y \implies \varphi(y) \leq \varphi(x)).$

Proof. Relation (1) is obtained directly from (J_{12}) where, we put z = 1.

If we put x = 1 and z = x in (JU-1), we get $(y \cdot x) \cdot ((x \cdot 1) \cdot (y \cdot 1)) = 1$. This means $\varphi(x) \cdot \varphi(y) \leq y \cdot x$ according to the Definition 2.

If we put z = 1 in (JU-1), we get $(y \cdot 1) \cdot ((1 \cdot x) \cdot (y \cdot x)) = 1$. Hence $\varphi(y) \cdot (x \cdot (y \cdot x)) = 1$. So, we have $x \cdot (y \cdot x) \leq \varphi(y)$.

Relation (4) is proved in [8] as formula (J_{14}) .

Relation (5) is a direct consequence of the right inverse compatibility of order relations with an internal operation in *A* if we choose z = 1. \Box

Remark 1. The relation (5) of Proposition 1 is a direct consequence of the Proposition 1(4). Indeed, if $x \le y$, then $y \cdot x = 1$. Thus $\varphi(y \cdot x) = 1$. Hence $\varphi(y) \cdot \varphi(x) = 1$ by Proposition 1(4). This means $\varphi(x) \le \varphi(y)$.

3. Some types of JU-ideals

Definition 3. [8] A non-empty subset J of a JU-algebra A is called a JU-ideal of A if

(J-1) $1 \in J$ and **(J-2)** $(\forall x, y \in A)((x \in J \land x \cdot y \in J) \Longrightarrow y \in J).$

Lemma 2. Let J be a JU-ideal of a JU-algebra A. Then

(J-3) $(\forall x, y \in A)((x \leq y \land y \in J) \Longrightarrow x \in J).$

Proof. Let $x, y \in A$ be such that $x \leq y$ and $y \in J$. Then $y \cdot x = 1 \in J$ and $y \in J$. Thus $x \in J$ by (J-2). \Box

Proposition 2. Let J be a subset of a JU-algebra such that (J-1) holds. Then the condition (J-2) is equivalent to the condition;

(J-4) $(\forall x, y, z \in A)((x \cdot (y \cdot z) \in J \land y \in J) \implies x \cdot z \in J).$

Proof. (J-4) \implies (J-2). If we put x = 1, y = x and z = y in (J-4), then we get (J-2) with respect to (JU-2).

(J-2) \implies (J-4). Let $x, y, z \in A$ such that $x \cdots (y \cdot z) \in J$ and $y \in J$. Then $y \cdot (x \cdot z) \in J$ and $y \in J$ by (J₁₂). Thus $x \cdot z \in J$ by (J-2). \Box

As a consequence of the Proposition 2, we can describe some of the features of the JU-ideals as follows:

Proposition 3. Let J be a JU-ideal of a JU-algebra A. Then

(6) $\forall x, y \in A$) $((\varphi(x) \in J \land y \in J) \implies x \cdot y \in J)$ and (7) $(\forall x, y \in A)((x \cdot \varphi(y) \in J \land y \in J) \implies \varphi(x))$.

Proof. If we put z = y in (*J*-4), we get

$$(x \cdot (y \cdot y) \in J \land y \in J) \Longrightarrow x \cdot y \in J$$

From where, we get (*J*-5) using (*J*₁₁) in [8]. If we put z = 1 in (*J*-4), we get (7). \Box

Definition 4. Let *J* be a JU-ideal of a JU-algebra *A*, then

(C) *J* is a closed ideal of *A* if $\{x \in A : \varphi(x) \in J\} = \varphi(J) \subseteq J$ holds.

Theorem 1. An ideal J of a JU-algebra A is closed if and only if it is a subalgebra of A.

Proof. Assume that an ideal *J* is a subalgebra of *A* and $x \in J$. Then, from $1 \in J$ and $x \in J$ follows $\varphi(x) = x \cdot 1 \in J$ because *J* is a subalgebra of *A*. This means $\varphi(J) \subseteq J$.

Conversely, let an ideal *J* of *A* is closed and let $x, y \in J$. Then $\varphi(x) \in \varphi(J) \subseteq J$ and $y \in J$. Thus $x \cdot y \in J$ by Proposition 3(6). This means that *J* is a subalgebra of *A*. \Box

As usual, we will write $Ker \varphi = \{x \in A : \varphi(x) = 1\}$. In [8], this set is labeled by B_A .

Corollary 1. Ker φ is a closed JU-ideal of A.

Proof. Let $x, y \in A$ be such $x \in Ker\varphi$ and $x \cdot y \in Ker\varphi$. Then $\varphi(x) = 1$ and $1 = \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = 1 \cdot \varphi(y) = \varphi(y)$ by Proposition 1(4) and (JU-2). Thus $y \in Ker\varphi$. So, $Ker\varphi$ is a JU-ideal of A.

Suppose $x \in Ker\varphi$ and $y \in Ker\varphi$. Then, from $\varphi(x) = 1$ and $\varphi(y) = 1$ it follows $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = 1 \cdot 1 = 1$ by Proposition 1(4). Thus $x \cdot y \in Ker\varphi$. So, $Ker\varphi$ is a subalgebra in A. Therefore $Ker\varphi$ is a closed JU-ideal of A by Theorem 1. \Box

In what follows, we need the following lemma.

Lemma 3. Let J be a JU-ideal of a JU-algebra A, then

(8) $(\forall x \in A)(x \in J \implies \varphi^2(x) \in J).$

Proof. Let us first show that the following holds;

(9) $(\forall x \in A)(\varphi^2(x) \leq x).$

This inequality immediately follows from Proposition 1(2) if we put y = 1. Now, from $x \in J$ and $\varphi^2(x) \leq x$ it follows $\varphi^2(x) \in J$ according to (J-3). \Box

The preceding lemma is a motive for introducing the following concept.

Definition 5. Let *J* be a JU-ideal of JU-algebra *A*, then

(AG) *J* is *ag-ideal* of *A* if $(\forall x \in A)(\varphi^2(x) \in J \implies x \in J)$ holds.

Proposition 4. Let A be a JU-algebra, then

(10) $(\forall x \in A)(\varphi^3(x) = \varphi(x)).$

Proof. It has already been shown that $\varphi^2(x) \leq x$ is valid. Thus $\varphi(x) \leq \varphi^3(x)$ by Proposition 1(5) and $\varphi^3(x) \cdot \varphi(x) = 1$. On the other hand, from $1 = \varphi^2(x) \cdot \varphi^2(x) = \varphi^2(x) \cdot \varphi(\varphi(x))$, it follows $\varphi(x) \cdot \varphi^3(x) = 1$ according to Proposition 1(1). Thus $\varphi^3(x) = \varphi(x)$ by (JU-3). \Box

Corollary 2. Ker φ is a closed ag-ideal of A.

Proof. It has already been shown that $Ker\varphi$ is a closed JU-ideal of *A*. Let $x \in A$ be an arbitrary element such that $\varphi^2(x) \in Ker\varphi$. Then $\varphi(x) = \varphi^3(x) = 1$ by (9) given in proof of Lemma 3. Thus $x \in Ker\varphi$. \Box

Lemma 4. If *J* is a JU-ideal of a JU-algebra *A*, then $\varphi^2(J) = \{x \in A : \varphi^2(x) \in J\}$ is a JU-ideal of *A* also. The reverse also applies: If $\varphi^2(J)$ is a JU-ideal of JU-algebra *A*, then *J* is a JU-ideal of *A* also.

Proof. Since $1 \in J$, then $\varphi^2(1) = 1 \in J$. Thus $1 \in \varphi^2(J)$. Suppose $x \in \varphi^2(J)$ and $x \cdot y \in \varphi^2(J)$. Then $\varphi^2(x) \in J$ and $\varphi^2(x) \cdot \varphi^2(y) = \varphi^2(x \cdot y) \in J$ with respect to Proposition 1(4). Thus $\varphi^2(y) \in J$ and $y \in \varphi^2(J)$. So, $\varphi^2(J)$ is a JU-ideal of JU-algebra *A*.

It is obvious that $1 = \varphi^2(1) \in J$ holds because $1 \in \varphi^2(J)$ is valid. Let $x, y \in A$ be such $x \in J$ and $x \cdot y \in J$. Then $\varphi^2(x) \in \varphi^2(J)$ and $\varphi^2(x) \cdot \varphi^y = \varphi^2(x \cdot y) \in \varphi^2(J)$. Thus $\varphi^2(y) \in \varphi^2(J)$ by (J-2) because $\varphi^2(J)$ is a JU-ideal of A. Hence $y \in J$. Therefore, J is a JU-ideal of A. \Box

Theorem 2. *J* is a closed a JU-ideal of a JU-algerba A if and only if $\varphi^2(J)$ is a closed JU-ideal of A.

Proof. Let *J* be a closed a JU-ideal of a JU-algebra *A*. Let $x \in A$ be an element such that $x \in \varphi(\varphi^2(J))$. Then $\varphi(x) \in \varphi^2(J)$ and $\varphi^2(\varphi(x)) = \varphi(\varphi^2 x) \in J$. Thus $\varphi^2(x) \in \varphi(J) \subseteq J$ because *J* is a closed ideal of *A*. Hence $x \in \varphi^2(J)$. From this it has shown that the ideal $\varphi^2(J)$ satisfies Definition 4 condition (C).

Let *J* be a JU-ideal of a JU-algebra *A* such that $\varphi^2(J)$ is a closed JU-ideal of *A*. Then, we have

$$\varphi(J) = \varphi^3(J) = \varphi(\varphi^2(J)) \subseteq \varphi^2(J) \subseteq J$$

by Proposition 4(10) and since the inclusion $\varphi^2(J) \subseteq J$ is obviously valid. So, *J* is a closed JU-ideal of *A*. \Box

Before presenting the following theorem, we will introduce the concept of JU-filters in a JU-algebra.

Definition 6. A subset *F* of a JU-algerba *A* is a JU-*filter* of *A* if the following hold:

(F-1) $1 \in F$ and **(F-2)** $(\forall x, y \in A)((x \cdot y \in F \land y \in F) \implies x \in F).$

Lemma 5. If F is a JU-filter of a JU-algerba A, then

(F-3) $(\forall x, y \in A)(x \in F \land x \leq y) \Longrightarrow y \in F).$

Proof. Let $x, y \in A$ be such that $x \in F$ and $x \leq y$. Then $x \in F$ and $y \cdot x = 1 \in F$. Thus $y \in F$ by (F-3). \Box

Lemma 6. If F is a JU-filter of a JU-algebra A, then

(11) $(\forall x \in A) (\varphi(x) \in F \implies x \in F).$

Proof. If we put y = 1 in (F-2), we immediately get (11).

Remark 2. In [8], the concept of strong JU-ideal of a JU-algebra was introduced in the way we introduced the concept of JU-filters.

Theorem 3. For a JU-ideal J of a JU-algerba A the following are equivalent:

(a) *J* is an ag-ideal of *A*; (b) *J* is a *JU*-filter of *A*; (c) $(\forall x, y, z \in A)(((x \cdot z) \cdot (y \cdot z) \in J \land y \in J) \Longrightarrow x \in J);$ and (d) $(\forall x, y \in A)(\varphi(x \cdot y) \in J \land y \in J) \Longrightarrow x \in J).$

Proof. (a) \implies (b). Let *J* be an ag-ideal of *A* and $x \leq y \land y \in J$. Then $y \cdot x = 1 \in J$ and $y \in J$. Thus $\varphi^2(y) \cdot \varphi^2(x) = \varphi^2(y \cdot x) = 1 \in J$ and $\varphi^2(y) \in \varphi^2(J) \subseteq J$. Hence $\varphi^2(x)J$ because *J* is an ideal of *A*. From here, it is follows $x \in J$ since *J* is an ag-ideal of *A*. Therefore, subset *J* is a JU-filter of *A*.

(b) \implies **(c).** From (JU-1), written in the form $(y \cdot x) \cdot ((x \cdot z) \cdot (y \cdot z)) = 1 \in J$, and from $(x \cdot z) \cdot (y \cdot z) \in J$ we get $y \cdot x \in J$ according to (F-2). Now, from $y \cdot x \in J$ and $y \in J$ it follows $x \in J$ according to (J-2).

(c) \implies (d). If we put z = 1 in (c), we get $\varphi(x) \cdot \varphi(y) \in J y \in J$. hence (d) with respect to (4).

(d) \implies (a). If we put y = 1 in (d), we get (a) with respect to (J-1).

Let's introduce the following type of JU-ideals.

Definition 7. A subset *J* of a JU-algebra *A* is a t-*ideal* of *A* if the following hold:

(J-1) $1 \in J$ and **(t)** $(\forall x, y, z \in A)(((x \cdot y) \cdot z \in J \land y \in J) \implies x \cdot z \in J).$

Lemma 7. A t-ideal of a JU-algebra A is a JU-ideal of A.

Proof. If we put x = 1, y = x and z = y in Dentition 7(t), we get condition (J-2).

In the following proposition we give some of the characteristics of this type of JU-ideals.

Theorem 4. Let J be a t-ideal of a JU-algerba A, then

(e) $(\forall x, z \in A)(\varphi(x) \cdot z \in J \implies x \cdot z \in J);$ (f) $(\forall x, z \in A)(\varphi(x) \cdot z \in J \implies \varphi^2(x) \cdot z \in J);$ and (g) $(\forall x \in A)(x \cdot \varphi(x) \in J).$

Proof. If we put y = 1 in Definition 7(t), we get (e) with respect to (J-1).

Let $x, z \in A$ be such that $\varphi(x) \cdot z \in J$. Then

$$\varphi(\varphi^2(x)) \cdot z = \varphi^3(x) \cdot z = \varphi(x) \cdot z \in J \implies \varphi^2(x) \cdot z \in J$$

by (e).

To prove (g), we note that $(x \cdot 1) \cdot (x \cdot 1) = 1 \in J$ and $1 \in J$ follows $x \cdot (x \cdot 1) \in J$ by Definition 7(t). So we have $x \cdot \varphi(x) \in J$. \Box

Proposition 5. The condition (e) of Theorem 4 is equivalent to the condition (t) of Definition 7.

Proof. Theorem 4 already proves that (t) \implies (e), the inverse implication (e) \implies (t) remains to be proved.

We can write (JU-1) in the form $(y \cdot z) \cdot (y \cdot x) \leq z \cdot x$ according to (J_{12}) . If we put z = 1, x = y and y = x in the previous inequality, we get $\varphi(x) \cdot (x \cdot y) \leq y$. From here, it follows $\varphi(x) \cdot (x \cdot y) \in J$ by (J-3) and the hypothesis $y \in J$. On the other hand, if we put $z = x \cdot y$, x = z and $y = \varphi(x)$ in (JU-1) written in the form $(y \cdot z) \cdot (y \cdot x) \leq z \cdot x$, then we get $(\varphi(x) \cdot (x \cdot y)) \cdot (\varphi(x) \cdot z) \leq (x \cdot y) \cdot z$. Thus $(\varphi(x) \cdot (x \cdot y)) \cdot (\varphi(x) \cdot z) \in J$ by (J-3) and the hypothesis $(x \cdot y) \cdot z \in J$.

Now, from $(\varphi(x) \cdot (x \cdot y)) \cdot (\varphi(x) \cdot z) \in J$ and $\varphi(x) \cdot (x \cdot y) \in J$ it follows $\varphi(x) \cdot z \in J$. Thus $x \cdot z \in J$ by (e). \Box

Proposition 6. The condition (f) of Theorem 4 is equivalent to the condition (e) of Theorem 4.

Proof. Let $x, z \in A$ be elements such that $\varphi(x) \cdot z \in J$. Then $\varphi^2(x) \cdot z \in J$ by (f). On the other hand, it follows $x \cdot z \leq \varphi^2(x) \cdot z$ from (9) with respect to right reverse compatibility of the operation in A with the order in A. Now, from $x \cdot z \leq \varphi^2(x) \cdot z$ and $\varphi^2(x) \cdot z \in J$ it follows $x \cdot z \in J$ by (J-3). This has shown that formula (e) is a consequence of formula (f).

As Theorem 4 already shows that (e) \implies (f), we conclude that the condition (e) is equivalent to the condition (f). \Box

Proposition 7. The condition (g) of Theorem 4 is equivalent to the condition (e) of Theorem 4.

Proof. Assume (g). Let $x, y, z \in A$ be elements such that $\varphi(x) \cdot z \in J$. If we put y = x, x = z and $z = \varphi(x)$ in (JU-1), written in the form $(z \cdot x) \cdot (t \cdot x) \leq y \cdot z$, we get $(\varphi(x) \cdot z) \cdot (x \cdot z) \leq x \cdot \varphi(x)$. From here, it follows $(\varphi(x) \cdot z) \cdot (x \cdot z) \in J$ by (J-3) and the hypothesis (g): $\varphi(x) \cdot x \in J$. Now, from $(\varphi(x) \cdot z) \cdot (x \cdot z) \in J$ it follows $x \cdot z \in J$ by (J-2) and hypothesis $\varphi(x) \cdot z \in J$. We have shown by this that (g) \Longrightarrow (e).

In Theorem 4 it is shown that (t) \implies (g). Since (t) \iff (g) is a valid formula, by Proposition 5, we conclude that the equivalence of (e) \iff (g) is a valid formula, too. \Box

The concept of p-ideals of a JU-algebra was introduced and analyzed in [8].

Definition 8. [8] A subset J of a JU-algebra A is called a p-ideal of A if

(J-1) $1 \in J$ and **(p)** $(\forall x, y, z \in A)((z \cdot x) \cdot (z \cdot y) \in J \land y \in J) \implies x \in J).$

Lemma 8. Any p-ideal J of a JU-algebra A is a JU-ideal of A.

Proof. If we put z = 1 in Definition 8(p), we get (JU-2).

Theorem 5. Let J be a p-ideal of a JU-algerba A. Then

(h) $(\forall y, z \in A)((z \cdot x) \cdot \varphi(z) \in J \implies x \in J);$ (k) $(\forall x, z \in A)(z \cdot \varphi(z \cdot x) \in J \implies x \in J);$ (m) $(\forall x, z \in A)((\varphi(z \cdot x) \in J \land z \in J) \implies x \in J);$ (n) $(\forall x \in A)(\varphi(x) \in J \implies x \in J).$

Proof. If we put y = 1 in Definition 8(p), we get (h).

The condition (k) is obtained from condition (h) by applying equality (1) of Proposition 1. If we put y = z in in Definition 8(p), we get (m). If we put z = 1 in (m), we get (n). \Box

In what follows, we introduce and analyze a new type of JU-ideal in JU-algebras.

Definition 9. Let *J* be a JU-ideal of a *A*. *J* is a (*)-*ideal* of *A* if

 $(\star) \ (\forall x, y \in A)(\neg (x \in J) \land y \in J) \Longrightarrow x \cdot y \in J).$

Proposition 8. Let J be a (\star) -ideal of a JU-algebra A. Then

(q) $(\forall x \in A)(\neg (x \in J) \Longrightarrow \varphi(x) \in J); and$ (r) $(\forall x, y \in A)((\neg (x \cdot y \in J) \land y \in J) \Longrightarrow x \in J).$

Proof. The Condition (q) is obtained by putting y = 1 in Definition 9(*).

The Condition (q) can be obtained from the contraposition of Definition $9(\star)$.

Theorem 6. An ideal J of a JU-algebra A is a closed (*)-ideal if and only if $\varphi(A) = \{\varphi(x) : x \in A\} \subseteq J$.

Proof. Let *J* be an JU-ideal of *A*. If $\varphi(A) \subseteq J$, then obviously $\varphi(J) \subseteq J$ holds, i.e., the ideal *J* is closed.

Let $x, y \in A$ be arbitrary elements. Then $y \cdot (x \cdot y) \leq \varphi(x) \in J$ by Proposition 1(3) and hypothesis $\varphi(A) \subseteq J$. Thus $y \cdot (x \cdot y) \in J$ by Lemma 2. Hence $x \cdot y \in J$ by (J-2). So, *J* is a (*)-ideal of *A*.

Let *J* be a closed (*)-ideal of *A*. For $x \in A$, we have $x \in A \lor \neg (\in J)$. If $x \in J$, then $\varphi(x) \in J$ because *J* is a closed ideal of *A*.

If $\neg(x \in J)$, then from $\neg(x \in J) \land 1 \in J$ it follows $\varphi(x) = x \cdot 1 \in J$ because *J* is a (*)-ideal of *A*. \Box

Before we finish this section, let us introduce another type of JU-ideal.

Definition 10. Let *J* be a JU-ideal of a JU-algebra *A*. *J* is an *associative* JU-ideal of *A* is

(A) $(\forall x, z \in A)(\varphi(z) \cdot x \in J \implies x \cdot z \in J).$

Theorem 7. An associative ideal J of a JU-algebra A is closed and ag-ideal of A.

Proof. If we put x = 1 in Definition 10(A), we get $\varphi(z) \cdot 1 \in J \implies 1 \cdot z \in J$, i.e. we get $\varphi^2(z) \in J \implies z \in J$. This means that *J* is an ag-ideal of *A*.

If we put z = 1 in Definition 10(A), we get $\varphi(1) \cdot x \in J \implies x \cdot 1 \in J$, i.e. we get $x \in J \implies \varphi(x) \in J$. So, *J* is a closed JU-ideal of *A*. \Box

4. Conclusion

In [7,8], the concept of JU-algebras is introduced and analyzed. However, this concept was introduced earlier in [9] under the name 'pseudo KU-algebra'. This author is more inclined to use the term 'weak KU-algebra' for this generalization of KU-algebras. In this paper, we have introduced and analyzed the concepts of a few new types of JU-ideals of a JU-algebra such as closed ideal, ag-ideal, t-ideal, (*)-ideal and associative ideal. This article opens the possibility of introducing and analyzing several different types of JU filters (Definition 6) in these algebras.

Acknowledgments: The author would like to thank the College of Natural Sciences, Jimma University for funding this research work.

Conflicts of Interest: "The author declares no conflict of interest."

References

- [1] Imai, Y., & Iseki, K. (1966). On axiom systems of propositional calculi XIV. *Proceedings of the Japan Academy, Series A, Mathematical Sciences*, 42(1), 19–22.
- [2] Kim, H. S., & Kum, Y. H. (2007). On BE-algebras. Scientiae Mathematicae Japanicae, 66(1), 113–116.

- [3] Prabpayak, C., & Leerawat, U. (2009). On ideals and congruences in KU-algebras. Scienctia Magna Journal, 5(1), 54–57.
- [4] Prabpayak, C., & Leerawat, U. (2009). On isomorphisms of KU-algebras. Scientia Magna Journal, 5(3), 25–31.
- [5] Rezaei, A., Saeod, A. B., & Borzooei, R. A. (2014). KU-algebras are equivalent to commutative self-distributive BE-algebras. *Bollettino di Matematica Pura e Applicata*, *7*, 1–8.
- [6] Iampan, A. (2017). A new branch of the logical algebra: UP-algebras. Journal of Algebra and Related Topics, 5(1): 35–54.
- [7] Ali, U., Ansari, M. A., & Rehman, M. U. (2019). Pseudo-valuations and pseudo-metric on JU-algebras. Open Journal of Mathematical Sciences, 3(1), 440–446.
- [8] Ansari, M. A., Haider, A., & Koam, A. N. (2020). On JU-algebras and p-closure ideals. International Journal of Mathematics and Computer Science, 15(1), 135–154.
- [9] Leerawat, U., & Prabpayak, C. (2015). Pseudo KU-algebras and their applications in topology. *Global Journal of Pure and Applied Mathematics*, 11(4), 1793–1801.
- [10] Prabpayak, C. (2017). Derivations of PKU-algebras. Far East Journal of Mathematical Sciences, 102(9), 1917–1923.
- [11] Prabpayak, C., Daowsud, K., & Leerawat, U. (2018). Some results on fuzzy PKU-algebras. *International Journal of Pure* and Applied Mathematics, 118(2), 221–230.
- [12] Dudek, W. A., & Thomys, J. (2012). On some generalizations of BCC-algebras. International Journal of Computer Mathematics, 89(12), 1596–1616.
- [13] Mostafa, M. S., Naby, M. A. A., & Yousef, M. M. M. (2011). Fuzzy ideals of KU-algebras. International Mathematical Forum, 6(63), 3139–3149.
- [14] Dudek, W. A., & Thomys, J. (1990). On decompositions of BCH-algebras. Mathematicae Japonicae, 35(6), 1131–1138.

© 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).