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Abstract: Radial Basis Function (RBF) is a real valued function whose value rests only on the distance from
some other points called a center, so that a linear combination of radial basis functions are typically used
to approximate given functions or differential equations. Radial Basis Function (RBF) approximation has
the ability to give an accurate approximation for large data sites which gives smooth solution for a given
number of knots points; particularly, when the RBFs are scaled to the nearly flat and the shape parameter
is chosen wisely. In this research work, an algorithm for solving partial differential equations is written and
implemented on some selected problems, inverse multiquadric (IMQ) function was considered among other
RBFs. Preference is given to the choice of shape parameter, which need to be wisely chosen. The strategy
is written as an algorithm to perform number of interpolation experiments by changing the interval of the
shape parameters and consequently select the best shape parameter that give small root means square error
(RMSE). All the computational work has been done using Matlab. The interpolant for the selected problems
and its corresponding root means square errors (RMSEs) are tabulated and plotted.

Keywords: Radial basis function (RBF), partial differential equations (PDE), inverse multiquadric (IMQ), root
means square error (RMSE).
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1. Introduction

R BF is an important method for approximating and interpolating functions and solving differential
equations (both ordinary and partial) for data with scattered node locations and in computation

domain in higher dimensions as discussed in [1]. RBF methods were first introduced by [2], who was a
geodesist at Iowa State University. In his proposed method, he simplified the computation of scattered data
problem relative to the previously used polynomial interpolation. In many cases, RBF methods have been
proved to be effective, where polynomial interpolation fails. RBF method are often used in topographical
representation and other intricate 3D shapes.

The use of RBF to interpolate scattered data problem emanated from the fact that the interpolation
problem becomes insensitive to the dimension (d) of the space in which the data set lies. Recently, different RBF
based methods have gained attention in scientific, computing and engineering applications such as functions
interpolation [3,4], numerical solutions to partial differential equation (PDEs) [5–7], Multivariate scattered
data processing [8] and so on. The main advantages of this method are spectral convergence rates that can be
achieved using infinitely smooth basis functions, geometrical flexibility and ease of implementation [3,9].

1.1. Idea of radial basis functions

The origin of RBFs can be traced back to [2], when Hardy introduced RBF multi-quadratics (MQ) to solve
surface fitting on topography and irregular surfaces. As a field engineer from 1947 to 1951, Hardy was first
interested in stream and ridge lines. Hardy believed that an interpolation method containing an exact fit of
data to a topographical region should exist. After thorough investigation, he discovered what later become
multiquadric (MQ). Prior to the knowledge of MQ, trigonometric and algebraic polynomials were employed.
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Due to the quadric surface, Hardy termed his method multiquadric. The MQ transformed scattered data to
a very accurate fit model of graph or surface. Subsequently he considered the MQ as a consistent solution of
biharmonic solution [10] to physically demonstrate its bravery. Other researchers like [11] extensively tested
twenty-nine different algorithms on the typical benchmark function on interpolation problems and ranked
the MQ-RBF and thin-plate splines TPS-RBF (introduced in [12] via employing the minimum bending energy
theory of the surface of a thin plate) as top two candidates based on the following criteria: timing, storage,
accuracy, visual pleasantness of the surface, and ease of implementation. Following the success recorded on
researches, RBFs have become popular in the scientific computing world, such as computer graphics, data
processing, and economics.

In 1986, Charles Micchelli developed the theory behind the MQ method, and proved that the MQ method
matrix system is invertible [13]. Few years later, [14,15] a collocating method was derived for solving partial
differential equations using MQ. The breakthrough by Kansa triggered a research boom in RBF. The Kansa
method is meshless and superior to the classical method due to some advantages such as: integration-free,
ease of implementation and superior convergence. In addition, it may be of interest that even before Kansa’s
pioneer work, Nardini and Brebbia (1983) [16] applied the function 1 + r without prior knowledge of RBFs
as the basis function in the Dual Reciprocity Method (DRM) in the context of the boundary element methods
(BEM) to get rid of domain integral effectively. Over the years, several researchers proposed different methods
which include:

1. Rescaled localized radia basis function interpolation on non-cartesian and nonconforming grids [4],
2. Dual Reciprocity Method (DRM) [17],
3. Method of Fundamental Solutions (MFS) [18], also known as the regular BEM.
4. Radial integration Method [19],
5. Monte Carlo Method [20],
6. Multiple reciprocity method (MRM) [21].

Table 1. Commonly used radial basis function

n Type of RBF ϕ(r, ε)

1 Gaussian e−(ε
2r2)

2 Wedland (1− εr)4 + (4r + 1)
3 Thin Plate Spline (TPS) r3 log(r)

4 Multiquadric (MQ)
(
1 + ε2r2) 1

2

5 Inverse Multiquadric (IMQ)
(
1 + ε2r2)− 1

2

2. Radial basis interpolation

RBF interpolation method use linear combinations of N (where N is the number of data sites), radial
functions ϕ(r), where r = ||x− xi|| and xi are the centers in Rd, where d is the dimension of the problem. In
this section, we are considering radial basis expansion to solve a scattered data interpolation problem in Rd. It
is further assumed that

ρ f (x) =
N

∑
k=1

ak ϕ(‖x− xk‖2), x ∈ Rd. (1)

The coefficients ak can be obtained by activating the interpolation conditions

ρ f (xj) = f (xj) j = 1, . . . Υ , (2)

and when N = Υ, (2) becomes N × N system of linear equations, that is:

Ab = f =⇒ b = A−1 f , (3)

where A is the following interpolation matrix:
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A =


ϕ(‖x1 − x1‖) . . . ϕ(‖x1 − xN‖)
ϕ(‖x2 − x1‖) . . . ϕ(‖x2 − xN‖)

... . . .
...

ϕ(‖xN − x1‖) . . . ϕ(‖xN − xN‖)

 . (4)

At evaluation point Φ, on the set Ξ := {λj}Φ
j=1, the Equation (1) becomes:

ρ f (λj) =
N

∑
k=1

ak ϕ(‖λj − xk‖2), j = 1, . . . , Φ . (5)

3. Methodology

3.1. Roles of shape parameter (ε)

Shape parameter ε play a very important role in the determination of the shape of basis functions [3,22–
24]. It is obvious from its name (shape parameter) that if the value of ε is moved over the interval [0, ∞], the
shape of the radial function will change effectively, (see Figure 1).

Figure 1. Shapes of 1D Gaussian and IMQ RBF of different shape parameters

To have a better knowledge of how the parameter ε changes the shape of a function, we present the
following theorem of strictly positive definite (SPD) functions [25,26]:

Theorem 1. Let ϕ := Rd −→ R be a strictly positive definite function on R. Then

1. ϕ(0) > 0,
2. ϕ is bounded, in fact |ϕ(x)| < ϕ(0), ∀x ∈ Rd.

Observe that we choose ϕ so that it can be defined over the entire region R.

In summary, it can be deduced from the above theorem that −ϕ(0) < ϕ(x) < ϕ(0). Consider

0 ≤ φ(r) < φ(0). (6)

Since we are considering basis functions that are strictly positive definite (SPD): IMQ, Wedland and
Gaussian, the Theorem 1 gives new bounds as seen in Equation (6).

Note that φ(ε; r) = φ(1; ε; r). If we take these radial basis as φ(ε; r), as a result, the bounds explain how
ε would behave on the shape of the function. i.e, increment in the value of ε leads to a continuous alter of the
shape of the function to a spiky shape as shown in Figure 1, where the spike is denoted by φ(0). Conversely
decrements in the value of an ε leads to a continuous change in the shape of the function to a flat shape, having
limit at φ(0) as well, see Figure 1 for explanation.
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Earlier in this section, we mentioned the role of the shape parameter (ε). Several researchers worked in
this direction [3,22–24] but only few have discussed the role of shape parameter on the accuracy and shape of
the interpolant. Numerous articles and books have been dedicated to explain how vital ε is to determine the
shape of a radial function therefore it is obvious that the shape parameter play a vital role in the accuracy and
the shape of an interpolant, therefore, the shape parameter need to be chosen wisely.

The question is: how can we choose the optimal shape parameter ε∗ with least root mean square error
(RMSE)? The answer of this question will be discussed later in this section.

In an attempt to determine the interval in which the optimal shape parameter exists, different algorithms
have been provided by different researchers but the purpose of this research work is to provide a Trial and
Error algorithm. This algorithm explain explicitly the effect of shape parameter ε on the the solution of PDE
problems selected for interpolation and narrows the interval in which the optimal shape parameter ε∗ is obtain.
This algorithm will be discussed in Subsection 3.2.

3.2. Algorithm for selecting interval of the shape parameter

The determination of best shape parameter ε∗ received attention from various researchers like [23] used
trigonometric shape parameter to generalize Multiquadric RBF. Similarly, [22] showed that random variable
shape parameter yield the most accurate results provided that the centers are uniformly spaced. An algorithm
that determine the interval for Multiquadric shape parameter was developed in [3]. This research work, will
concentrate on writing Trial and Error algorithm for choosing optimal shape parameter and its implementation
on PDE problems. In [11,27], authors described the Leave-One-Out Cross Validation and while in [28,29], the
authors introduced the Contour-Pade algorithm.

Algorithm 1: The Algorithm
Input: f : problem to be interpolated, Ω : Data sites, Φ: the set of evaluation points, d: dimension data

sites and the problem
Output: ε∗: best (optimal) shape parameter

1 Define: the data sites Γ from Ω;
2 Define: the range for the choice of ε ∈ [a, b];
3 Define: number shape parameters to be tested, namely n;
4 Define: number of data sites to be use, namely n;
5 for j = 1, . . . , n do

6 νj =
(
2j + 1

)d

7 end
8 for n = 1, ..., k do
9 εn = a + (n− 1) b−a

k ;
10 Solve H f (X, B(X, ε))c = f ;
11 compute H f (Θ, ε; x);

12 compute the error εi = RMSE =

√
∑x∈Θ | f (x)−H f (x)|2

Θ
13 end
14 Plot 1:length(νj) versus (RMSE) εi.
15 Find the index i∗ = minimum of νn
16 Set ε∗ = εi∗

It can be observed that the lower values of ε result in a ( f latter) basis function and the higher values of ε

result in a (spikier) basis functions and ε = 0 result to constant basis functions. Accuracy and stability are major
concerns in numerical computations. It is well known that instability increases as ε decreases. The significance
of this statement lies in the fact that highest accuracy is often found at some small shape parameters, which
may be in an unstable region. "Trade-off principle" is the term used to denote the conflict between accuracy
and numerical stability [25]. The choice of the basis function is linked with this "trade-off principle". Recently,
different methods have been introduced to stably compute interpolants with small parameters by using an
alternate basis, such as Contour-Pade and RBF-QR, as in [30] and [31].

Trial and Error Algorithm: To use Trial and Error algorithm, the PDE problems must be transform to
matrix form i.e., Ab = f , the generating data must be known [29]. If the function to be interpolate is unknown,
it becomes very difficult to choose the best shape parameter. One of the easiest way to choose (ε∗) is to
perform a series of interpolation experiments on a large range of shape parameters then narrow it down to
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some selected shape parameters relative to least RMSE. Trial and Error algorithm enhances the clarification
effectively on how shape parameter acts on solution of the PDE problems and gives an insight on how to
narrow the interval of ε.

This scheme works only when the problem to be interpolated is known. We have the Algorithm 1:

3.3. Root mean square error (RMSE)

Define

εj = RMSE =

√
∑M

j=1( f (αj)− H f (αj))2

M
(7)

where αj ∈ M, and M is the numbers of evaluation points.
From Equation (7), the RMSE is said to be the square root of mean squared error, where αj, j = 1, · · · , M

are evaluation points and should not be mistaken for data sites; data sites errors usually disappears since we
are considering an interpolant.

Due to the fact that the RMSE allows mapping of every interpolant to a single value which consequently
allows comparison of results in a single way. The RMSE is in some way superior and more practically than the
point-wise error.

4. Illustrative examples

In this section, the Trial and Error algorithm has been employed on some selected PDE problems in R2

using inverse multiquadric (IMQ) RBF with evaluation points M = 1600 and with different knots N by letting
Ω = [0, 1]2. The Root Mean Square Error is calculated by the formula given in (7).

Example 1. Consider
∂2u
∂y2 −

∂2u
∂x2 + u(x, y) = 2 sin x, (x, y) ∈ [0, 1]2 (8)

with boundary condition u(1, y) = sin(1) + sin(y), and exact solution u(x, y) = sin x + sin y.
Applying the Algorithm 1, rewriting Equation (8) in the form of Equation (1) and solving the resulting

equation together with the attached conditions, we obtain the interpolant. RMSE for Example 1 at different
data sites are tabulated in Table 2 and its corresponding figure is shown in Figure 2. Figure 3 correspond to
column 1 of Table 6.

Table 2. RMSE for Example 1 over a range of shape parameters

N ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8 ε = 1.0 ε = 1.2

9 4.947883e-03 7.061068e-04 8.306327e-03 1.683301e-02 2.501740e-02 3.215444e-02
25 1.226119e-04 1.233554e-04 2.499596e-04 1.163722e-03 2.576520e-03 4.351338e-03
36 6.759435e-06 1.916602e-06 1.024839e-05 1.251879e-05 6.232077e-05 1.785228e-04

289 7.375946e-06 3.628324e-06 1.285584e-06 1.239982e-05 2.038053e-06 3.000325e-05
1089 2.659954e-06 1.588367e-06 3.208293e-06 6.096696e-06 3.424757e-05 4.013821e-06

4225 3.605753e-05 6.143375e-06 1.669543e-06 5.970569e-06 2.033888e-05 7.354744e-05
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Figure 2. Error Comparison for Example 1

Figure 3. Interpolant for Example 1 and its corresponding data sites

Example 2. Consider
∂u
∂y
− ∂2u

∂x2 + u(x, y) = − (1 + y)2exp(x)
(1 + y2)2 , (x, y) ∈ [0, 1]2 (9)

with boundary condition u(x, 0) = exp(x), u(0, y) = 1
1+y2 , and exact solution u(x, y) =

exp(x)
1 + y2 .

Table 3 presents the RMSE for different data sites which correspond to Figure 4. The shape parameter that
best fits the problem is tabulated in Table 6 and its corresponding figure is shown in Figure 5.

Table 3. RMSE for Example 2 over a range of shape parameter (ε)

N ε = 1.0 ε = 1.2 ε = 1.4 ε = 1.6 ε = 1.8 ε = 2.0
9 5.361079e-02 6.657915e-02 7.686519e-02 8.599953e-02 9.281620e-02 9.719250e-02

25 7.972262e-03 1.192263e-02 1.633815e-02 2.100864e-02 2.578031e-02 3.055183e-02
36 2.857109e-04 6.473231e-04 1.210261e-03 1.977596e-03 2.933024e-03 4.050198e-03

289 1.659403e-06 4.254667e-06 9.665239e-06 2.699984e-05 5.940062e-05 1.145354e-04
1089 1.6725029e-06 3.219273e-06 1.395574e-05 1.838989e-06 1.024784e-06 4.224696e-07
4225 2.991273e-05 3.095514e-05 6.726647e-06 6.386367e-06 3.699115e-06 8.021659e-06

Example 3. Consider a second order PDE [32]

∂2u
∂x∂y

= 4x + ex, (x, y) ∈ [0, 1]× [0, 1]

with supplementary conditions
∂u(0, y)

∂y
= y, y ∈ [0, 1], and u(x, 0) = 2, x ∈ [0, 1]. The exact solution of this

problem is u(x, y) = 2x2y + yex + y2

2 − y + 2.



Open J. Math. Sci. 2020, 4, 147-157 153

Figure 4. Error Comparison for Example 2

Figure 5. The approximate solution for Example 2 and its corresponding RMSE for different n

Table 4 presents the RMSE for different data sites which correspond to Figure 6. The shape parameter that
best fits the problem is tabulated in Table 6 and its corresponding figure is shown in Figure 7.

Table 4. RMSE for Equation 3 over a range of shape parameters (ε)

N ε = 0.70 ε = 0.72 ε = 0.74 ε = 0.76 ε = 0.78 ε = 0.80

9 2.158636e+14 4.409283e+13 1.506239e+13 8.352088e+13 3.278437e+ 5.099321e+
25 1.890692e+11 2.546641e+10 4.975475e+10 1.338177e+11 1.278434e+0014 1.367660e+11
36 9.573340e+02 1.349606e+04 8.731797e+03 1.758439e+04 1.274839e+04 6.150933e+04

289 1.606563e-05 1.632955e-05 7.146346e-05 4.759347e-06 6.556112e-05 2.439145e-05
1089 3.359890e-05 1.951918e-05 1.472573e-05 1.544620e-05 1.163340e-04 1.796294e-05
4225 3.174857e-05 3.725997e-05 2.397563e-04 2.986440e-05 3.321418e-05 1.772710e-04

Example 4. Consider PDE with variable coefficient:(2− x2 − y2)
∂2u
∂x2 + exp(x− y)

∂2u
∂y2 + 2x

∂u
∂x
− exp(x− y)

∂u
∂y

= 32y(1− y)(3x2 + y2 − x− 2)− 16x(1− x)(3− 2y) exp(x− y), (x, y) ∈ [−1, 1]2

with boundary conditions u(x, 0) = u(x, 1) = u(0, y) = u(1, y). The exact solution is u(x, y) = 16x(1− x)y(1−
y).

Table 5 presents the RMSE for different data sites which correspond to Figure 8. The shape parameter that
best fits the problem is tabulated in Table 6 and its corresponding figure is shown in Figure 9.
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Figure 6. Error Comparison for Example 3

Figure 7. Interpolant for Example 3 and its corresponding data sites

Figure 8. Error Comparison for Example 4
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Table 5. RMSE for Example 4 over a range of shape parameter (ε)

N ε = 2.0 ε = 2.2 ε = 2.4 ε = 2.6 ε = 2.8 ε = 3.0

9 3.141788e-01 2.283516e-01 3.417120e-01 3.543151e-01 3.661779e-01 3.773037e-01
25 7.195343e-02 7.802547e-02 8.421439e-02 9.079792e-02 9.802652e-02 1.061088e-01
36 1.038673e-02 1.239037e-02 1.434081e-02 1.622251e-02 1.803027e-02 1.976604e-02

289 3.501529e-04 5.426626e-04 7.800962e-04 1.058621e-03 1.373386e-03 1.719207e-03
1089 1.383170e-06 1.988194e-06 3.327200e-06 6.190326e-06 1.153241e-05 1.679633e-05
4225 7.855453e-05 5.256268e-05 9.814452e-06 1.835032e-05 5.043419e-06 9.741750e-06

Figure 9. Interpolant for Example 4 and its corresponding data sites

Table 6. RMSE for the examples considered with their respective optimal shape parameter (ε∗)

Data sites Example 1 ε∗ = 0.4 Example 2 ε∗ = 1.6 Example 3 ε∗ = 0.72 Example 4 ε∗ = 2.4

9 7.061068e-04 8.599953e-02 4.409283e+13 3.417120e-01
25 1.233554e-04 2.100864e-02 2.546641e+10 8.421439e-02
81 1.916602e-06 1.977596e-03 1.349606e+04 1.434081e-02
289 3.628324e-06 2.620360e-05 1.632955e-05 7.800962e-04

1089 1.588367e-06 2.699984e-06 1.951918e-05 3.327200e-06
4225 6.143375e-06 6.386367e-06 3.725997e-05 9.814452e-06

5. Discussion of results and conclusion

5.1. Discussion of Results

Tables 2-5 are the product of the errors obtained from interpolating Examples 1-4. Table 6 summarizes all
the RMSE for the examples considered with their respective best shape parameters. The data sites used in this

research work are N = [9, 25, 81, 289, 1089, 4225] (gotten from
(

2k + 1
)d

, k = 1, 2, . . .). It is visually obvious
from the tables that the errors follow a pattern irrespective of the examples (that’s the errors decline as the data
sites increases) as shown in Table 6. In Example 3, it can be noticed that with small data sites; [9, 25, 81] (that

is
(

2k + 1
)d

, k = 1, 2, 3 and d = 2) the RMSE are very bad, irrespective of the choice of shape parameter, but

as the data sites increases (that is,
(

2k + 1
)d

, k = 4, 5, . . . and d = 2) the RMSE improves. In fact, the best
shape parameter exists at (ε∗ = 0.72).

5.2. Conclusion

In this research work, Trial and Error scheme is proposed to determine the range in which the best
shape parameter ε∗ lies via IMQ radial function by performing interpolation experiments and selecting
which experiment produces the least RMSE for different data sites. We have illustrated the formulation and
implementation of this process on some selected PDE problems. Obviously, numerical results demonstrated
that the scheme alongside the Matlab codes has immensely reduced time and ease the complexity involved in
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the computation, thus, making this scheme an effective and efficient technique for solving partial differential
equations.
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