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Abstract: This work presents a mathematical model that investigates the impact of smokers on the
transmission dynamics of smoking behavior in the Indonesian population. The population is classified into
three classes: potential smokers, smokers, and ex-smokers. This model is described by non-linear differential
equations using fractional quantities instead of actual populations by scaling the population of each class by
the total population. There is also the density-dependent and density-independent death rate in the model to
accommodate the difference between the death rate of potential smokers, smokers, and ex-smokers. In this
model, two equilibrium points are found. One of them is the smoking-free equilibrium and the other relates to
the presence of smoking. Then, the local stability of both equilibrium points is examined. Lastly, numerical
simulations are carried out to illustrate the sensitivity of the smoker class to the parameters: the rate of
non-smokers become smokers, the rate of smokers become smokers, also the rate of ex-smokers re-adapt
smoking habit. The result of this paper can be considered to make a policy to reduce the number of smokers
in Indonesia.
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1. Introduction

T he mathematical model of smoking behavior was first introduced in [1]. In this model, the human
population can be categorized into three classes: the non-smoker class (never smoked), the class

of smokers, and the class of ex-smokers. This model does not pay attention to births, immigration, and
death. Eleven years later, in [2] authors developed this model of smoking behavior by dividing the class of
ex-smokers into two types: ex-smokers who stopped temporarily and stopped forever. This model was further
investigated in [3] with a focus on the pressure on the class of temporary ex-smokers to return to the smoker
class. In this model, it has not been included the birth and immigration component. Although the component
of mortality was included in [4], it is assumed that the pure mortality rate (density-independent death rate) of
all classes was considered the same. In addition, it is not included impure deaths due to population density.
In fact, rate these assumptions are irrelevant because the pure mortality rate of non-smokers, smokers, and
ex-smokers will certainly be different. Furthermore, the mentioned works do not investigate the stability of
the equilibrium points.

A smoking behavior model that distinguishes the pure mortality rate between classes and involves the
impure mortality (density-dependent death rate) is studied in [5]. The model in [5] also divides the human
population into three classes so that it is represented by a system of non-linear differential equations on the
proportion scale just as in [6]. Even though the stability of the smoking-fee equilibrium point and its stability is
given in [5], the smoking-present equilibrium point has not been investigated yet.

The present paper will develop the model in [5]. The big different of our model with [5] is that the changes
of ex-smokers to be smokers again. In [5], ex-smokers become smokers again without any interaction with
the smokers. Ofcourse, it is somewhat irrelevant because they usually interact with the smokers first before
they go back smoking again. Therefore, in the present paper, such change is influenced by the interaction
with the smokers. Related to the analysis of the model, beside investigating the existence of the smoking-fee
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equilibrium point and its stability by using some basic theorems in dynamic systems and differential equations
(see eg. [7] and [8]), we also investigate the stability of smoking-present equilibrium point. However, we only
do the investigation for smoking-present equilibrium point numerically due to the difficulty in finding the
analytic solution.

The rest of this paper is organized as: Section 2 provides how our model is developed, the existence of the
smoking-free equilibrium point and its stability is given in Section 3 that also provides a numerical simulation
of the smoking-present equilibrium point, an analysis of parameter sensitivity of the smokers class to the rate
non-smokers become smokers, the rate of smokers become ex-smokers, also the rate of ex-smokers re-adapt
smoking habit is also given numerically in Section 4. All numerical simulations will be done by setting the
initial condition and the parameters as close as possible to the condition in Indonesia so that it can use the
analysis the smoking behavior in Indonesia. The initial condition is taken from [9] while the parameters are
obtained from [10] and [11]. Finally, we will conclude the results in Section 5.

2. Main results

This section provides the main epidemic model of the evolution of smoking behaviour in a population
that will be continued by some investigations of the equilibrium points. In this model, the human population
is divided into four different classes namely non-smoker class, smoker, and ex-smoker. The human population
at time t is represented by P(t), while the class of non-smokers, smokers and ex-smokers in a row are denoted
by N(t), S(t) and E(t). Non-smoker class N(t) consists of all people in the population who have not smoked
yet, while the Smoker class S(t) consists of all people in the population that adapts to smoking habits and
the Ex-smoker class E(t) is everyone in the population who does not smoke anymore. Based on the above
explanation we can understand that P(t) is the sum of all sub-populations N(t), S(t), and E(t).i.e., P(t) =

N(t) + S(t) + E(t).

2.1. Flow of movements among the classes

Newborn people will always be in the non-smoker class with constant birth rate µ. This non-smoker
class also recruits the number of people come to the population which is assumed to be equal to Λ N

P . People
leave the non-smokers class because they have interacted with smokers and as a result non-smokers become
smokers at a rate α S

P N. Also, non-smokers leave their class because of the non-smokers deaths, which can be
from the natural deaths dnN and density-dependent deaths rPN.

The increase in the number of Smokers at the time t occurs due to Non-smokers who become smokers
at a rate of α S

P N . In addition, the number of Smokers also increased due to Ex-smokers who returned to
smoking due to social interactions between Smokers and Ex-smokers and as a result the Ex-smokers returns to
smoking at a rate of γ S

P E. The number of smokers come to the population Λ S
P will of course make the number

of smokers increasing. Each person will leave the Smoker class due to the death rate, both natural deaths dsS
and density-dependent deaths rPS. Moreover, smokers leave their class because they decided to stop smoking
at a rate βS. Lastly, one would join the Ex-smoker class with the rate βS and Λ E

P and they leave at the rate γ S
P E

and the death rate (de + rP)E.

2.2. Flow diagram of smoking epidemic model

In this section, we discuss a flow diagram consisting of rectangular boxes and arrows which will represent
each class and transitions between classes respectively.

2.3. Model assumptions

We make the following assumptions for our model;

• The parameter of a constant transition to time because the model of changes in smoking habits was only
observed in a short period of time.

• Everyone in a sub-population can interact with people in all other groups.
• Transition between sub-populations S and E proportional to sub-population size.
• However, the transition from N to S occurs because of the interaction and influence of smokers to

non-smokers.
• The death rate of a population that is independent on the density of each sub-population varies by dn <

de < ds.
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Figure 1. Compartment model for population

• The transition from E to S occurs because of the interaction between smokers and ex-smokers which
results in the ex-smokers become smokers again.

2.4. Model representation

By taking the above assumptions into account and the transitions how people move among classes, we
can construct a system of differential equations representing the model of the evolution of smoking behaviour
as follows: 

dN
dt = µP + Λ N

P − α NS
P − (dn + rP)N,

dS
dt = Λ S

P + α NS
P − β S + γ S

P E− (ds + rP)S,
dE
dt = Λ E

P + βS− γ S
P E− (de + rP)E.

(1)

It is noted that the total population is P = N + S + E. From the above equation, we obtained:

dP
dt

=
dN
dt

+
dS
dt

+
dE
dt

= Λ + µ P− (dn + rP)N − (ds + rP)S− (de + rP)E. (2)

In order to have the same unit for every class, we scale the system equation (1) by dividing it with the
total population N(t). This gives

ds
dt = αsn + γse− (ds − dn)s− βs− µs + ((ds − dn)s + (de − dn)e)s,
de
dt = βs− γse− (de − dn − µ)e + ((ds − dn)s + (de − dn)e)e,
dP
dt = µP + Λ− (dn + rP + (ds − dn)s + (de − dn)e),

(3)

where
s =

S
P

, e =
E
P

and
N = n P = (1− s− e) P.

The domain of the System (3) is

D =


 s

e
P

 ∈ R3

∣∣∣∣∣
s ≥ 0,
e ≥ 0,

s + e ≤ 1,
P > 0.

 . (4)

Theorem 1. If the initial condition is located at D, then the system (3) with the initial condition has a single solution
that exists and stays with D for every time t ≥ 0.
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Proof. The right segment of the system (3) is a continuous function with continuous partial derivatives at D,
so the system (3) has a single solution. Next, note that if s = 0, then ds

s ≥ 0 and if e = 0, then de
s ≥ 0. If s+ e = 1

then ds
dt +

de
dt = −µ < 0. Finally, if P = 0 then dP

s > 0. If P > 0 for t = 0 then P > 0 for every t > 0, so that no
orbit leaves D. As a result, there is a single solution for every time t ≥ 0.

3. Equilibrium Points

There are two equilibrium points of the System (3): smoking-free and smoking-present equilibrium
points.

3.1. Smoking-free Equilibrium point

The smoking-free equilibrium is the case where there is no smoker in the population. Therefore, the System

(3) is evaluated for s = 0. By setting ds
dt = 0, de

dt = 0, dP
dt = 0 we get, s = e = 0 and P∗ = µ−dn+

√
(µ−dn)2−4Λr
2r .

Thus, we can obtain the smoking-free equilibrium for the system of Equations (3)

xd f e = (0, 0, P∗) or xd f e =

(
0, 0,

µ− dn +
√
(µ− dn)2 − 4Λr

2r

)
. (5)

By the next generation method, the reproductive number R0 for equilibrium point (5) is given below:

R0 =
α

ds − dn + β + µ
. (6)

We refer Theorem 2 to use the reproductive number to analyse the stability of the smoke-free equilibrium
(5).

Theorem 2. Consider the system of (3) with the smoking-free equilibrium xd f e given by (5) and the reproductive number
R0 given by (6). If R0 < 1 then xd f e is locally asymptotically stable, but unstable if the R0 > 1.

Based on the Theorem 2, we know that if the R0 < 1, then the smoking habit will be extinct from the
population. Conversely if R0 > 1, then the smoking habit will invade the population.

3.2. Smoking-present equilibrium

In this section, we investigate the existence of the Smoking-present equilibrium for the reproductive
number R0 < 1 and R0 > 1. For this purpose, we use the Newton-Raphson numerical method. The values of
parameters are:

Table 1. Values of parameters

Parameter Value(year−1)
µ 0.00162
Λ 180
dn 0.00065
ds 0.0013
de 0.000975
r 0.00000000065
α 0.0381
γ 0.0325
β 0.0398

with initial condition s(0) = 0.4, e(0) = 0.045, and P(0) = 2000000.
The smoking-present equilibrium points is the solution of the system:

0 = αsn + γse− (ds − dn)s− βs− µs + ((ds − dn)s + (de − dn)e)s,

0 = βs− γse− (de − dn − µ)e + ((ds − dn)s + (de − dn)e)e,

0 = µP + Λ− (dn + rP + (ds − dn)s + (de − dn)e)P.

(7)
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Based on the values of the parameters in Table 1, we get the reproductive numbers value that is 0.67 < 1.
By the Newton-Raphson method, we get the solution (7) which is

xd f e = [s, se, P]

where
s = 0, e = 0 and P = 2393000. (8)

We see that the point (8) is a smoking-free equilibrium point of (3). Therefore, we can say that the
smoking-present equilibrium point for R0 < 1 does not exist.

Furthermore, it will be investigated the existence of the smoking-present equilibrium point for R0 > 1.
Therefore, we choose the parameter α = 0.0881 and the other parameters as in Table 1, so that the reproductive
number R0 = 1.55 > 1. Therefore, the smoking-present equilibrium point for R0 > 1 is the solution of the
system: 

0 = αsn + γse− (ds − dn)s− βs− µs + ((ds − dn)s + (de − dn)e)s,

0 = βs− γse− (de − dn − µ)e + ((ds − dn)s + (de − dn)e)e,

0 = µP + Λ− (dn + rP + (ds − dn)s + (de − dn)e)P.

(9)

By the Newton-Raphson method, we get that the solution of system (7) is:

xd f e = [s, se, P]

where
s = 0.16, e = 0.3 and P = 2340000. (10)

We see that the point (8) is a smoking-present equilibrium point of the System (3). Therefore, we can say
that the smoking-present equilibrium point for R0 > 1 exist. This is reinforced by the illustration as follows:

Figure 2. The Smoker and Ex-Smoker Proportion vs Time for R0 > 1

Based on the Figure 2, it is shown that both the smokers and the ex-smokers are stable at the
smoking-present equilibrium point after 300ss years.

3.3. Stability of the smoking-present equilibrium point

In this section, we will investigate whether the smoking-present equilibrium point is stable using the
following definition numerically.

Definition 1. (Liapunov) Let x̄(t) be the solution of (3). A point x̄(t) is called stable if, for every ε > 0, there
exists δ = δ(ε) > 0 so that for any solution y(t) of (3) with |x̄(t0)− y(t0)| < δ,

|x̄(t)− y(t)| < ε
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for all t > t0 and for all t0 ∈ R.

There is also a concept of the asymptotic stability that is given below.

Definition 2. (Asymptotic stability) A solution x̄(t) is called asymptotically stable if x̄(t) is stable and for every
y(t) of the system of (3), there exists b > 0 such that, if |x̄(t0)− y(t0)| < b holds. Then

lim
t→∞
|x̄(t)− y(t)| = 0.

Based on this definition, an equilibrium point is said to be stable if a slight change in the initial value
of the system will only result in a small change in the solution. For that, we put c = 0.05 and initial value
z0 = [s0, e0, P0], where

0.35 ≤ s0 ≤ 0.45, 0 ≤ e0 ≤ 0.095, P0 = 2000000. (11)

Based on the values of the parameters and the initial value z0, we get the result of numerical analysis of
stability of the smoking-present equilibrium point (10) which is illustrated in the figure below:

Based on the Figure 3, We can see that for every initial value in (11), the solutions of the system will
converge to the smoking-present equilibrium point. Therefore, we can conclude that the smoking-present
equilibrium point of (3) is local asymptotically stable.

Figure 3. The Stability Analysis of Smoking Present Equilibrium
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4. Analysis of sensitivity parameters

Many doctors agree that smoking is bad for health, so the smokers need to be reduced for a healthy
country. There are x methods to reduce the smokers population. First, prevent non-smokers from becoming
smokers. Second, stop the smokers from their smoking habit. Third, prevent ex-smokers back to being
smokers. Mathematically, there are 3 parameters which directly affect the smokers population: α, the rate
of non-smokers become smokers; β, the rate of smokers become ex-smokers; γ, the rate of ex-smokers become
smokers. In other words, if one of the parameters value is changed, it will alter the behaviour of smokers
population in Indonesia. In consequence, in this section we will discuss sensitivity of smokers class to
parameters α, β and γ numerically. For that reason, the estimation chosen for the parameters α, β and γ is
0.0381 ≤ β, γ, α ≤ 0.0681.

Figure 4. The Sensitivity Analysis of The Parameters β

In this Figure 4, we can see that the parameter β affects negatively the number of smokers. At the same
time Figure 5 and Figure 6 shows that the increase of α and the γ values leads to the increase of the number
of smokers. The black dot in the Figure 4, Figure 5 and the Figure 6 indicates the value of the parameters β, α

and γ at time 0, which are 0.0398, 0.0325 and 0.0381 respectively. The above numerical results shows that the
change of 0.0005 of the parameter β will change about 0.0005 of the proportion of the smokers s. Meanwhile, if
the value of the parameters α and γ change with increment 0.0005 then it will change of the number of smokers
with increment 0.0012 and 0.0003 respectively. In the end, we can say that the parameter β is the most sensitive
for affecting the number of smokers.

Figure 5. The Sensitivity Analysis of The Parameters α
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Figure 6. The Sensitivity Analysis of The Parameters γ

5. Conclusion

We have proposed a mathematical model for smoking behavior in Indonesia. There are two equilibrium
points of the model that are smoking-free and smoking-present equilibrium points. We get that the smoke-free
equilibrium point exists. Also, using the reproductive number, we get that the smoke-free equilibrium point is
local asymptotically stable. At the same time, we get that the smoking-present equilibrium point exist. Also,
by the numerical analysis we get that these point are local asymptotically stable. A numerical simulation using
data in Indonesia has been done to see the behavior of smokers in Indonesia. We get that the smoker class is
most sensitive to the rate of the smokers become ex-smokers. Furthermore, we can conclude that the best way
to reduce the number of smokers in Indonesia is pushing the smokers to stop smoking.
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