Article

A few comments and some new results on JU-algebras

Daniel A. Romano
International Mathematical Virtual Institute 6, Kordunaška Street, 78000 Banja Luka, Bosnia and Herzegovina.; bato49@hotmail.com

Received: 24 December 2019; Accepted: 22 March 2020; Published: 5 April 2020.

Abstract

In this article, we revisit the axioms of JU-algebras previously recognizable as 'pseudo KU-algebras', which we may call as 'weak KU-algebras' and discussed the definitions of some of their substructures. We also associate this class of algebras with the classes of BE-algebras and UP-algebras. In addition, we introduce and analyze some new classes of ideals in this class of algebras.

Keywords: JU-algebras, ideal and filter in JU-algebras, closed ideal, ag-ideal, t-ideal, (\star)-ideal and associative ideal.

MSC: 03G25.

1. Introduction

In 1966, Imai and Iseki [1] introduced a notion of BCK-algebras. The concept of BE-algebra as a generalization of BCK-algebra was introduced in 2006 by Kim and Kum in [2]. The concept of KU-algebras was introduced and analyzed in 2009 in [3,4]. KU-algebras are closely related to BE-algebras. Specifically, in the article [5], the authors have shown that KU-algebra is equivalent to a commutative self-distributive BE-algebra. (A BE-algebra A is a self-distributive if $x \cdot(y \cdot z)=(z \cdot y) \cdot(x \cdot z)$ for all $x, y, z \in A$). Additionally, they have shown that every KU-algebra is a BE-algebra [5]. The concept of UP-algebras as a generalization of KU-algebras was introduced by Iampan in [6]. The concept of JU-algebras, as a generalization of KU-algebras, was introduced and analyzed in [7,8].

However, this concept was introduced in [9] by Leerawat and Prabpayak under the name 'pseudo KU-algebra. In doing so, they used the PKU designation for this class of algebra. Since then, this type of generalization of KU-algebra has been in the focus of interest of the academic community (for example see [10,11]).

We are more inclined to refer this concept as 'weak KU-algebra' in the same way as weak BCC-algebra [12]. However, due to the tight connection of this paper to the article [8], we will use the name 'JU-algebra' in what follows.

In this article, we revisit the axioms of JU-algebras and definitions of their substructures. We also link this class of algebras with the classes BE-algebras and UP-algebras. In addition, we introduce and analyze some new classes of ideals in this class of algebra such as closed ideal, ag-ideal, t -ideal, (\star)-ideal and associative ideal.

2. Preliminaries

In this section, we take the definitions of JU-algebras, JU-subalgebras, JU-ideals and other important terminologies and some related results from literature $[7,8]$.

2.1. Definition and some comments

Definition 1. [8] An algebra $(A, \cdot, 1)$ of type $(2,0)$ with a binary operation "." and a fixed element 1 is said to be JU-algebras satisfying the following axioms:
(JU-1) $(\forall x, y, z \in A)((y \cdot z) \cdot((z \cdot x) \cdot(y \cdot x))=1)$,
(JU-2) $(\forall x \in A)(1 \cdot x=x)$ and
(JU-3) $(\forall x, y \in A)((x \cdot y \wedge y \cdot x=1) \Longrightarrow x=y)$.
We denote this axiom system by [JU].

Lemma 1. [8] In the axioms system [JU], the following formulae are valid:
(\mathbf{J}_{11}) $(\forall x \in A)(x \cdot x=1)$,
$\left.\mathbf{(J}_{12}\right)(\forall x, y, z \in A)(z \cdot(y \cdot x)=y \cdot(z \cdot x))$.
Comment 1. In [3], a KU-algebra is defined as a system $(A, \cdot, 0)$ by the following axioms:
(KU-1) $(\forall x, y, z \in A)((x \cdot y) \cdot((y \cdot z) \cdot(x \cdot z))=0)$,
(KU-2) $(\forall x \in A)(0 \cdot x=x)$,
(KU-3) $(\forall x \in A)(x \cdot 0=0)$ and
(KU-4) $(\forall x, y \in A)((x \cdot y=0 \wedge y \cdot x=0) \Longrightarrow x=y)$.
We denote this axiom system by [KU]. With [wKU] we denote axiomatic system [KU] without axiom (KU-3). So, [JU] $\equiv[\mathrm{wKU}] \equiv[\mathrm{PKU}]$.

Recall that in the axiom system [KU], the formula $\left(\mathrm{J}_{12}\right)$ is a valid formula also [13].
If in the definition of KU-algebras we write 1 instead of 0 , then we see that any KU-algebra A is a JU-algebra. Therefore, the concept of JU-algebras is a generalization of the concept of KU-algebras [8].

If we followed the formation of the concept of 'weak BCC-algebras' from the 'concept of BCC-algebras', then the name 'weak KU-algebra' could also be used for a JU-algebra by analogy with the previous one.

If A is a JU-algebra, let us define $\varphi: A \longrightarrow A$ as follows;

$$
(\forall x \in A)(\varphi(x)=x \cdot 1)
$$

taking the idea from [14]. According to (JU-2), the equality $\varphi(1)=1$ is valid for mapping φ.
Comment 2. The concept of UP-algebras was introduced in 2017 in article [6] as a $(A, \cdot, 0)$ system that satisfies the following axioms:
(UP-1) $(\forall x, y, z)((y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z))=0)$,
(UP-2) $(\forall x \in A)(0 \cdot x=x)$,
(UP-3) $(\forall x \in A)(x \cdot 0=0)$ and
(UP-4) $(\forall x, y \in A)((x \cdot y=0 \wedge y \cdot x=0) \Longrightarrow x=y)$.
We denote this axiom system by [UP]. With [wUP] we denote axiomatic system [UP] without axiom (UP-3).

We can transform the formula (JU-1) into the formula (UP-1) using valid equation $\left(\mathrm{J}_{12}\right)$ [8] and replacing the element 1 by the element 0 . However, since formula $\left(\mathrm{J}_{12}\right)$ does not have to be a valid formula in [UP], we conclude that there is no direct connection between [JU] and [UP]. On the other hand, the system [UP] + $\left(\mathrm{J}_{12}\right)$ is equivalent to the system [KU] according to theorems in [6], so we conclude that the system [JU] is contained in the system [wUP] + (J_{12}). Therefore, any UP-algebra that additionally satisfies equality $\left(\mathrm{J}_{12}\right)$ is also a JU-algebra at the same time.

Comment 3. The concept of BE-algebras is defined in [2] as a system $(A, \cdot, 1)$ satisfying the following axioms:
(BE-1) $(\forall x \in A)(x \cdot x=1)$,
(BE-2) $(\forall x \in A)(x \cdot 1=1)$,
(BE-3) $(\forall x \in A)(1 \cdot x=x)$ and
(BE-4) $(\forall x, y, z \in A)(x \cdot(y \cdot z)=y \cdot(x \cdot z))$.
We denote this axiom system by [BE]. The axiomatic system generated by axioms (B-1), (BE-3) and (BE-4) is denoted by [wBE].

It is shown in [5] that every KU-algebra is a BE-algebra. Since any KU-algebra is a JU-algebra, by Comment 1, we get that every BE-algebra is a JU-algebra.

2.2. An order relation

Definition 2. [8] Let A be a JU-algebra. We define a relation " \leqslant " in A as follows:

$$
\forall x, y \in A)(y \leqslant x \Longleftrightarrow x \cdot y=1
$$

According to claims $\left(\mathrm{J}_{4}\right),\left(\mathrm{J}_{5}\right),\left(\mathrm{J}_{6}\right)$, and claims $\left(\mathrm{J}_{7}\right),\left(\mathrm{J}_{8}\right)$, the relation $" \leqslant "$ is a partial order in A left compatible and right reverse compatible with the internal operation in A [8].

Proposition 1. Let A be a JU-algebra. Then
(1) $(\forall x, y \in A)(x \cdot \varphi(y)=y \cdot \varphi(x))$;
(2) $(\forall x, y \in A)(\varphi(x) \cdot \varphi(y) \leqslant y \cdot x)$;
(3) $(\forall x, y \in A)(x \cdot(y \cdot x) \leqslant \varphi(y))$;
(4) $(\forall x, y \in A)(\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y))$;
(5) $(\forall x, y \in A)(x \leqslant y \Longrightarrow \varphi(y) \leqslant \varphi(x))$.

Proof. Relation (1) is obtained directly from $\left(\mathrm{J}_{12}\right)$ where, we put $z=1$.
If we put $x=1$ and $z=x$ in (JU-1), we get $(y \cdot x) \cdot((x \cdot 1) \cdot(y \cdot 1))=1$. This means $\varphi(x) \cdot \varphi(y) \leqslant y \cdot x$ according to the Definition 2.

If we put $z=1$ in (JU-1), we get $(y \cdot 1) \cdot((1 \cdot x) \cdot(y \cdot x))=1$. Hence $\varphi(y) \cdot(x \cdot(y \cdot x))=1$. So, we have $x \cdot(y \cdot x) \leqslant \varphi(y)$.

Relation (4) is proved in [8] as formula (J_{14}).
Relation (5) is a direct consequence of the right inverse compatibility of order relations with an internal operation in A if we choose $z=1$.

Remark 1. The relation (5) of Proposition 1 is a direct consequence of the Proposition 1(4). Indeed, if $x \leqslant y$, then $y \cdot x=1$. Thus $\varphi(y \cdot x)=1$. Hence $\varphi(y) \cdot \varphi(x)=1$ by Proposition 1(4). This means $\varphi(x) \leqslant \varphi(y)$.

3. Some types of JU-ideals

Definition 3. [8] A non-empty subset J of a JU-algebra A is called a JU-ideal of A if
(J-1) $1 \in J$ and
(J-2) $(\forall x, y \in A)((x \in J \wedge x \cdot y \in J) \Longrightarrow y \in J)$.
Lemma 2. Let J be a JU-ideal of a JU-algebra A. Then
(J-3) $(\forall x, y \in A)((x \leqslant y \wedge y \in J) \Longrightarrow x \in J)$.
Proof. Let $x, y \in A$ be such that $x \leqslant y$ and $y \in J$. Then $y \cdot x=1 \in J$ and $y \in J$. Thus $x \in J$ by (J-2).
Proposition 2. Let J be a subset of a JU-algebra such that $(\mathrm{J}-1)$ holds. Then the condition $(\mathrm{J}-2)$ is equivalent to the condition;
(J-4) $(\forall x, y, z \in A)((x \cdot(y \cdot z) \in J \wedge y \in J) \Longrightarrow x \cdot z \in J)$.
Proof. $(\mathrm{J}-4) \Longrightarrow(\mathrm{J}-2)$. If we put $x=1, y=x$ and $z=y$ in (J-4), then we get (J-2) with respect to (JU-2).
$(\mathrm{J}-2) \Longrightarrow(\mathrm{J}-4)$. Let $x, y, z \in A$ such that $x \cdots(y \cdot z) \in J$ and $y \in J$. Then $y \cdot(x \cdot z) \in J$ and $y \in J$ by $\left(\mathrm{J}_{12}\right)$. Thus $x \cdot z \in J$ by $(\mathrm{J}-2)$.

As a consequence of the Proposition 2, we can describe some of the features of the JU-ideals as follows:
Proposition 3. Let J be a JU-ideal of a JU-algebra A. Then
(6) $\forall x, y \in A)((\varphi(x) \in J \wedge y \in J) \Longrightarrow x \cdot y \in J)$ and
(7) $(\forall x, y \in A)((x \cdot \varphi(y) \in J \wedge y \in J) \Longrightarrow \varphi(x))$.

Proof. If we put $z=y$ in ($J-4)$, we get

$$
(x \cdot(y \cdot y) \in J \wedge y \in J) \Longrightarrow x \cdot y \in J
$$

From where, we get $(J-5)$ using $\left(\mathrm{J}_{11}\right)$ in [8]. If we put $z=1$ in ($\left.J-4\right)$, we get (7).
Definition 4. Let J be a JU-ideal of a JU-algebra A, then
(C) J is a closed ideal of A if $\{x \in A: \varphi(x) \in J\}=\varphi(J) \subseteq J$ holds.

Theorem 1. An ideal J of a JU-algebra A is closed if and only if it is a subalgebra of A.
Proof. Assume that an ideal J is a subalgebra of A and $x \in J$. Then, from $1 \in J$ and $x \in J$ follows $\varphi(x)=$ $x \cdot 1 \in J$ because J is a subalgebra of A. This means $\varphi(J) \subseteq J$.

Conversely, let an ideal J of A is closed and let $x, y \in J$. Then $\varphi(x) \in \varphi(J) \subseteq J$ and $y \in J$. Thus $x \cdot y \in J$ by Proposition 3(6). This means that J is a subalgebra of A.

As usual, we will write $\operatorname{Ker} \varphi=\{x \in A: \varphi(x)=1\}$. In [8], this set is labeled by B_{A}.
Corollary 1. $\operatorname{Ker} \varphi$ is a closed JU-ideal of A.
Proof. Let $x, y \in A$ be such $x \in \operatorname{Ker} \varphi$ and $x \cdot y \in \operatorname{Ker} \varphi$. Then $\varphi(x)=1$ and $1=\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y)=$ $1 \cdot \varphi(y)=\varphi(y)$ by Proposition 1(4) and (JU-2). Thus $y \in \operatorname{Ker} \varphi$. So, $\operatorname{Ker} \varphi$ is a JU-ideal of A.

Suppose $x \in \operatorname{Ker} \varphi$ and $y \in \operatorname{Ker} \varphi$. Then, from $\varphi(x)=1$ and $\varphi(y)=1$ it follows $\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y)=$ $1 \cdot 1=1$ by Proposition 1(4). Thus $x \cdot y \in \operatorname{Ker} \varphi$. So, $\operatorname{Ker} \varphi$ is a subalgebra in A. Therefore $\operatorname{Ker} \varphi$ is a closed JU-ideal of A by Theorem 1.

In what follows, we need the following lemma.
Lemma 3. Let J be a JU-ideal of a JU-algebra A, then
(8) $(\forall x \in A)\left(x \in J \Longrightarrow \varphi^{2}(x) \in J\right)$.

Proof. Let us first show that the following holds;
(9) $(\forall x \in A)\left(\varphi^{2}(x) \leqslant x\right)$.

This inequality immediately follows from Proposition 1(2) if we put $y=1$. Now, from $x \in J$ and $\varphi^{2}(x) \leqslant x$ it follows $\varphi^{2}(x) \in J$ according to (J-3).

The preceding lemma is a motive for introducing the following concept.
Definition 5. Let J be a JU-ideal of JU-algebra A, then
(AG) J is ag-ideal of A if $(\forall x \in A)\left(\varphi^{2}(x) \in J \Longrightarrow x \in J\right)$ holds.
Proposition 4. Let A be a JU-algebra, then
(10) $(\forall x \in A)\left(\varphi^{3}(x)=\varphi(x)\right)$.

Proof. It has already been shown that $\varphi^{2}(x) \leqslant x$ is valid. Thus $\varphi(x) \leqslant \varphi^{3}(x)$ by Proposition $1(5)$ and $\varphi^{3}(x)$. $\varphi(x)=1$. On the other hand, from $1=\varphi^{2}(x) \cdot \varphi^{2}(x)=\varphi^{2}(x) \cdot \varphi(\varphi(x))$, it follows $\varphi(x) \cdot \varphi^{3}(x)=1$ according to Proposition 1(1). Thus $\varphi^{3}(x)=\varphi(x)$ by (JU-3).

Corollary 2. $\operatorname{Ker} \varphi$ is a closed ag-ideal of A.
Proof. It has already been shown that $\operatorname{Ker} \varphi$ is a closed JU-ideal of A. Let $x \in A$ be an arbitrary element such that $\varphi^{2}(x) \in \operatorname{Ker} \varphi$. Then $\varphi(x)=\varphi^{3}(x)=1$ by (9) given in proof of Lemma 3. Thus $x \in \operatorname{Ker} \varphi$.

Lemma 4. If J is a JU-ideal of a JU-algebra A, then $\varphi^{2}(J)=\left\{x \in A: \varphi^{2}(x) \in J\right\}$ is a JU-ideal of A also. The reverse also applies: If $\varphi^{2}(J)$ is a JU-ideal of JU-algerba A, then J is a JU-ideal of A also.

Proof. Since $1 \in J$, then $\varphi^{2}(1)=1 \in J$. Thus $1 \in \varphi^{2}(J)$. Suppose $x \in \varphi^{2}(J)$ and $x \cdot y \in \varphi^{2}(J)$. Then $\varphi^{2}(x) \in J$ and $\varphi^{2}(x) \cdot \varphi^{2}(y)=\varphi^{2}(x \cdot y) \in J$ with respect to Proposition $1(4)$. Thus $\varphi^{2}(y) \in J$ and $y \in \varphi^{2}(J)$. So, $\varphi^{2}(J)$ is a JU-ideal of JU-algebra A.

It is obvious that $1=\varphi^{2}(1) \in J$ holds because $1 \in \varphi^{2}(J)$ is valid. Let $x, y \in A$ be such $x \in J$ and $x \cdot y \in J$. Then $\varphi^{2}(x) \in \varphi^{2}(J)$ and $\varphi^{2}(x) \cdot \varphi^{y}=\varphi^{2}(x \cdot y) \in \varphi^{2}(J)$. Thus $\varphi^{2}(y) \in \varphi^{2}(J)$ by $(\mathrm{J}-2)$ because $\varphi^{2}(J)$ is a JU-ideal of A. Hence $y \in J$. Therefore, J is a JU-ideal of A.

Theorem 2. J is a closed a JU-ideal of a JU-algerba A if and only if $\varphi^{2}(J)$ is a closed JU-ideal of A.

Proof. Let J be a closed a JU-ideal of a JU-algebra A. Let $x \in A$ be an element such that $x \in \varphi\left(\varphi^{2}(J)\right)$. Then $\varphi(x) \in \varphi^{2}(J)$ and $\left.\varphi^{2}(\varphi(x))=\varphi\left(\varphi^{2} x\right)\right) \in J$. Thus $\varphi^{2}(x) \in \varphi(J) \subseteq J$ because J is a closed ideal of A. Hence $x \in \varphi^{2}(J)$. From this it has shown that the ideal $\varphi^{2}(J)$ satisfies Definition 4 condition (C).

Let J be a JU-ideal of a JU-algebra A such that $\varphi^{2}(J)$ is a closed JU-ideal of A. Then, we have

$$
\varphi(J)=\varphi^{3}(J)=\varphi\left(\varphi^{2}(J)\right) \subseteq \varphi^{2}(J) \subseteq J
$$

by Proposition $4(10)$ and since the inclusion $\varphi^{2}(J) \subseteq J$ is obviously valid. So, J is a closed JU-ideal of A.
Before presenting the following theorem, we will introduce the concept of JU-filters in a JU-algebra.
Definition 6. A subset F of a JU-algerba A is a JU-filter of A if the following hold:
(F-1) $1 \in F$ and
(F-2) $(\forall x, y \in A)((x \cdot y \in F \wedge y \in F) \Longrightarrow x \in F)$.
Lemma 5. If F is a JU-filter of a JU-algerba A, then
(F-3) $(\forall x, y \in A)(x \in F \wedge x \leqslant y) \Longrightarrow y \in F)$.
Proof. Let $x, y \in A$ be such that $x \in F$ and $x \leqslant y$. Then $x \in F$ and $y \cdot x=1 \in F$. Thus $y \in F$ by (F-3).
Lemma 6. If F is a JU-filter of a JU-algebra A, then
(11) $(\forall x \in A)(\varphi(x) \in F \Longrightarrow x \in F)$.

Proof. If we put $y=1$ in (F-2), we immediately get (11).
Remark 2. In [8], the concept of strong JU-ideal of a JU-algebra was introduced in the way we introduced the concept of JU-filters.

Theorem 3. For a JU-ideal J of a JU-algerba A the following are equivalent:
(a) J is an ag-ideal of A;
(b) J is a JU-filter of A;
(c) $(\forall x, y, z \in A)(((x \cdot z) \cdot(y \cdot z) \in J \wedge y \in J) \Longrightarrow x \in J)$; and
(d) $(\forall x, y \in A)(\varphi(x \cdot y) \in J \wedge y \in J) \Longrightarrow x \in J)$.

Proof. (a) $\Longrightarrow \mathbf{(b)}$. Let J be an ag-ideal of A and $x \leqslant y \wedge y \in J$. Then $y \cdot x=1 \in J$ and $y \in J$. Thus $\varphi^{2}(y) \cdot \varphi^{2}(x)=\varphi^{2}(y \cdot x)=1 \in J$ and $\varphi^{2}(y) \in \varphi^{2}(J) \subseteq J$. Hence $\varphi^{2}(x) J$ because J is an ideal of A. From here, it is follows $x \in J$ since J is an ag-ideal of A. Therefore, subset J is a JU-filter of A.
$\mathbf{(b)} \Longrightarrow \mathbf{(c)}$. From (JU-1), written in the form $(y \cdot x) \cdot((x \cdot z) \cdot(y \cdot z))=1 \in J$, and from $(x \cdot z) \cdot(y \cdot z) \in J$ we get $y \cdot x \in J$ according to (F-2). Now, from $y \cdot x \in J$ and $y \in J$ it follows $x \in J$ according to (J-2).
(c) \Longrightarrow (d). If we put $z=1$ in (c), we get $\varphi(x) \cdot \varphi(y) \in J y \in J$. hence (d) with respect to (4).
$\mathbf{(d)} \Longrightarrow \mathbf{(a)}$. If we put $y=1$ in (d), we get (a) with respect to ($\mathrm{J}-1$).

Let's introduce the following type of JU-ideals.
Definition 7. A subset J of a JU-algebra A is a t-ideal of A if the following hold:
(J-1) $1 \in J$ and
(t) $(\forall x, y, z \in A)(((x \cdot y) \cdot z \in J \wedge y \in J) \Longrightarrow x \cdot z \in J)$.

Lemma 7. A t-ideal of a JU-algebra A is a JU-ideal of A.
Proof. If we put $x=1, y=x$ and $z=y$ in Dentition $7(\mathrm{t})$, we get condition (J-2).
In the following proposition we give some of the characteristics of this type of JU-ideals.
Theorem 4. Let J be a t-ideal of a JU-algerba A, then
(e) $(\forall x, z \in A)(\varphi(x) \cdot z \in J \Longrightarrow x \cdot z \in J)$;
(f) $(\forall x, z \in A)\left(\varphi(x) \cdot z \in J \Longrightarrow \varphi^{2}(x) \cdot z \in J\right)$; and
(g) $(\forall x \in A)(x \cdot \varphi(x) \in J)$.

Proof. If we put $y=1$ in Definition $7(\mathrm{t})$, we get (e) with respect to $(\mathrm{J}-1)$.
Let $x, z \in A$ be such that $\varphi(x) \cdot z \in J$. Then

$$
\varphi\left(\varphi^{2}(x)\right) \cdot z=\varphi^{3}(x) \cdot z=\varphi(x) \cdot z \in J \Longrightarrow \varphi^{2}(x) \cdot z \in J
$$

by (e).
To prove (g), we note that $(x \cdot 1) \cdot(x \cdot 1)=1 \in J$ and $1 \in J$ follows $x \cdot(x \cdot 1) \in J$ by Definition $7(\mathrm{t})$. So we have $x \cdot \varphi(x) \in J$.

Proposition 5. The condition (e) of Theorem 4 is equivalent to the condition (t) of Definition 7.

Proof. Theorem 4 already proves that $(\mathrm{t}) \Longrightarrow(\mathrm{e})$, the inverse implication $(\mathrm{e}) \Longrightarrow(\mathrm{t})$ remains to be proved.
We can write (JU-1) in the form $(y \cdot z) \cdot(y \cdot x) \leqslant z \cdot x$ according to (J_{12}). If we put $z=1, x=y$ and $y=x$ in the previous inequality, we get $\varphi(x) \cdot(x \cdot y) \leqslant y$. From here, it follows $\varphi(x) \cdot(x \cdot y) \in J$ by $(\mathrm{J}-3)$ and the hypothesis $y \in J$. On the other hand, if we put $z=x \cdot y, x=z$ and $y=\varphi(x)$ in (JU-1) written in the form $(y \cdot z) \cdot(y \cdot x) \leqslant z \cdot x$, then we get $(\varphi(x) \cdot(x \cdot y)) \cdot(\varphi(x) \cdot z) \leqslant(x \cdot y) \cdot z$. Thus $(\varphi(x) \cdot(x \cdot y)) \cdot(\varphi(x) \cdot z) \in J$ by (J-3) and the hypothesis $(x \cdot y) \cdot z \in J$.

Now, from $(\varphi(x) \cdot(x \cdot y)) \cdot(\varphi(x) \cdot z) \in J$ and $\varphi(x) \cdot(x \cdot y) \in J$ it follows $\varphi(x) \cdot z \in J$. Thus $x \cdot z \in J$ by (e).

Proposition 6. The condition (f) of Theorem 4 is equivalent to the condition (e) of Theorem 4.
Proof. Let $x, z \in A$ be elements such that $\varphi(x) \cdot z \in J$. Then $\varphi^{2}(x) \cdot z \in J$ by (f). On the other hand, it follows $x \cdot z \leqslant \varphi^{2}(x) \cdot z$ from (9) with respect to right reverse compatibility of the operation in A with the order in A. Now, from $x \cdot z \leqslant \varphi^{2}(x) \cdot z$ and $\varphi^{2}(x) \cdot z \in J$ it follows $x \cdot z \in J$ by (J-3). This has shown that formula (e) is a consequence of formula (f).

As Theorem 4 already shows that $(\mathrm{e}) \Longrightarrow(\mathrm{f})$, we conclude that the condition (e) is equivalent to the condition (f).

Proposition 7. The condition (g) of Theorem 4 is equivalent to the condition (e) of Theorem 4.
Proof. Assume (g). Let $x, y, z \in A$ be elements such that $\varphi(x) \cdot z \in J$. If we put $y=x, x=z$ and $z=\varphi(x)$ in (JU-1), written in the form $(z \cdot x) \cdot(t \cdot x) \leqslant y \cdot z$, we get $(\varphi(x) \cdot z) \cdot(x \cdot z) \leqslant x \cdot \varphi(x)$. From here, it follows $(\varphi(x) \cdot z) \cdot(x \cdot z) \in J$ by (J-3) and the hypothesis $(\mathrm{g}): \varphi(x) \cdot x \in J$. Now, from $(\varphi(x) \cdot z) \cdot(x \cdot z) \in J$ it follows $x \cdot z \in J$ by $(\mathrm{J}-2)$ and hypothesis $\varphi(x) \cdot z \in J$. We have shown by this that $(\mathrm{g}) \Longrightarrow(\mathrm{e})$.

In Theorem 4 it is shown that $(\mathrm{t}) \Longrightarrow(\mathrm{g})$. Since $(\mathrm{t}) \Longleftrightarrow(\mathrm{g})$ is a valid formula, by Proposition 5 , we conclude that the equivalence of $(\mathrm{e}) \Longleftrightarrow(\mathrm{g})$ is a valid formula, too.

The concept of p-ideals of a JU-algebra was introduced and analyzed in [8].
Definition 8. [8] A subset J of a JU-algebra A is called a p-ideal of A if
(J-1) $1 \in J$ and
(p) $(\forall x, y, z \in A)((z \cdot x) \cdot(z \cdot y) \in J \wedge y \in J) \Longrightarrow x \in J)$.

Lemma 8. Any p-ideal J of a JU-algebra A is a JU-ideal of A.
Proof. If we put $z=1$ in Definition 8(p), we get (JU-2).
Theorem 5. Let J be a p-ideal of a JU-algerba A. Then
(h) $(\forall y, z \in A)((z \cdot x) \cdot \varphi(z) \in J \Longrightarrow x \in J)$;
(k) $(\forall x, z \in A)(z \cdot \varphi(z \cdot x) \in J \Longrightarrow x \in J)$;
(m) $(\forall x, z \in A)((\varphi(z \cdot x) \in J \wedge z \in J) \Longrightarrow x \in J)$;
(n) $(\forall x \in A)(\varphi(x) \in J \Longrightarrow x \in J)$.

Proof. If we put $y=1$ in Definition $8(\mathrm{p})$, we get (h).
The condition (k) is obtained from condition (h) by applying equality (1) of Proposition 1.
If we put $y=z$ in in Definition 8(p), we get (m).
If we put $z=1$ in (m), we get (n).
In what follows, we introduce and analyze a new type of JU-ideal in JU-algebras.
Definition 9. Let J be a JU-ideal of a A. J is a (\star)-ideal of A if
(*) $(\forall x, y \in A)(\neg(x \in J) \wedge y \in J) \Longrightarrow x \cdot y \in J)$.
Proposition 8. Let J be a (\star)-ideal of a JU-algebra A. Then
(q) $(\forall x \in A)(\neg(x \in J) \Longrightarrow \varphi(x) \in J)$; and
(r) $(\forall x, y \in A)((\neg(x \cdot y \in J) \wedge y \in J) \Longrightarrow x \in J)$.

Proof. The Condition (q) is obtained by putting $y=1$ in Definition $9(\star)$.
The Condition (q) can be obtained from the contraposition of Definition $9(\star)$.
Theorem 6. An ideal J of a JU-algebra A is a closed (\star)-ideal if and only if $\varphi(A)=\{\varphi(x): x \in A\} \subseteq J$.
Proof. Let J be an JU-ideal of A. If $\varphi(A) \subseteq J$, then obviously $\varphi(J) \subseteq J$ holds, i.e., the ideal J is closed.
Let $x, y \in A$ be arbitrary elements. Then $y \cdot(x \cdot y) \leqslant \varphi(x) \in J$ by Proposition 1(3) and hypothesis $\varphi(A) \subseteq J$. Thus $y \cdot(x \cdot y) \in J$ by Lemma 2. Hence $x \cdot y \in J$ by $(\mathrm{J}-2)$. So, J is a (\star)-ideal of A.

Let J be a closed (\star)-ideal of A. For $x \in A$, we have $x \in A \vee \neg(\in J)$. If $x \in J$, then $\varphi(x) \in J$ because J is a closed ideal of A.

If $\neg(x \in J)$, then from $\neg(x \in J) \wedge 1 \in J$ it follows $\varphi(x)=x \cdot 1 \in J$ because J is a (\star)-ideal of A.
Before we finish this section, let us introduce another type of JU-ideal.
Definition 10. Let J be a JU-ideal of a JU-algebra A. J is an associative JU-ideal of A is
(A) $(\forall x, z \in A)(\varphi(z) \cdot x \in J \Longrightarrow x \cdot z \in J)$.

Theorem 7. An associative ideal J of a JU-algebra A is closed and ag-ideal of A.
Proof. If we put $x=1$ in Definition $10(\mathrm{~A})$, we get $\varphi(z) \cdot 1 \in J \Longrightarrow 1 \cdot z \in J$, i.e. we get $\varphi^{2}(z) \in J \Longrightarrow z \in J$. This means that J is an ag-ideal of A.

If we put $z=1$ in Definition $10(\mathrm{~A})$, we get $\varphi(1) \cdot x \in J \Longrightarrow x \cdot 1 \in J$, i.e. we get $x \in J \Longrightarrow \varphi(x) \in J$. So, J is a closed JU-ideal of A.

4. Conclusion

In $[7,8]$, the concept of JU -algebras is introduced and analyzed. However, this concept was introduced earlier in [9] under the name 'pseudo KU-algebra'. This author is more inclined to use the term 'weak KU-algebra' for this generalization of KU-algebras. In this paper, we have introduced and analyzed the concepts of a few new types of JU-ideals of a JU-algebra such as closed ideal, ag-ideal, t-ideal, (\star)-ideal and associative ideal. This article opens the possibility of introducing and analyzing several different types of JU filters (Definition 6) in these algebras.
Acknowledgments: The author would like to thank the College of Natural Sciences, Jimma University for funding this research work.
Conflicts of Interest: "The author declares no conflict of interest."

References

[1] Imai, Y., \& Iseki, K. (1966). On axiom systems of propositional calculi XIV. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 42(1), 19-22.
[2] Kim, H. S., \& Kum, Y. H. (2007). On BE-algebras. Scientiae Mathematicae Japanicae, 66(1), 113-116.
[3] Prabpayak, C., \& Leerawat, U. (2009). On ideals and congruences in KU-algebras. Scienctia Magna Journal, 5(1), 54-57.
[4] Prabpayak, C., \& Leerawat, U. (2009). On isomorphisms of KU-algebras. Scientia Magna Journal, 5(3), 25-31.
[5] Rezaei, A., Saeod, A. B., \& Borzooei, R. A. (2014). KU-algebras are equivalent to commutative self-distributive BE-algebras. Bollettino di Matematica Pura e Applicata, 7, 1-8.
[6] Iampan, A. (2017). A new branch of the logical algebra: UP-algebras. Journal of Algebra and Related Topics, 5(1): 35-54.
[7] Ali, U., Ansari, M. A., \& Rehman, M. U. (2019). Pseudo-valuations and pseudo-metric on JU-algebras. Open Journal of Mathematical Sciences, 3(1), 440-446.
[8] Ansari, M. A., Haider, A., \& Koam, A. N. (2020). On JU-algebras and p-closure ideals. International Journal of Mathematics and Computer Science, 15(1), 135-154.
[9] Leerawat, U., \& Prabpayak, C. (2015). Pseudo KU-algebras and their applications in topology. Global Journal of Pure and Applied Mathematics, 11(4), 1793-1801.
[10] Prabpayak, C. (2017). Derivations of PKU-algebras. Far East Journal of Mathematical Sciences, 102(9), 1917-1923.
[11] Prabpayak, C., Daowsud, K., \& Leerawat, U. (2018). Some results on fuzzy PKU-algebras. International Journal of Pure and Applied Mathematics, 118(2), 221-230.
[12] Dudek, W. A., \& Thomys, J. (2012). On some generalizations of BCC-algebras. International Journal of Computer Mathematics, 89(12), 1596-1616.
[13] Mostafa, M. S., Naby, M. A. A., \& Yousef, M. M. M. (2011). Fuzzy ideals of KU-algebras. International Mathematical Forum, 6(63), 3139-3149.
[14] Dudek, W. A., \& Thomys, J. (1990). On decompositions of BCH-algebras. Mathematicae Japonicae, 35(6), 1131-1138.
(c) 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

