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Abstract: We calculate the electromagnetic field contained by a pulsed above a planar interface by using the
modified Cagniard technique. The power density of spectrum of the wave that is observed at the distance
from its emptily science usually differs from that of the source excitation, the power spectrum depends
strangles on the speed of the wave in two media and the position of the observation point with respect to
the interface and the source, form results of the rendition form a past source a discretely layer medium.
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1. Introduction

T he Dipper effect which manifests itself when the source and the observer are in relative motion [1], when
a pulsed wave propagates through an absorbing medium, the interplay of observer in accordance with

the principle of consenting causes changes in the spectrum of the wave field [2] and mechanism is scattering
by medium, the last two processes and their consequences for the wave field power density spectrum are
described in [3–5].

In this paper, we present the study of spectral changes, namely reflection at an interface. The discussion
of the pulsed propagation in the two media configuration is carried out with the use of the modified Cagniard
technique [6]. This method has bean successfully applied in electromagnetic [7–10]. In this paper, we consider
scalar waves fields. Explicit expressions for the system Green function are obtained and in this configuration
the analysis of spectral changes can take place along the lies of the present paper as will. Furthermore,
extended sources can be handled with the method as experienced in static dynamic problem as shown in
[11].

2. Description of the configuration

The two media configuration under consideration consist of the two and half space as shown in Figure 1.
Orthogonal cartesian coordinates (x, y, z) with respect to a fixed reference form are used. The reference frame
is chosen such that the half-space and with z = 0, the point source is located with h as positive, the wave
function speeds in two media are denoted by ε1(z, φ, 0) and ε2(z, π, 0) respectively.

The scalar wave is described by u = u(x, y, z, t) can be written as:

u = u0 + u(1, z, φ, 0) and u = u(2, z, π, 0) ,

Figure 1
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where u0, is the wave function of the incident wave on the interface z = 0 and u1 is the reflected wave in z, φ, 0
and u2 is the transmitted wave field in z, π, 0. The wave function satisfy the following wave equations:

(∇2 − v−1
i

∂

∂t
)~ui(r, t) = − f (t)δ(x, y, z− h) for z ≥ 0 ,

(∇2 − v−1
i

∂

∂t
)~u0(r, t) = 0 for z = 0 .

For t < 0, f (t) = 0 and u(r, t) = 0 and the boundary condition to be satisfied across the interface, we take

u0 + u1 = u2, at z = 0 for all x, y ,
∂

∂t
(u0 + u1) =

∂

∂t
u2, at z = 0 for all x, y .

The electric field complex parallel in the interface in configuration of dielectric media, the incident wave
field in the spectral wave

~u0(r, t) =
f (t− R0/C)

4πR0
for R0 ≥ 0 ,

where
R0 = [x2 + y2 + (z− h)2]

1
2 .

The one-side usual Laplace transform with respect to t is:

E(x, s) =
∫ ∞

−∞
exp(−sτ)E(x, τ)dτ

~u0(s) =
f (s)

4πR0
exp−sR0/v for R0 ≥ 0 .

The reflection problem will be solved with the aid of the modified Cagniard method. The wave function
to one sided Laplace transform with transform

E(x, s) =
∫ ∞

−∞
exp(−sτ)E(x, τ)dτ .

The special Fourier transform for the representation of u(x, y, z, t) in the coordinates x and y parallel to
the interface, scattered by a fields of s is given as:

u(r, s) =
s2

4π

∫ ∫ ∞

−∞
exp(−s(αx + βy))E(α, β, z, s)dαdβ (1)

where α and β are the so-called showiness perimeter. We have the wave function:

∂2u0 − s2γ2
1u0 = − f (s)δ(z− h) for z ≥ 0 ,

∂2u1 − s2γ2
1u1 = 0 for z ≥ 0 ,

∂2u2 − s2γ2
2u2 = 0 for z = 0 .

Here
R1,2 = [v1,22 + α2 + β2]

1
2 .

The bounded solutions of these transformed wave equations are written as:

~u0(α, β, z, s) =
f (s)

2πγ1
exp(−sγ1|z− h|) for z0, φ, 0 (2)

~u1(α, β, z, s) = R(α, β)
f (s)

2πγ1
exp(−sγ1(z + h)) for z0, φ, 0 (3)

~u2(α, β, z, s) = T(α, β)
f (s)

2πγ1
exp(−sγ1h− γ2z) for z0, φ, 0 (4)



Open J. Math. Sci. 2020, 4, 142-146 144

where
R(α, β) =

γ1 − γ2

γ1 + γ2
and T(α, β) =

2γ

γ1 + γ2

and
R(α, β) + T(α, β) = 1 .

Note: R and T remain bounded for all real values of the parameter α and β. Substituting Equations (2), (3) and
(4) into Equation (1) tends to the representation of u, s and taking into account the algebraic factors of s and
f (s) in the expression (2) - (4), we aim the representation

~u(x, y, z, s) = s f (s)g(x, y, z, s) . (5)

The system Green function g can be written into the form

g(x, y, z, s) =
∫ ∞

−∞
exp(−sτ)g(x, y, z, τ)dτ

where T is a real variable of integration. The Laplace transformation in the time domain equivalent to the
equation (5):

u(x, y, z, t) =
∂

∂t

∫ t

τ
f (t− τ)g(x, y, z, τ)dτ

for τ ≤ t ≤ ∞ and equal to 0 for −∞ ≤ t ≤ τ such that

τ = i(αx + βy) + γ1(z + h) for reflected wave

τ = i(αx + βy) + (γ1h− zγ2) for transmitted wave

α and β are replaced by p, q as:

α = p cos θ + q sin θi, β = p sin θ − q cos θ

where x = r cos θ, y = r sin θ with 0 ≤ r ≤ ∞, 0 ≤ θ ≤ 2π under then transformation α2 + β2 = p2 + q2 and
dαdβ = dpdq while

u(r, s) =
s2

4πi

∫
dq

∫ ∞

−∞
exp(−iprs)u(p, q, z, s)dp .

Furthermore,

γ1,2(p, q) = [ϕ1,2(q,−p)]
1
2 with,

γ−2
1,2 (p, q) + q2 = [ϕ1,2(q,−p)]2 φ, 0 .

The integral with respect to p is contained analytically into the contour of complex plane – under the
application of Cauchy theorem. We will obtained to spec trial of the reflected wave in its dependence

u(r, s) =
s2

4πi

∫ ∞

−∞
dq

∫ +i∞

−i∞
exp(−ipr +−sγh1)(z + h)

R(p, q)
2γ1(p, q)

dp .

We deform the path of integration into the modified Cagniard path

pr + γ1(h + z) = τ ,

with t real and positive. For a fixed value of τ, we have either two complex conjugate solution of p two are
given

p1 =
r

r2 + (z + h)2 τ + i
(z + h)

r2 + (z + h)2 [τ
2 − T1(q)]

1
2 ,

for T1(q) ≤ τ ≤ ∞ with T1(q) = {r2 + (z + h)2 ϕ(q)}. Then

u(r, s) =
s2

4πi

∫ ∞

−∞
dq

∫ +i∞

−i∞
exp(−sτi) j

m
Im

R(p, q)
2γ1(p, q)

∂p1

∂τ
dτ .
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Figure 2

The transpose green function follows as:

g(r, τ) =
1

π2

∫ τ

0
Im

R(p, q)
2γ1(p, q)

∂p1

∂τ
dq ,

with T(0) ≤ τ ≤ ∞ and equal to 0 for −∞ ≤ τ ≤ T1(0).
The calculation of the Green function for this case is obtained according to the last equation in the

representation of g(x, y, z, t), takes break points in term as first make the arrival lies of the head wave and
the second less only a body wave contribution occurs.

3. Numerical results

The numerical integration and time conversation resulting from the modified Cagniard method wave
carried out with the half of the Green function. We first note that the on–cases Green function for the reflected
field is now given by

g(0, z, t, τ) =
1

4π

R(t)
z + h

with T(0) ≤ τ ≤ ∞ and equal to 0 for −∞ ≤ τ ≤ T1(0).
Green function G(T) for the case c1 = 330 m/s, c2 = 150 m/s the source is at z = 0, 1 and r = 0.

Observation point is at r = 1m, z = 0, 1m such that this case hand –wave arrival lies at T(0) = 1.8 ms and
body–wave arrival time T(0) = 3.3 ms. In the previous has c1 is largest from c1, upon intersection the two
wave speeds head may accordingly can be the case the Green function g(T0) is given in Figure 2.

4. Conclusion

We calculate the electromagnetic field by a pulsed point source above planar surface, the observed power
spectrum depended strongly on the wave speeds, it the two media and on the positive of the observation point
with respect to the interface and the source.
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